April 2016 Toro Energy Extension to the Wiluna Uranium Project Response

Total Page:16

File Type:pdf, Size:1020Kb

April 2016 Toro Energy Extension to the Wiluna Uranium Project Response APRIL 2016 TORO ENERGY EXTENSION TO THE WILUNA URANIUM PROJECT RESPONSE TO EPA SUBMISSIONS TECTICORNIA GROUNDWATER DEPENDENCY Toro Energy Pty Ltd Extension to the Wiluna Uranium Project Response to EPA Submissions Tecticornia Groundwater Dependency Document status Approved for Issue Rev Author Reviewer/s Date Name Distributed To Date 1 S. Grein S. Grein/L.Chandler 1/4/2016 A. Worland Toro Energy 1/4/2016 2 S. Grein S. Grein/L.Chandler 19/04/2016 A. Worland Toro Energy 19/04/2016 3 S. Grein S. Grein/L.Chandler 21/4/2016 A. Worland Toro Energy 21/04/2016 ecologia Environment (2016). Reproduction of this report in whole or in part by electronic, mechanical or chemical means including photocopying, recording or by any information storage and retrieval system, in any language, is strictly prohibited without the express approval of the Toro Energy and ecologia Environment. Restrictions on Use This report has been prepared specifically for the Toro Energy. Neither the report nor its contents may be referred to or quoted in any statement, study, report, application, prospectus, loan, or other agreement document, without the express approval of the Toro Energy and ecologia Environment. ecologia Environment 1/224 Lord St PERTH WA 6000 Phone: +61 8 6168 7200 Email: [email protected] 2 Toro Energy Pty Ltd Extension to the Wiluna Uranium Project Response to EPA Submissions Tecticornia Groundwater Dependency TABLE OF CONTENTS KEY POINTS ..................................................................................................................................... 4 1 TECTICORNIA GROUNDWATER DEPENDENCY .................................................................... 5 1.1 TECTICORNIA ............................................................................................................................ 5 1.2 SOIL PROFILES AND SALINITY AT MILLIPEDE, LAKE MAITLAND AND FORTESCUE MARSH ...... 7 1.3 GROUNDWATER DEPENDENCY IN VEGETATION COMMUNITIES ............................................ 7 1.4 TECTICORNIA DOMINATED VEGETATION COMPLEXES AND UNITS AT THE MILLIPEDE AND LAKE MAITLAND DEPOSITS .................................................................................................... 10 1.5 TECTICORNIA ECOHYDROLOGICAL STUDIES .......................................................................... 12 2 CONCLUSIONS ................................................................................................................. 15 3 REFERENCES .................................................................................................................... 16 FIGURES Figure 1 – Observations of Tecticornia indica subsp. bidens root system at the edge of the Fortescue Marsh (Equinox 2013). ........................................................................................................ 6 Figure 2 – East Shallow Bore groundwater levels and rainfall ................................................................ 8 Figure 3 – North Shallow Bore groundwater levels and rainfall ............... Error! Bookmark not defined. Figure 4 – Locations of North and East Shallow Groundwater Monitoring Bores .................................. 9 Figure 5 – Locations of Tecticornia indica subsp. bidens from Millipede and Lake Maitland Development Envelopes ................................................................................................... 11 Figure 6 – Locations of Tecticornia indica subsp. leiostachya from Millipede and Lake Maitland Development Envelopes ................................................................................................... 11 Figure 7 – Locations of Tecticornia sp. Denny’s Crossing from Millipede and Lake Maitland Development Envelopes ................................................................................................... 12 Figure 8 – Fortescue Marsh ecohydrological conceptualisation (BHPIO, 2016) ................................... 14 3 Toro Energy Pty Ltd Extension to the Wiluna Uranium Project Response to EPA Submissions Tecticornia Groundwater Dependency KEY POINTS • Recent studies of Tecticornia dominated vegetation communities fringing the northern flank of the Fortescue Marsh are relevant to the assessment of impacts associated with the Wiluna Extension Proposal. This includes: o Soil conditions at Christmas Creek/northern fringe of Fortescue Marsh and at Lake Way/Lake Maitland are similar. o Groundwater conditions (including depth to water and salinity) are also similar o Several of dominant Tecticornia species, including Tecticornia indica subsp. bidens, Tecticornia indica subsp. leiostachya and Tecticornia sp. Dennys Crossing (K.A. Shepherd & J. English KS 552) are common to all three locations (ie Fortescue Marsh, Lake Way, Lake Maitland) • The Tecticornia species have morphological and physiological characteristics (ie low LAI, low transpiration rate, shallow root architecture) associated with plant drought tolerance and are not typical of groundwater dependent species • Published and unpublished technical literature suggests possible linkages between Tecticornia zonation and submergence tolerance, but not between zonation and drought tolerance • It is likely that the environmental water requirements of Tecticornia species are met by periodic surface recharge of the vadose zone • Other environmental water requirements (related to seedling emergence, for example) are triggered by fresh water inputs from rainfall events and are not influenced by changes in groundwater regimes • Natural variations in the depth to groundwater at Lake Way (and also likely at Lake Maitland) are in the order of more than 0.5m over the annual cycle. Even if Tecticornia species did exhibit a level of occasional groundwater reliance, plants of this genera are likely to be tolerant of natural groundwater fluctuations of at least 0.5m at Lake Way and Lake Maitland and up to 2m at Fortescue Marsh. • Samphire communities within the 0.5m drawdown contour and outside the direct disturbance footprint will be monitored to confirm that possible changes in groundwater hydrology are not affecting vegetation health. 4 Toro Energy Pty Ltd Extension to the Wiluna Uranium Project Response to EPA Submissions Tecticornia Groundwater Dependency 1 TECTICORNIA GROUNDWATER DEPENDENCY 1.1 TECTICORNIA The genus Tecticornia (Amaranthaceae, subfamily Salicornioideae) is a group of stem succulent and perennial halophytes that typically inhabit marshes and margins of inland salt lakes of Australia (Marchesini et al, 2013). They are considered keystone species due to their unique adaptations, and typically dominate the plant communities in these habitats. While some Tecticornia species are widespread, others are restricted to particular habitats and landforms. The distribution of Tecticornia species across ecosystem gradients generally reflects the tolerance of the species to variability in environmental conditions. Ecophysiology studies of Tecticornia communities on the Fortescue Marsh in the Pilbara region of WA by the University of Western Australia (UWA) (Moir-Barneston et al, 2013; Marchesini et al, 2013) demonstrated that the more flood and salinity tolerant Tecticornia species (ie T. medusa) tends to occur in the interior of the Marsh while the more drought tolerant species (ie Tecticornia indica subsp. bidens) occurs on the outer margins of the Marsh fringe where soil conditions were drier and the deeper groundwater was inaccessible to the root system of the species. Tecticornia species, including Tecticornia indica subsp. bidens, are generally found in well-drained soils (Lake Carey Catchment Management Group, 2013). An unequivocal observation that has been made with respect to plant groundwater dependency is that if groundwater is found to be within the rooting depth of the vegetation it is reasonable to conclude that the vegetation is using that groundwater (Eamus, 2009). Baseline groundwater levels at the northern edge of the Marsh averaged 403m AHD with the saturated soil zone virtually never reaching a depth as shallow as 1m, more typically occurring at a depth of about 2m (FMG, 2015). Root studies of plant communities occurring on the fringes of the Fortescue Marsh conducted by UWA in 2012 (Grierson et al, in prep), that included Tecticornia indica subsp. bidens species, found that T. indica subsp. bidens has a woody root system that is predominantly confined to the top 70 cm of the soil profile (Figure 1), with the finer roots confined to the top 50 cm. Between flood events the roots of T. indica subsp. bidens are located within the unsaturated zone (FMG 2015). According to Eamus et al 2006, the inference of dependency on groundwater is based on the subsurface presence of groundwater and the groundwater or capillary fringe above the water table is likely to be within the rooting depth of any of the vegetation. On the basis of the Fortescue Marsh root study field data and photographic evidence in Figure 1, the fact that the roots of T. indica subsp. bidens do not extend into groundwater (at approximately 2m) or the capillary fringe above the watertable, indicates that the taxon has a water use strategy that targets surface water infiltration of the unsaturated soil layer (vadose zone) and is not dependent on groundwater for its survival (Equinox, 2013). 5 Toro Energy Pty Ltd Extension to the Wiluna Uranium Project Response to EPA Submissions Tecticornia Groundwater Dependency Figure 1 Observations of Tecticornia indica subsp. bidens root system at the edge of the Fortescue Marsh (Equinox 2013).
Recommended publications
  • Origin and Age of Australian Chenopodiaceae
    ARTICLE IN PRESS Organisms, Diversity & Evolution 5 (2005) 59–80 www.elsevier.de/ode Origin and age of Australian Chenopodiaceae Gudrun Kadereita,Ã, DietrichGotzek b, Surrey Jacobsc, Helmut Freitagd aInstitut fu¨r Spezielle Botanik und Botanischer Garten, Johannes Gutenberg-Universita¨t Mainz, D-55099 Mainz, Germany bDepartment of Genetics, University of Georgia, Athens, GA 30602, USA cRoyal Botanic Gardens, Sydney, Australia dArbeitsgruppe Systematik und Morphologie der Pflanzen, Universita¨t Kassel, D-34109 Kassel, Germany Received 20 May 2004; accepted 31 July 2004 Abstract We studied the age, origins, and possible routes of colonization of the Australian Chenopodiaceae. Using a previously published rbcL phylogeny of the Amaranthaceae–Chenopodiaceae alliance (Kadereit et al. 2003) and new ITS phylogenies of the Camphorosmeae and Salicornieae, we conclude that Australia has been reached in at least nine independent colonization events: four in the Chenopodioideae, two in the Salicornieae, and one each in the Camphorosmeae, Suaedeae, and Salsoleae. Where feasible, we used molecular clock estimates to date the ages of the respective lineages. The two oldest lineages both belong to the Chenopodioideae (Scleroblitum and Chenopodium sect. Orthosporum/Dysphania) and date to 42.2–26.0 and 16.1–9.9 Mya, respectively. Most lineages (Australian Camphorosmeae, the Halosarcia lineage in the Salicornieae, Sarcocornia, Chenopodium subg. Chenopodium/Rhagodia, and Atriplex) arrived in Australia during the late Miocene to Pliocene when aridification and increasing salinity changed the landscape of many parts of the continent. The Australian Camphorosmeae and Salicornieae diversified rapidly after their arrival. The molecular-clock results clearly reject the hypothesis of an autochthonous stock of Chenopodiaceae dating back to Gondwanan times.
    [Show full text]
  • 080057-03.001.Pdf
    'urirJo uels pu€ r"IToJ olur uorsr^rp e lset8ns pFoc l"ql ql?oqs eql ur uorl"cr"rusp ,{l?punoq Jo I€rJol?ru 'ut{€.{) Jo ou sI eJeql l?ql luer?dd€ sr lI tcoJJoc sI aoIA Jo^aqclql6 (€96I segol "uts ol peanpor oJBse^"el eql l?ql pu€ xolroc enJl ? slueseJdeJql€eqs lualn$ns eql lEql paunss€ 'ue{leJ) sI 1r qclq,^Aut pasodord ueeq s"q eJnlcnJls e^rl"uJell€ uV (Lg6I ses"q Jeel ;o suorlrod I?u"q? luoJlnaop eql -,{qpepuno:rns srx€ ruels e;o dn epeu eq ol petunss€ ueaq .{11zreue3el"rl e€eproruJocrT?Soq} Jo crlsrlolr?J?qc s3qJusrq ol€lnJllJ" eyL :wals ,{SoloqdroN '(Z/6I uoslrlA) poqsllqnd ueeq ^p?orl€ se\I ou)oru)al snue8 eql uorsr,\er 'posr^eJ Jo v eJB"rJe.rlsny ur lusseJd Sureqs? pesruSoceJDJeueB xrs eql Jo e^g .radsdslql ul 'Bxel luenlrlsuoc JJor{l ^ueut osrsSocoJpu? €roue8 eql eleeullep ,{lJ"elc oloru ol 'sJerllo Jo 'se^rl"lussoJdeJ elqlssod uooq s"q lr Jo suerurcedspeup pooB pu€ atuosJo lEl.roleu pol{cld ro qse.ggo ,{11rge1e,r"eql qll,^A 'sercedspue ereue8 oq1 q}oq os"q o} q3lq,r uo 'uleql sJelr?J?gc oql o-lenp-,(pred pu" ol olq"lr"As ppq o^?q s}s[uouox€l eql luql Jo,{lrcned 'el?qop I"LrelEruJooo oql ol enp ,\ll.rBou00q sBq srqJ alqBloprsuoJJo esn€oeql uesq s"q ereue8 eql go uo4drrcsrunc:rc eq1 'e8€lqurass"elercsrp ? s? pesruSoceJ-,{lI?JeueB ueeq e^eq e€eploluloarl"S eql ellq,4A.
    [Show full text]
  • Thornbills, Samphires & Saltmarsh Tipping Points
    Thornbills, samphires & saltmarsh tipping points A assessment of potential threats to Samphire Thornbill habitat in the northern Adelaide & Mt Lofty Ranges Natural Resources Management region 27 July 2017 Prepared for: Natural Resources Adelaide & Mt Lofty Ranges Authors: Peri Coleman, Faith Coleman & Doug Fotheringham Delta Environmental Consulting 12 Beach Road, St Kilda SA 5110 Telephone: 08 8280 5910 Facsimile: 08 8280 5179 Email: [email protected] Website: www.deltaenvironmental.com.au THORNBILLS, SAMPHIRES & SALTMARSH TIPPING POINTS LIMITATIONS STATEMENT The sole purpose of this report and the associated services performed by Delta Environmental Consulting is to investigate the habitat of the Samphire Thornbill in the eastern Gulf St Vincent region in accordance with the scope of services set out in the contract between Delta Environmental Consulting (‘Delta’) and AMLR NRM BOARD (‘the Client’). That scope of services was defined by the requests of the Client, by the time and budgetary constraints imposed by the Client, and by the availability of access to the site. Delta derived the data in this report primarily from visual inspections, examination of records in the public domain and interviews with individuals with information about the site. The passage of time, manifestation of latent conditions or impacts of future events may require further exploration at the site and subsequent data, analysis and a re-evaluation of the findings, observations and conclusions expressed in this report. In preparing this report, Delta has relied upon and presumed accurate certain information (or the absence thereof) relative to the site, provided by government officials and authorities, the Client and others identified herein.
    [Show full text]
  • Salicornia L., Chenopodiaceae)
    TAXON 56 (4) • November 2007: 1143–1170 Kadereit & al. • Phylogeny and biogeography of Salicornia A taxonomic nightmare comes true: phylogeny and biogeography of glassworts (Salicornia L., Chenopodiaceae) Gudrun Kadereit1*, Peter Ball2, Svetlana Beer3, Ladislav Mucina4, Dmitry Sokoloff 5, Patrick Teege1, Ahmet E. Yaprak5 & Helmut Freitag6 1 Institut für Spezielle Botanik und Botanischer Garten, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany 2 Biology Department, University of Toronto at Mississauga, Mississauga, Ontario, L5L 1C6, Canada 3 Higher Plants Department, Moscow State University, 119992 Moscow, Russia 4 Dept. of Botany & Zoology, Evolutionary Plant Biology & Conservation Group, Stellenbosch University, 7602 Matieland, South Africa 5 Ankara University, Science Faculty, Department of Biology, Besevler/Ankara, Turkey 6 Arbeitsgruppe Systematik und Morphologie der Pflanzen, Universität Kassel, 34109 Kassel, Germany * Author for correspondence ([email protected]) In this study we analysed ETS sequence data of 164 accessions belonging to 31 taxa of Salicornia, a wide- spread, hygrohalophytic genus of succulent, annual herbs of Chenopodiaceae subfam. Salicornioideae, to investigate phylogenetic and biogeographical patterns and hypothesise about the processes that shaped them. Furthermore, our aim was to understand the reasons for the notorious taxonomic difficulties in Salicornia. Salicornia probably originated during the Miocene somewhere between the Mediterranean and Central Asia from within the perennial Sarcocornia
    [Show full text]
  • BHP BILLITON YEELIRRIE DEVELOPMENT COMPANY PTY LTD Yeelirrie Project Flora and Vegetation Survey Baseline Report February
    BHP BILLITON YEELIRRIE DEVELOPMENT COMPANY PTY LTD Yeelirrie Project Flora and Vegetation Survey Baseline Report February 2011 Prepared by: For: Western Botanical URS Australia Pty Ltd PO Box 3393 Level 3, 20 Terrace Rd BASSENDEAN WA East Perth WA 6004 28th February 2011 Report Ref: WB653 Yeelirrie Project Flora and Vegetation Baseline Survey February 2011 Document Status Version Date Distribution 0 28.02.2011 URS Australia, Electronic Project Team Field Survey Rebecca Graham, Cheyne Jowett, Geoff Cockerton, Amy Douglas, Daniel Brassington, Jessie-Leigh Brown, Simon Colwill, Sophie Fox, Renee D’Herville, Lewis Trotter, Bridget Watkins, Dr. Carolyn Ringrose, Elly Beatty, Jeremy Macknay, Cassie Adam, Susan Regan, Sam Atkinson, John Rouw and Philip Trevenen. Report Preparation: Rebecca Graham, Geoff Cockerton, Dr. Carolyn Ringrose, Cheyne Jowett, Amy Douglas, Lewis Trotter, Bridget Watkins, Daniel Brassington, Jessie-Leigh Brown, Simon Colwill and Sophie Fox. Acknowledgements: Doug and Lucy Brownlie (Yakabindie Station), Gil and Dale O’Brien (Yeelirrie Homestead) Doug Blandford (DC Blandford & Associates), BHP Billiton Yeelirrie Development Company Pty Ltd field staff and contractors, HeliWest pilots (Simon, Luke, Mike and Brad). Map Production by CAD Resources Pty Ltd Western Botanical i Yeelirrie Project Flora and Vegetation Baseline Survey February 2011 Executive Summary The Proposed Yeelirrie Development (project) at Yeelirrie Pastoral Station, is some 700 km north-east of Perth and 500 km north of Kalgoorlie (Figure 1). BHP Billiton Yeelirrie Development Company Pty Ltd (BHPB Billiton), through URS Australia Pty Ltd, engaged Western Botanical to undertake an assessment of the flora and vegetation within an area referred to as the total study area. The total study area includes the areas studied both locally and regionally.
    [Show full text]
  • Evolutionary Convergence of C4 Photosynthesis: a Case Study in the Nyctaginaceae
    fpls-11-578739 October 28, 2020 Time: 15:36 # 1 HYPOTHESIS AND THEORY published: 02 November 2020 doi: 10.3389/fpls.2020.578739 Evolutionary Convergence of C4 Photosynthesis: A Case Study in the Nyctaginaceae Roxana Khoshravesh1,2†, Matt Stata1†, Shunsuke Adachi1,3†, Tammy L. Sage1† and Rowan F. Sage1*† 1 Department of Ecology and Evolutionary Biology, The University of Toronto, Toronto, ON, Canada, 2 Department of Biology, The University of New Mexico, Albuquerque, NM, United States, 3 Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Japan Edited by: Tingshuang Yi, C4 photosynthesis evolved over 65 times, with around 24 origins in the eudicot order Kunming Institute of Botany, Chinese Caryophyllales. In the Caryophyllales family Nyctaginaceae, the C4 pathway is known in Academy of Sciences, China three genera of the tribe Nyctagineae: Allionia, Okenia and Boerhavia. Phylogenetically, Reviewed by: Isabel Larridon, Allionia and Boerhavia/Okenia are separated by three genera whose photosynthetic Royal Botanic Gardens, Kew, pathway is uncertain. To clarify the distribution of photosynthetic pathways in the United Kingdom Sidonie Bellot, Nyctaginaceae, we surveyed carbon isotope ratios of 159 species of the Nyctaginaceae, Royal Botanic Gardens, Kew, along with bundle sheath (BS) cell ultrastructure, leaf gas exchange, and C4 pathway United Kingdom biochemistry in five species from the two C4 clades and closely related C3 genera. All *Correspondence: species in Allionia, Okenia and Boerhavia are C4, while no C4 species occur in any Rowan F. Sage [email protected] other genera of the family, including three that branch between Allionia and Boerhavia. †ORCID: This demonstrates that C4 photosynthesis evolved twice in Nyctaginaceae.
    [Show full text]
  • Sesuvium Portulacastrum and Tecticornia Indica ⁎ M
    Available online at www.sciencedirect.com South African Journal of Botany 79 (2012) 39–47 www.elsevier.com/locate/sajb Photosynthetic responses to salinity in two obligate halophytes: Sesuvium portulacastrum and Tecticornia indica ⁎ M. Rabhi a, A. Castagna b, D. Remorini c, C. Scattino b, A. Smaoui a, A. Ranieri b, , C. Abdelly a a Laboratory of Extremophile Plants (LPE), Borj-Cedria Biotechnology Centre, P.O. Box 901, 2050 Hammam-Lif, Tunisia b Department of Crop Biology, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy c Dipartimento di Coltivazione e Difesa delle Specie Legnose “G. Scaramuzzi”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy Received 27 May 2011; received in revised form 23 September 2011; accepted 15 November 2011 Abstract Seedlings of the obligate halophytes Sesuvium portulacastrum L. and Tecticornia indica (Willd.) subsp. indica were grown with 0, 200, or 400 mM NaCl for 13 weeks to investigate whether salt tolerance was related to maintenance of adequate photosynthetic activity and pigment equipment. Both species showed growth optimum at 200 mM NaCl and better tissue hydration under salinity but different photosynthetic response to salinity. CO2 assimilation rate and stomatal conductance of S. portulacastrum were highest at 200 mM NaCl, while in T. indica they decreased with salinity. Pigment content increased under salinity in both species. The de-epoxidation state in S. portulacastrum suggests the need for energy dissipation at 400 mM NaCl, while its salt-induced decline in T. indica, despite the reduced photochemistry, suggests the involvement of adaptive mechanisms other than the xanthophyll cycle. © 2011 SAAB.
    [Show full text]
  • Marchesini Et Al 2016, Spectral Detection of Stress-Related Pigments
    1 1 Spectral detection of stress-related pigments in salt-lake succulent halophytic shrubs 2 3 Victoria A. Marchesini1,2*, Juan P. Guerschman3, Ralf M. Schweiggert4, Timothy D. Colmer1 & Erik. J. 4 Veneklaas1 5 6 1School of Plant Biology, The University of Western Australia, 35 Stirling Highway, 7 Crawley WA 6009, Australia 8 2GEA-IMASL/CONICET, Ejército de los Andes 950, San Luis, Argentina. 9 3CSIRO Land and Water, GPO Box 1666, Canberra, ACT 2601, Australia 10 4Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany. 11 *Corresponding author: [email protected] 12 13 Abstract 14 The spectral detection of vegetation pigment concentrations has a high potential value, but it is still 15 underdeveloped, especially for pigments other than chlorophylls. In this study, the seasonal pigment 16 dynamics of two Tecticornia species (samphires; halophytic shrubs) from north-western Australia were 17 correlated with spectral indices that best document the pigment changes over time. Pigment dynamics 18 were assessed by analysing betacyanin, chlorophyll and carotenoid concentrations at plant level and by 19 measuring reflectance at contrasting seasonal dates. Plant reflectance was used to define a new 20 reflectance index that was most sensitive to the seasonal shifts in Tecticornia pigment concentrations. 21 The two Tecticornia species turned from green to red-pinkish for the period March-August 2012 when 2 22 betacyanins increased almost nine times in both species. Chlorophyll levels showed the opposite pattern 23 to that of betacyanins, whereas carotenoid levels were relatively stable. Normalised difference indices 24 correlated well with betacyanin (r=0.805, using bands at 600 and 620 nm) and chlorophyll (r=0.809, 25 using bands at 737 and 726 nm).
    [Show full text]
  • Lauderdale Saltmarsh Discovery Trail (All Ages)
    Outdoor Activity - Lauderdale Saltmarsh Discovery Trail (all ages) Overview: The Lauderdale saltmarsh Discovery Trail can be enjoyed by individuals, or led by a teacher/guide. It is an interpretive walk consisting of 9 discovery points starting and finishing at the car park of the old Lauderdale tip. The info pack can be read by individuals walking the trail to learn about the saltmarsh and tidal flat environment and the animals and plants that live there. Alternatively, it can be used as a resource for teachers/guides to lead the Discovery trail. This info pack contains specially developed information relevant to each of the 9 Discovery Points that can be read out to students/participants to inform them about the interesting environment they are visiting. Several activities can also be undertaken as part of the walk to further engage students/participants. Currently there is no signage at the site, so it is essential you print out and take this info pack with you, including 9 discovery points and a map, so you can get the most out of the interpretive walk. Prior to the excursion teachers/guides should review the information provided for each of the 9 discovery points and select what is most relevant for their school age group. Follow the walking trail to discover the secrets of saltmarsh habitat and animals. This discovery experience is most beneficial when each student/participant has a ‘Wildlife Detective’ activity sheet to fill in as they walk, and can use magnifying glasses and binoculars. Inclusion of the ‘Sensory Exploration’ activity will engage students/participants further.
    [Show full text]
  • A Tasmanian Saltmarsh Wetland Plants Checklist
    Plant Family Scientific names Common names Book Recorded Average Flowering (* - introduced; Page (present, Height Status # - listed as rare in TAS) No. doubtful) (in cm) (in flower TASMANIAN SALTMARSH WETLAND PLANTS or not) CHECKLIST SURVEY DETAILS Saltmarsh site name: Saltmarsh cluster name (bay, river etc.): Survey location details (landmarks etc.): Geo-location (lat, long or E, N): Recorders: Survey date: Start time: End time: SURVEY METHOD (PS) Point-based 2-ha Area Search (TS) Transect-based Fixed-Route Monitoring (IS) Incidental Search* *for IS please note if plants were recorded on nearby saltmarsh upland margins. Details of survey methods are available through contacts listed in the last page. Refer to A guide to the plants of Tasmanian saltmarsh wetlands (2014) for identification support. Site specific species list can be used as a starting point for monitoring the plants of particular saltmarsh sites by recording the presence and absence of species. This could be done through a ‘bio-blitz’ conducted during the warmer months (when most species are in flower and are easier to identify) once every few years. These data will help improve our understanding of the Statewide distribution of saltmarsh plants, their ecology and biogeography (relating distribution data to local and regional environmental factors). When these data are collected over a long term (over decades), they can also indicate species-range shifts that occur as a consequence of climate change. Typical cross-section of saltmarsh habitat in the coastal landscape. Plant Family Scientific names Common names Book Recorded Average Flowering Plant Family Scientific names Common names Book Recorded Average Flowering (* - introduced; Page (present, Height Status (* - introduced; Page (present, Height Status # - listed as rare in TAS) No.1 doubtful)2 (in cm)3 (in flower # - listed as rare in TAS) No.
    [Show full text]
  • ASBS Newsletter I Gave an Overview of Outside Our Sector), and of the Importance and Taxonomy Australia and Its Role and Governance
    Newsletter No. 177 December 2018 Price: $5.00 AUSTRALASIAN SYSTEMATIC BOTANY SOCIETY INCORPORATED Council President Vice President Darren Crayn Daniel Murphy Australian Tropical Herbarium (CNS) Royal Botanic Gardens Victoria James Cook University, Cairns Campus Birdwood Avenue PO Box 6811, Cairns Qld 4870 Melbourne, Vic. 3004 Australia Australia Tel: (+617)/(07) 4232 1859 Tel: (+613)/(03) 9252 2377 Email: [email protected] Email: [email protected] Secretary Treasurer Jennifer Tate Matt Renner Institute of Fundamental Sciences Royal Botanic Garden Sydney Massey University Mrs Macquaries Road Private Bag 11222, Palmerston North 4442 Sydney NSW 2000 New Zealand Australia Tel: (+646)/(6) 356- 099 ext. 84718 Tel: (+61)/(0) 415 343 508 Email: [email protected] Email: [email protected] Councillor Councillor Ryonen Butcher Heidi Meudt Western Australian Herbarium Museum of New Zealand Te Papa Tongarewa Locked Bag 104 PO Box 467, Cable St Bentley Delivery Centre WA 6983 Wellington 6140, New Zealand Australia Tel: (+644)/(4) 381 7127 Tel: (+618)/(08) 9219 9136 Email: [email protected] Email: [email protected] Other constitutional bodies Hansjörg Eichler Research Committee Affiliate Society David Glenny Papua New Guinea Botanical Society Sarah Mathews Heidi Meudt Joanne Birch Advisory Standing Committees Katharina Nargar Financial Murray Henwood Patrick Brownsey Chair: Dan Murphy, Vice President, ex officio David Cantrill Grant application closing dates Bob Hill Hansjörg Eichler Research Fund: th th Ad
    [Show full text]
  • A Biological Survey of the Eyre Peninsula South Australia
    A BIOLOGICAL SURVEY OF THE EYRE PENINSULA SOUTH AUSTRALIA R Brandle Science Resource Centre Information, Science and Technology Directorate Department for Environment and Heritage South Australia 2010 Eyre Peninsula Biological Survey The Biological Survey of the Eyre Peninsula was an initiative of the Biological Survey and Monitoring Section for the South Australian Department for Environment and Heritage The views and opinions expressed in this report are those of the authors and do not necessarily represent the views or policies of the State Government of South Australia. The report may be cited as: Brandle, R. (2010). A Biological Survey of the Eyre Peninsula, South Australia. (Department for Environment and Heritage, South Australia). Limited hard copies of the report were prepared, but it can also be accessed from the Internet on: http://www.environment.sa.gov.au/biodiversity/biosurveys EDITOR R. Brandle – Science Resource Centre, Information Science & Technology, Department for Environment and Heritage. PO Box 1047 Adelaide 5001 AUTHORS R. Brandle, P. Lang, P. Canty, D. Armstrong – Science Resource Centre, Information Science & Technology, Department for Environment and Heritage. PO Box 1047 Adelaide 5001 G. Carpenter – Native Vegetation & Biodiversity Management Unit, Department of Water, Land & Biodiversity, GPO Box 2834. J. Cooper - PO Box 128, Port Lincoln SA. © Department for Environment and Heritage 2010 ISBN: 978-1-921466-42-7 Cover Photograph: A southern Eyre Peninsula view north from the Marble Range to South Block range. Photo: R Brandle ii Eyre Peninsula Biological Survey Abstract Specific objectives of the Biological Survey of the Eyre Peninsula Biogeographic Region were to collate the existing flora and fauna information and systematically sample the diversity of habitats present in the region for vertebrates.
    [Show full text]