Flora and Vegetation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Additional Information
Current Survey Introduced Flora Records Vegetation Condition *Acetosa vesicaria Excellent 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 mE 535,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 536,000 mE 536,000 537,000 mE 537,000 534,000 mE 534,000 mE 535,000 534,000 mE 534,000 -
Newsletter No
Newsletter No. 167 June 2016 Price: $5.00 AUSTRALASIAN SYSTEMATIC BOTANY SOCIETY INCORPORATED Council President Vice President Darren Crayn Daniel Murphy Australian Tropical Herbarium (ATH) Royal Botanic Gardens Victoria James Cook University, Cairns Campus Birdwood Avenue PO Box 6811, Cairns Qld 4870 Melbourne, Vic. 3004 Australia Australia Tel: (+61)/(0)7 4232 1859 Tel: (+61)/(0) 3 9252 2377 Email: [email protected] Email: [email protected] Secretary Treasurer Leon Perrie John Clarkson Museum of New Zealand Te Papa Tongarewa Queensland Parks and Wildlife Service PO Box 467, Wellington 6011 PO Box 975, Atherton Qld 4883 New Zealand Australia Tel: (+64)/(0) 4 381 7261 Tel: (+61)/(0) 7 4091 8170 Email: [email protected] Mobile: (+61)/(0) 437 732 487 Councillor Email: [email protected] Jennifer Tate Councillor Institute of Fundamental Sciences Mike Bayly Massey University School of Botany Private Bag 11222, Palmerston North 4442 University of Melbourne, Vic. 3010 New Zealand Australia Tel: (+64)/(0) 6 356- 099 ext. 84718 Tel: (+61)/(0) 3 8344 5055 Email: [email protected] Email: [email protected] Other constitutional bodies Hansjörg Eichler Research Committee Affiliate Society David Glenny Papua New Guinea Botanical Society Sarah Matthews Heidi Meudt Advisory Standing Committees Joanne Birch Financial Katharina Schulte Patrick Brownsey Murray Henwood David Cantrill Chair: Dan Murphy, Vice President Bob Hill Grant application closing dates Ad hoc adviser to Committee: Bruce Evans Hansjörg Eichler Research -
DRAFT 25/10/90; Plant List Updated Oct. 1992; Notes Added June 2021
DRAFT 25/10/90; plant list updated Oct. 1992; notes added June 2021. PRELIMINARY REPORT ON THE CONSERVATION VALUES OF OPEN COUNTRY PADDOCK, BOOLARDY STATION Allan H. Burbidge and J.K. Rolfe INTRODUCTION Boolardy Station is situated about 150 km north of Yalgoo and 140 km west-north-west of Cue, in the Shire of Murchison, Western Australia. Open Country Paddock (about 16 000 ha) is in the south-east corner of the station, at 27o05'S, 116o50'E. The most prominent named feature is Coolamooka Hill, near the eastern boundary of the paddock. There are no conservation reserves in this region, although there are some small reserves set aside for various other purposes. Previous biological data for the station consist of broad scale vegetation mapping and land system mapping. Beard (1976) mapped the entire Murchison region at 1: 1 000 000. The Open Country Paddock area was mapped as supporting mulga woodlands and shrublands. More detailed mapping of land system units for rangeland assessment purposes has been carried out more recently at a scale of 1: 40 000 (Payne and Curry in prep.). Seven land systems were identified in open Country Paddock (Fig. 1). Apart from these studies, no detailed biological survey work appears to have been done in the area. Open Country Paddock has been only lightly grazed by domestic stock because of the presence of Kite-leaf Poison (Gastrolobium laytonii) and a lack of fresh water. Because of this and the generally good condition of the paddock and presence of a wide range of plant species, P.J. -
Volume 5 Pt 3
Conservation Science W. Aust. 7 (1) : 153–178 (2008) Flora and Vegetation of the banded iron formations of the Yilgarn Craton: the Weld Range ADRIENNE S MARKEY AND STEVEN J DILLON Science Division, Department of Environment and Conservation, Wildlife Research Centre, PO Box 51, Wanneroo WA 6946. Email: [email protected] ABSTRACT A survey of the flora and floristic communities of the Weld Range, in the Murchison region of Western Australia, was undertaken using classification and ordination analysis of quadrat data. A total of 239 taxa (species, subspecies and varieties) and five hybrids of vascular plants were collected and identified from within the survey area. Of these, 229 taxa were native and 10 species were introduced. Eight priority species were located in this survey, six of these being new records for the Weld Range. Although no species endemic to the Weld Range were located in this survey, new populations of three priority listed taxa were identified which represent significant range extensions for these taxa of conservation significance. Eight floristic community types (six types, two of these subdivided into two subtypes each) were identified and described for the Weld Range, with the primary division in the classification separating a dolerite-associated floristic community from those on banded iron formation. Floristic communities occurring on BIF were found to be associated with topographic relief, underlying geology and soil chemistry. There did not appear to be any restricted communities within the landform, but some communities may be geographically restricted to the Weld Range. Because these communities on the Weld Range are so closely associated with topography and substrate, they are vulnerable to impact from mineral exploration and open cast mining. -
Thesis Sci 2009 Bergh N G.Pdf
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University Systematics of the Relhaniinae (Asteraceae- Gnaphalieae) in southern Africa: geography and evolution in an endemic Cape plant lineage. Nicola Georgina Bergh Town Thesis presented for theCape Degree of DOCTOR OF ofPHILOSOPHY in the Department of Botany UNIVERSITY OF CAPE TOWN University May 2009 Town Cape of University ii ABSTRACT The Greater Cape Floristic Region (GCFR) houses a flora unique for its diversity and high endemicity. A large amount of the diversity is housed in just a few lineages, presumed to have radiated in the region. For many of these lineages there is no robust phylogenetic hypothesis of relationships, and few Cape plants have been examined for the spatial distribution of their population genetic variation. Such studies are especially relevant for the Cape where high rates of species diversification and the ongoing maintenance of species proliferation is hypothesised. Subtribe Relhaniinae of the daisy tribe Gnaphalieae is one such little-studied lineage. The taxonomic circumscription of this subtribe, the biogeography of its early diversification and its relationships to other members of the Gnaphalieae are elucidated by means of a dated phylogenetic hypothesis. Molecular DNA sequence data from both chloroplast and nuclear genomes are used to reconstruct evolutionary history using parsimony and Bayesian tools for phylogeny estimation. -
Flora Survey on Hiltaba Station and Gawler Ranges National Park
Flora Survey on Hiltaba Station and Gawler Ranges National Park Hiltaba Pastoral Lease and Gawler Ranges National Park, South Australia Survey conducted: 12 to 22 Nov 2012 Report submitted: 22 May 2013 P.J. Lang, J. Kellermann, G.H. Bell & H.B. Cross with contributions from C.J. Brodie, H.P. Vonow & M. Waycott SA Department of Environment, Water and Natural Resources Vascular plants, macrofungi, lichens, and bryophytes Bush Blitz – Flora Survey on Hiltaba Station and Gawler Ranges NP, November 2012 Report submitted to Bush Blitz, Australian Biological Resources Study: 22 May 2013. Published online on http://data.environment.sa.gov.au/: 25 Nov. 2016. ISBN 978-1-922027-49-8 (pdf) © Department of Environment, Water and Natural Resouces, South Australia, 2013. With the exception of the Piping Shrike emblem, images, and other material or devices protected by a trademark and subject to review by the Government of South Australia at all times, this report is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. All other rights are reserved. This report should be cited as: Lang, P.J.1, Kellermann, J.1, 2, Bell, G.H.1 & Cross, H.B.1, 2, 3 (2013). Flora survey on Hiltaba Station and Gawler Ranges National Park: vascular plants, macrofungi, lichens, and bryophytes. Report for Bush Blitz, Australian Biological Resources Study, Canberra. (Department of Environment, Water and Natural Resources, South Australia: Adelaide). Authors’ addresses: 1State Herbarium of South Australia, Department of Environment, Water and Natural Resources (DEWNR), GPO Box 1047, Adelaide, SA 5001, Australia. -
Lake Havasu City Recommended Landscaping Plant List
Lake Havasu City Recommended Landscaping Plant List Lake Havasu City Recommended Landscaping Plant List Disclaimer Lake Havasu City has revised the recommended landscaping plant list. This new list consists of plants that can be adapted to desert environments in the Southwestern United States. This list only contains water conscious species classified as having very low, low, and low-medium water use requirements. Species that are classified as having medium or higher water use requirements were not permitted on this list. Such water use classification is determined by the type of plant, its average size, and its water requirements compared to other plants. For example, a large tree may be classified as having low water use requirements if it requires a low amount of water compared to most other large trees. This list is not intended to restrict what plants residents choose to plant in their yards, and this list may include plant species that may not survive or prosper in certain desert microclimates such as those with lower elevations or higher temperatures. In addition, this list is not intended to be a list of the only plants allowed in the region, nor is it intended to be an exhaustive list of all desert-appropriate plants capable of surviving in the region. This list was created with the intention to help residents, businesses, and landscapers make informed decisions on which plants to landscape that are water conscious and appropriate for specific environmental conditions. Lake Havasu City does not require the use of any or all plants found on this list. List Characteristics This list is divided between trees, shrubs, groundcovers, vines, succulents and perennials. -
Palatability of Plants to Camels (DBIRD NT)
Technote No. 116 June 2003 Agdex No: 468/62 ISSN No: 0158-2755 The Palatability of Central Australian Plant Species to Camels Dr B. Dorges, Dr J. Heucke, Central Australian Camel Industry Association and R. Dance, Pastoral Division, Alice Springs BACKGROUND About 600,000 camels (Camelus dromedarius) are believed to inhabit the arid centre of Australia, mainly in South Australia, Western Australia and the Northern Territory. Most of these camels are feral. A small camel industry has developed, which harvests selected animals for domestic and export markets, primarily for meat. Camels can eat more than 80% of the common plant species found in Central Australia. Some plant species are actively sought by camels and may need to be protected. METHOD Observations of grazing preferences by camels were made periodically for up to 12 years on five cattle stations in Central Australia. Where camels were accustomed to the presence of humans, it was possible to observe their grazing preferences from a few metres. Radio transmitters were fitted on some camels for easy detection and observation at any time. These evaluations were used to establish a diet preference or palatability index for observed food plants. Table 1. Palatability index for camels Index Interpretation 1 only eaten when nothing else is available 2 rarely eaten 3 common food plant 4 main food plant at times 5 preferred food plant 6 highly preferred food plant 7 could be killed by camel browsing More information can be obtained from the web site of the Central Australian Camel Industry Association http://www.camelsaust.com.au 2 RESULTS Table 2. -
Austin Land System Unit Landform Soil Vegetation Area (%) 1
Pages 186-237 2/12/08 11:26 AM Page 195 Austin land system Unit Landform Soil Vegetation area (%) 1. 5% Low ridges and rises – low ridges of Shallow red earths and Scattered (10-20% PFC) shrublands outcropping granite, quartz or greenstone shallow duplex soils on or woodlands usually dominated by and low rises, up to 800 m long and granite or greenstone Acacia aneura (mulga) (SIMS). 2-25 m high, and short footslopes with (4b, 5c, 7a, 7b). abundant mantles of cobbles and pebbles. 2. 80% Saline stony plains – gently undulating Shallow duplex soils on Very scattered to scattered (2.5- plains extending up to 3 km, commonly greenstone (7b). 20% PFC) Maireana spp. low with mantles of abundant to very abundant shrublands (SBMS), Maireana quartz or ironstone pebbles. species include M. pyramidata (sago bush), M. glomerifolia (ball- leaf bluebush), M. georgei (George’s bluebush) and M. triptera (three- winged bluebush). 3. 10% Stony plains – gently undulating plains Shallow red earths on Very scattered to scattered (2.5- within or above unit 2; quartz and granite granite (5c). 20% PFC) low shrublands (SGRS). pebble mantles and occasional granite outcrop. 4. <1% Drainage foci – small discrete Red clays of variable depth Moderately close to close (20-50% (10-50 m in diameter) depositional zones, on hardpan or parent rock PFC) acacia woodland or tall occurring sparsely within units 2 and 5. (9a, 9b). shrubland; dominant species are A. aneura and A. tetragonophylla (curara) (GRMU). 5. 5% Drainage lines – very gently inclined Deep red earths (6a). Very scattered (2.5-10% PFC) A linear drainage tracts, mostly unchannelled aneura low woodland or tall but occasionally incised with rills, gutters shrubland (HPMS) or scattered and shallow gullies; variable mantles of Maireana spp. -
Newsletter No.133
Acacia brunioides !" " As I write this, Melbourne is enjoying its coldest June day Contents Page since 1998. But to brighten up the bleakest of days, we have near our front door a brightly flowering Acacia chrysocephala. I first saw this small wattle some years ago, From the Leader 1 !"#$#%&'(#)&*#$"+#,'&(#-."&#+$(/#$*#0!"(#1$%$"$,234# Welcome 2 garden at Ocean Grove (south of Melbourne). Tony had a Study Group Excursions 2 number of these wattles dotted around the edge of his lawn, 5'6,2*&"6",#.7#$"#!*2&')64&#+.88#)6"*&'34#9!'"6",:##;*4# Smelly Acacias and Climate 2 bright golden flowers and compact growth habit make it a Acacia hybrids 2 great garden plant. Acacia irrorate 4 New Species ! Acacia citriodora 4 I hope that you find a number of the articles in this Transplanting Acacias and Other newsletter interesting, but one that I think is of particular Seedlings 4 interest is the one by John Gibson on the nature of the smell Prickly! You Bet! 5 of Acacia roots, and a possible link to our climate. I believe Books 6 that a number of our Study Group members have been Acacia cretacea 7 conscious of the smell emitted by Acacia roots < if you are Acacias in The News 8 one of these members, could you provide any information Wattle Day 2016 8 or data that you have to John, as he has requested in the Seed Bank 8 article (see page 2). Study Group Membership 9 As for all Study Groups, membership fees fall due on 1 July each year ! so it is now that time of year. -
Legumes of Wallace Desert Gardens
Bulletin of The Desert Legume Program of The Boyce Thompson Southwestern Arboretum and The University of Arizona Volume 18, Number 2 August 2006 Legumes of Wallace Desert Gardens Pamela Slate standing relationship between our Desert Gardens reviews and Botanic Coordinator organizations, one I see growing ever approves appropriate on-site Wallace Desert Gardens stronger year after year.” projects of mutual benefit. Wallace Desert Gardens is a Matthew B. Johnson non-profit foundation [(502(c)(3) In the mid-1980’s, the Program Manager and Curator under IRS rules] that was created in Wallace’s moved, complete with their Desert Legume Program 1993, well after much of the garden plant collection, from a Paradise was established. Its mission was Valley acre to a Scottsdale The virtues of desert legumes written by HB, as he was fondly subdivision where they purchased captured the attention of H.B. and known, to reflect the original intent of numerous acre-plus lots. At the time, Jocelyn M. Wallace when they first the foundation: HB had “no idea it would be bigger learned of the Desert Legume than a two-acre garden.” Although Program (DELEP) in 1989, about a Wallace Desert Gardens is a he “knew nothing of desert plants year after the program was founded collection of the world’s deserts when he moved to Arizona” in the at the University of Arizona. They plants located at an elevation of early 1980’s, they quickly became his understood the importance of some 2400 feet. Founded by passion. Today the garden legumes’ potential applications H.B. -
Technical Report
A STRATEGIC FRAMEWORK FOR BIODIVERSITY CONSERVATION Report B: For practitioners of conservation planning Copyright text 2012 Southwest Australia Ecoregion Initiative. All rights reserved. Author: Danielle Witham, WWF-Australia First published: 2012 by the Southwest Australia Ecoregion Initiative. Any reproduction in full or in part of this publication must mention the title and credit the above-mentioned publisher as the copyright Cover Image: ©Richard McLellan Design: Three Blocks Left Design Printed by: SOS Print & Media Printed on Impact, a 100% post-consumer waste recycled paper. For copies of this document, please contact SWAEI Secretariat, PO Box 4010, Wembley, Western Australia 6913. This document is also available from the SWAEI website at http://www.swaecoregion.org SETTING THE CONTEXT i CONTENTS EXECUTIVE SUMMARY 1 ACKNOWLEDGEMENTS 2 SETTING THE CONTEXT 3 The Southwest Australia Ecoregion Initiative SUMMARY OF THE PROJECT METHODOLOGY 5 STEP 1. IDENTIFYING RELEVANT STAKEHOLDERS AND CLARIFYING ROLES 7 Expert engagement STEP 2. DEFINING PROJECT BOUNDARY 9 The boundary of the Southwest Australia Ecoregion STEP 3. APPLYING PLANNING UNITS TO PROJECT AREA 11 STEP 4. PREPARING AND CHOOSING SOFTWARE 13 Data identification 13 Conservation planning software 14 STEP 5. IDENTIFYING CONSERVATION FEATURES 16 Choosing conservation features 16 Fauna conservation features 17 Flora conservation features 21 Inland water body conservation features 22 Inland water species conservation features 27 Other conservation features 27 Threatened and Priority Ecological communities (TECs and PECs) 31 Vegetation conservation features 32 Vegetation connectivity 36 STEP 6. APPLYING CONSERVATION FEATURES TO PLANNING UNITS 38 STEP 7. SETTING TARGETS 40 Target formulae 40 Special formulae 42 STEP 8. IDENTIFYING AND DEFINING LOCK-INS 45 STEP 9.