Whole-Genome Sequencing of Finnish Type 1 Diabetic Siblings Discordant for Kidney Disease Reveals DNA Variants Associated with Diabetic Nephropathy

Total Page:16

File Type:pdf, Size:1020Kb

Whole-Genome Sequencing of Finnish Type 1 Diabetic Siblings Discordant for Kidney Disease Reveals DNA Variants Associated with Diabetic Nephropathy BASIC RESEARCH www.jasn.org Whole-Genome Sequencing of Finnish Type 1 Diabetic Siblings Discordant for Kidney Disease Reveals DNA Variants associated with Diabetic Nephropathy Jing Guo ,1,2 Owen J. L. Rackham ,2 Niina Sandholm ,3,4,5 Bing He ,1 Anne-May Österholm,1,2 Erkka Valo ,3,4,5 Valma Harjutsalo ,3,4,5,6 Carol Forsblom,3,4,5 Iiro Toppila,3,4,5 Maija Parkkonen,3,4,5 Qibin Li,7 Wenjuan Zhu,7 Nathan Harmston ,2,8 Sonia Chothani,2 Miina K. Öhman ,2 Eudora Eng,2 Yang Sun,2 Enrico Petretto ,2,9 Per-Henrik Groop,3,4,5,10 and Karl Tryggvason1,2,11 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background Several genetic susceptibility loci associated with diabetic nephropathy have been documen- ted, but no causative variants implying novel pathogenetic mechanisms have been elucidated. Methods We carried out whole-genome sequencing of a discovery cohort of Finnish siblings with type 1 diabetes who were discordant for the presence (case) or absence (control) of diabetic nephropathy. Con- trols had diabetes without complications for 15–37 years. We analyzed and annotated variants at genome, gene, and single-nucleotide variant levels. We then replicated the associated variants, genes, and regions in a replication cohort from the Finnish Diabetic Nephropathy study that included 3531 unrelated Finns with type 1 diabetes. Results We observed protein-altering variants and an enrichment of variants in regions associated with the presence or absence of diabetic nephropathy. The replication cohort confirmed variants in both regulatory and protein-coding regions. We also observed that diabetic nephropathy–associated variants, when clus- tered at the gene level, are enriched in a core protein-interaction network representing proteins essential for podocyte function. These genes include protein kinases (protein kinase C isoforms « and i) and protein tyrosine kinase 2. Conclusions Our comprehensive analysis of a diabetic nephropathy cohort of siblings with type 1 di- abetes who were discordant for kidney disease points to variants and genes that are potentially caus- ative or protective for diabetic nephropathy. This includes variants in two isoforms of the protein kinase C family not previously linked to diabetic nephropathy, adding support to previous hypotheses that the protein kinase C family members play a role in diabetic nephropathy and might be attractive therapeutic targets. JASN 31: 309–323, 2020. doi: https://doi.org/10.1681/ASN.2019030289 With the increase in the incidence of diabetes worldwide, complications such as diabetic nephrop- Received March 22, 2019. Accepted October 19, 2019. athy (DN), retinopathy, neuropathy, skin ulcers, and Published online ahead of print. Publication date available at amputations have become a major global health and www.jasn.org. socioeconomic threat. In addition to intensive blood Correspondence: Prof. Karl Tryggvason or Prof. Enrico Petretto, 1 glucose control, the only drugs providing a signif- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical icant delay in progression of DN are angiotensin- School, 8 College Road Singapore 169857. Email: karl.tryggvason@ converting enzyme inhibitors or angiotensin receptor duke-nus.edu.sg or [email protected] blockers, which reduce intraglomerular pressure and Copyright © 2020 by the American Society of Nephrology JASN 31: 309–323, 2020 ISSN : 1046-6673/3102-309 309 BASIC RESEARCH www.jasn.org efferent arteriolar vasoconstriction.2 The molecular pathogene- Significance Statement sis of DN is still poorly understood. Hyperglycemia, a major risk factor for complications, causes accumulation of toxic glucose Although diabetic nephropathy is partly genetic in nature, the un- derivatives, such as methylglyoxal, that bind covalently to the side derlying pathogenetic mechanisms are obscure. The authors as- chains of amino acids, particularly arginine and lysine, and also sembled from the homogeneous Finnish population a cohort of 76 sibling pairs with type 1 diabetes who were discordant for diabetic 3,4 fi methionine and cysteine. Hyperglycemia alone is not suf cient nephropathy. Using whole-genome sequencing and multiple to trigger the development of complications, as only 30%–40% of analytic approaches, they identified DNA variants associated with individuals with type 1 diabetes (T1D) develop diabetic micro- nephropathy or its absence and validated their findings in a 3531- angiopathy.1,5,6 Independent familial studies have shown a trend member cohort of unrelated Finns with type 1 diabetes. The genes of family aggregation of DN in different populations,7,8 most strongly associated with diabetic nephropathy encode two protein kinase C isoforms (isoforms « and i) not previously impli- suggesting a genetic predisposition to DN. At least four metabolic cated in the condition. Besides providing a resource for studies on pathways have been implicated in the development of complica- diabetic complications, these findings support previous hypotheses tions: polyol flux, increased the formation of advanced glycation that the protein kinase C family plays a role in diabetic nephropathy end products, hyperactivity of the hexosamine pathway, and and suggest potential targets for treatment. activation of protein kinase C (PKC) isoforms.4,9,10 Genome-wide association studies (GWAS) and candidate Study Participants fi gene approaches have identi ed several potential genomic loci The discovery cohort consisted of sibling pairs and small fami- 11 for DN susceptibility, but no variants with a major effect on lies, whereas the replication cohort consisted of unrelated indi- the risk of complications have been found, suggesting that DN viduals, all having T1D. The renal status was on the basis of the is modulated by a number of variants in genes that cooperate albumin excretion rate (AER) in a 24-hour urine collection or the within complex pathways. It is intriguing, however, that sev- albumin-to-creatinine ratio (ACR) in a random spot-urine col- eral independent, genome-wide linkage analysis studies car- lection. The presence of ESKD was defined according to whether ried out in white Americans, Pima Indians, black Americans, patients were undergoing dialysis or had received a kidney trans- fi and Finns have identi ed the same DN susceptibility locus plant. DN was defined by (1) persistent macroalbuminuria 12–15 on chromosome 3q. The complex interaction between (AER$300 mg/24 h or ACR.30 mg/mmol) in two of three con- genetics, risk factors such as hyperglycemia and environmen- secutive measurements or the presence of ESKD; and (2)the fi fi tal components makes it more challenging to nd speci c absence of clinical or laboratory evidence of nondiabetic renal genes for DN using genetic association studies. To that end, or urinary tract disease. Control status was defined by normoal- it could be advantageous to search for DN susceptibility genes buminuria (AER,30 mg/24 h or ACR,3 mg/mmol) despite in populations such as Finns, a uniquely homogeneous European duration of diabetes for at least 15 years (range, 15–37 years). In 16 ’ 17,18 population with the world s highest incidence of T1D. the discovery cohort, all study participants had been diagnosed With a combination of founder effects and genetic isolation, with T1D for at least 15 years, with the age at onset ,30 years; the population has accumulated rare genetic traits referred to in the replication cohort, age at diabetes onset was #40 years, “ ”19 as the Finnish Disease Heritage. In addition, Finland has a with insulin dependence within 1 year after the diagnosis of di- good public health care system, including nationwide disease abetes (or age at diabetes onset #15 years). Controls in the fi and treatment registries, which facilitates identi cation of replication cohort had minimum diabetes duration of 15 years. patients and follow-up of their clinical records. The replication cohort included 2187 controls with normal AER and 1344 cases with macroalbuminuria and ESKD. METHODS Ethical Permits All patients with diabetes gave written, informed consent Experimental Design to participate in the study and the Ethical Committee of the To search for DN susceptibility genes, we have assembled a Finnish National Public Institute, the Ethical Committee of cohort of Finnish T1D siblings with extreme phenotypes re- the Helsinki and Uusimaa Health District, and Karolinska In- garding the presence (case) or absence (control) of DN. This stitutet approved the protocol for the study. The transgene discovery cohort contained 76 T1D sibling pairs discordant manipulation in zebrafish was approved by the local ethical for DN, and three T1D families with three siblings (total of committee (the North Stockholm District Court). 80 cases and 81 controls). The samples came from two sources: the Finnish National Institutes of Health and Welfare diabetes Whole-Genome Sequencing collections, as described elsewhere15; and the Finnish Diabetic Whole-genome sequencing (WGS) was carried out on the dis- Nephropathy (FinnDiane) study.20 Furthermore, 3531 unre- covery cohort using both Illumina HiSeq 2000 and Complete lated individuals with T1D (1344 cases and 2187 controls) Genomics platforms. To evaluate the quality of the two different (Figure 1A) from FinnDiane were used for replication of findings sequencing methods, we sequenced four discordant sibling made in the discovery cohort. The main clinical characteristics of pairs with both platforms and compared the difference of the patients
Recommended publications
  • Nuclear and Mitochondrial Genome Defects in Autisms
    UC Irvine UC Irvine Previously Published Works Title Nuclear and mitochondrial genome defects in autisms. Permalink https://escholarship.org/uc/item/8vq3278q Journal Annals of the New York Academy of Sciences, 1151(1) ISSN 0077-8923 Authors Smith, Moyra Spence, M Anne Flodman, Pamela Publication Date 2009 DOI 10.1111/j.1749-6632.2008.03571.x License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California THE YEAR IN HUMAN AND MEDICAL GENETICS 2009 Nuclear and Mitochondrial Genome Defects in Autisms Moyra Smith, M. Anne Spence, and Pamela Flodman Department of Pediatrics, University of California, Irvine, California In this review we will evaluate evidence that altered gene dosage and structure im- pacts neurodevelopment and neural connectivity through deleterious effects on synap- tic structure and function, and evidence that the latter are key contributors to the risk for autism. We will review information on alterations of structure of mitochondrial DNA and abnormal mitochondrial function in autism and indications that interactions of the nuclear and mitochondrial genomes may play a role in autism pathogenesis. In a final section we will present data derived using Affymetrixtm SNP 6.0 microar- ray analysis of DNA of a number of subjects and parents recruited to our autism spectrum disorders project. We include data on two sets of monozygotic twins. Col- lectively these data provide additional evidence of nuclear and mitochondrial genome imbalance in autism and evidence of specific candidate genes in autism. We present data on dosage changes in genes that map on the X chromosomes and the Y chro- mosome.
    [Show full text]
  • Analysis of Gene Expression Data for Gene Ontology
    ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Robert Daniel Macholan May 2011 ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION Robert Daniel Macholan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Zhong-Hui Duan Dr. Chien-Chung Chan _______________________________ _______________________________ Committee Member Dean of the College Dr. Chien-Chung Chan Dr. Chand K. Midha _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Yingcai Xiao Dr. George R. Newkome _______________________________ Date ii ABSTRACT A tremendous increase in genomic data has encouraged biologists to turn to bioinformatics in order to assist in its interpretation and processing. One of the present challenges that need to be overcome in order to understand this data more completely is the development of a reliable method to accurately predict the function of a protein from its genomic information. This study focuses on developing an effective algorithm for protein function prediction. The algorithm is based on proteins that have similar expression patterns. The similarity of the expression data is determined using a novel measure, the slope matrix. The slope matrix introduces a normalized method for the comparison of expression levels throughout a proteome. The algorithm is tested using real microarray gene expression data. Their functions are characterized using gene ontology annotations. The results of the case study indicate the protein function prediction algorithm developed is comparable to the prediction algorithms that are based on the annotations of homologous proteins.
    [Show full text]
  • Regulation of Cdc42 and Its Effectors in Epithelial Morphogenesis Franck Pichaud1,2,*, Rhian F
    © 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2019) 132, jcs217869. doi:10.1242/jcs.217869 REVIEW SUBJECT COLLECTION: ADHESION Regulation of Cdc42 and its effectors in epithelial morphogenesis Franck Pichaud1,2,*, Rhian F. Walther1 and Francisca Nunes de Almeida1 ABSTRACT An overview of Cdc42 Cdc42 – a member of the small Rho GTPase family – regulates cell Cdc42 was discovered in yeast and belongs to a large family of small – polarity across organisms from yeast to humans. It is an essential (20 30 kDa) GTP-binding proteins (Adams et al., 1990; Johnson regulator of polarized morphogenesis in epithelial cells, through and Pringle, 1990). It is part of the Ras-homologous Rho subfamily coordination of apical membrane morphogenesis, lumen formation and of GTPases, of which there are 20 members in humans, including junction maturation. In parallel, work in yeast and Caenorhabditis elegans the RhoA and Rac GTPases, (Hall, 2012). Rho, Rac and Cdc42 has provided important clues as to how this molecular switch can homologues are found in all eukaryotes, except for plants, which do generate and regulate polarity through localized activation or inhibition, not have a clear homologue for Cdc42. Together, the function of and cytoskeleton regulation. Recent studies have revealed how Rho GTPases influences most, if not all, cellular processes. important and complex these regulations can be during epithelial In the early 1990s, seminal work from Alan Hall and his morphogenesis. This complexity is mirrored by the fact that Cdc42 can collaborators identified Rho, Rac and Cdc42 as main regulators of exert its function through many effector proteins.
    [Show full text]
  • Differentiation-Defective Phenotypes Revealed by Large-Scale Analyses of Human Pluripotent Stem Cells
    Differentiation-defective phenotypes revealed by large-scale analyses of human pluripotent stem cells Michiyo Koyanagi-Aoia,1, Mari Ohnukia,1, Kazutoshi Takahashia, Keisuke Okitaa, Hisashi Nomab, Yuka Sawamuraa, Ito Teramotoa, Megumi Naritaa, Yoshiko Satoa, Tomoko Ichisakaa, Naoki Amanoa, Akira Watanabea, Asuka Morizanea, Yasuhiro Yamadaa,c, Tosiya Satod, Jun Takahashia,e, and Shinya Yamanakaa,f,2 aCenter for iPS Cell Research and Application, eDepartment of Biological Repair, Institute for Frontier Medical Sciences, and cInstitute for Integrated Cell- Material Sciences, Kyoto University, Kyoto 606-8507, Japan; bDepartment of Data Science, The Institute of Statistical Mathematics, Tokyo 190-8562, Japan; dDepartment of Biostatistics, Kyoto University School of Public Health, Kyoto 606-8501, Japan; and fGladstone Institute of Cardiovascular Disease, San Francisco, CA 94158 Contributed by Shinya Yamanaka, October 30, 2013 (sent for review September 13, 2013) We examined the gene expression and DNA methylation of 49 at least three passages. In addition, we analyzed the original somatic human induced pluripotent stem cells (hiPSCs) and 10 human cells, two human embryonic carcinoma cell (hECC) lines (NTera2 embryonic stem cells and found overlapped variations in gene cloneD1 and 2102Ep 4D3), and three cancer cell lines (HepG2, expression and DNA methylation in the two types of human MCF7, and Jurkat). pluripotent stem cell lines. Comparisons of the in vitro neural The mRNA microarray analyses (Fig. 1A) identified 61 probes fi differentiation of 40 hiPSCs and 10 human embryonic stem cells with signi cant differences in expression between hESCs and < showed that seven hiPSC clones retained a significant number of hiPSCs [t test, false discovery rate (FDR) 0.05].
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Genome Sequence, Population History, and Pelage Genetics of the Endangered African Wild Dog (Lycaon Pictus) Michael G
    Campana et al. BMC Genomics (2016) 17:1013 DOI 10.1186/s12864-016-3368-9 RESEARCH ARTICLE Open Access Genome sequence, population history, and pelage genetics of the endangered African wild dog (Lycaon pictus) Michael G. Campana1,2*, Lillian D. Parker1,2,3, Melissa T. R. Hawkins1,2,3, Hillary S. Young4, Kristofer M. Helgen2,3, Micaela Szykman Gunther5, Rosie Woodroffe6, Jesús E. Maldonado1,2 and Robert C. Fleischer1 Abstract Background: The African wild dog (Lycaon pictus) is an endangered African canid threatened by severe habitat fragmentation, human-wildlife conflict, and infectious disease. A highly specialized carnivore, it is distinguished by its social structure, dental morphology, absence of dewclaws, and colorful pelage. Results: We sequenced the genomes of two individuals from populations representing two distinct ecological histories (Laikipia County, Kenya and KwaZulu-Natal Province, South Africa). We reconstructed population demographic histories for the two individuals and scanned the genomes for evidence of selection. Conclusions: We show that the African wild dog has undergone at least two effective population size reductions in the last 1,000,000 years. We found evidence of Lycaon individual-specific regions of low diversity, suggestive of inbreeding or population-specific selection. Further research is needed to clarify whether these population reductions and low diversity regions are characteristic of the species as a whole. We documented positive selection on the Lycaon mitochondrial genome. Finally, we identified several candidate genes (ASIP, MITF, MLPH, PMEL) that may play a role in the characteristic Lycaon pelage. Keywords: Lycaon pictus, Genome, Population history, Selection, Pelage Background Primarily a hunter of antelopes, the African wild dog is a The African wild dog (Lycaon pictus) is an endangered highly distinct canine.
    [Show full text]
  • Supplemental Tables4.Pdf
    Yano_Supplemental_Table_S4 Gene ontology – Biological process 1 of 9 Fold List Pop Pop GO Term Count % PValue Bonferroni Benjamini FDR Genes Total Hits Total Enrichment DLC1, CADM1, NELL2, CLSTN1, PCDHGA8, CTNNB1, NRCAM, APP, CNTNAP2, FERT2, RAPGEF1, PTPRM, MPDZ, SDK1, PCDH9, PTPRS, VEZT, NRXN1, MYH9, GO:0007155~cell CTNNA2, NCAM1, NCAM2, DDR1, LSAMP, CNTN1, 50 5.61 2.14E-08 510 311 7436 2.34 4.50E-05 4.50E-05 3.70E-05 adhesion ROR2, VCAN, DST, LIMS1, TNC, ASTN1, CTNND2, CTNND1, CDH2, NEO1, CDH4, CD24A, FAT3, PVRL3, TRO, TTYH1, MLLT4, LPP, NLGN1, PCDH19, LAMA1, ITGA9, CDH13, CDON, PSPC1 DLC1, CADM1, NELL2, CLSTN1, PCDHGA8, CTNNB1, NRCAM, APP, CNTNAP2, FERT2, RAPGEF1, PTPRM, MPDZ, SDK1, PCDH9, PTPRS, VEZT, NRXN1, MYH9, GO:0022610~biological CTNNA2, NCAM1, NCAM2, DDR1, LSAMP, CNTN1, 50 5.61 2.14E-08 510 311 7436 2.34 4.50E-05 4.50E-05 3.70E-05 adhesion ROR2, VCAN, DST, LIMS1, TNC, ASTN1, CTNND2, CTNND1, CDH2, NEO1, CDH4, CD24A, FAT3, PVRL3, TRO, TTYH1, MLLT4, LPP, NLGN1, PCDH19, LAMA1, ITGA9, CDH13, CDON, PSPC1 DCC, ENAH, PLXNA2, CAPZA2, ATP5B, ASTN1, PAX6, ZEB2, CDH2, CDH4, GLI3, CD24A, EPHB1, NRCAM, GO:0006928~cell CTTNBP2, EDNRB, APP, PTK2, ETV1, CLASP2, STRBP, 36 4.04 3.46E-07 510 205 7436 2.56 7.28E-04 3.64E-04 5.98E-04 motion NRG1, DCLK1, PLAT, SGPL1, TGFBR1, EVL, MYH9, YWHAE, NCKAP1, CTNNA2, SEMA6A, EPHA4, NDEL1, FYN, LRP6 PLXNA2, ADCY5, PAX6, GLI3, CTNNB1, LPHN2, EDNRB, LPHN3, APP, CSNK2A1, GPR45, NRG1, RAPGEF1, WWOX, SGPL1, TLE4, SPEN, NCAM1, DDR1, GRB10, GRM3, GNAQ, HIPK1, GNB1, HIPK2, PYGO1, GO:0007166~cell RNF138, ROR2, CNTN1,
    [Show full text]
  • Differentially Expressed on Collagen Networks 1, 2, 10 © 2000-2009 Ingenuity Systems, Inc. All Rights Reserved. Symbol Entrez
    Differentially expressed on collagen Networks 1, 2, 10 © 2000-2009 Ingenuity Systems, Inc. All rights reserved. Symbol Entrez Gene Name Affymetrix Fold Change Location Family ALDH1A3 aldehyde dehydrogenase 1 family, member A3 203180_at -5.43125168 Cytoplasm enzyme 209772_s_ Plasma CD24 CD24 molecule at -4.32890229 Membrane other HSD11B2 hydroxysteroid (11-beta) dehydrogenase 2 204130_at -4.1099197 Cytoplasm enzyme Plasma AMOTL2 angiomotin like 2 203002_at -2.82872773 Membrane other transcription DLX2 distal-less homeobox 2 207147_at -2.74996362 Nucleus regulator 221215_s_ RIPK4 receptor-interacting serine-threonine kinase 4 at -2.56556472 Nucleus kinase PLK2 polo-like kinase 2 (Drosophila) 201939_at -2.47054478 Nucleus kinase ALDH3A1 aldehyde dehydrogenase 3 family, memberA1 205623_at -2.30532989 Cytoplasm enzyme TXNRD1 thioredoxin reductase 1 201266_at -2.27936909 Cytoplasm enzyme Extracellular CYR61 cysteine-rich, angiogenic inducer, 61 201289_at -2.09052668 Space other 214212_x_ FERMT2 fermitin family homolog 2 (Drosophila) at -1.87478183 Cytoplasm other Plasma RIT1 Ras-like without CAAX 1 209882_at -1.77586775 Membrane enzyme 210297_s_ Extracellular MSMB microseminoprotein, beta- at -1.72177723 Space other Extracellular PI3 peptidase inhibitor 3, skin-derived 203691_at -1.68135697 Space other ALDH3B1 aldehyde dehydrogenase 3 family, member B1 205640_at -1.67376791 Cytoplasm enzyme 202124_s_ Plasma TRAK2 trafficking protein, kinesin binding 2 at -1.6367793 Membrane transporter BMP and activin membrane-bound inhibitor Plasma BAMBI
    [Show full text]
  • The Borg Family of Cdc42 Effector Proteins Cdc42ep1–5
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institute of Cancer Research Repository Biochemical Society Transactions (2016) 0 1–8 DOI: 10.1042/BST20160219 1 2 The Borg family of Cdc42 effector proteins 3 4 Cdc42EP1–5 5 6 Aaron J. Farrugia and Fernando Calvo 7 8 Tumour Microenvironment Team, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW2 6JB, U.K. 9 Correspondence: Fernando Calvo ([email protected]) 10 11 12 13 Despite being discovered more than 15 years ago, the Borg (binder of Rho GTPases) 14 – family of Cdc42 effector proteins (Cdc42EP1 5) remains largely uncharacterised and rela- 15 tively little is known about their structure, regulation and role in development and disease. 16 Recent studies are starting to unravel some of the key functional and mechanistic 17 aspects of the Borg proteins, including their role in cytoskeletal remodelling and signal- 18 ling. In addition, the participation of Borg proteins in important cellular processes such as 19 cell shape, directed migration and differentiation is slowly emerging, directly linking Borgs 20 with important physiological and pathological processes such as angiogenesis, neuro- 21 fi transmission and cancer-associated desmoplasia. Here, we review some of these nd- 22 ings and discuss future prospects. 23 24 25 26 27 28 29 Introduction 30 The Rho GTPase family member Cdc42 regulates a diverse range of cellular functions including cyto- 31 kinesis, cytoskeletal remodelling and cell polarity [1,2]. Like other Rho family members, Cdc42 cycles 32 between two tightly regulated conformational states, a GTP-bound active state and a GDP-bound 33 inactive state [3].
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]
  • Metastatic Adrenocortical Carcinoma Displays Higher Mutation Rate and Tumor Heterogeneity Than Primary Tumors
    ARTICLE DOI: 10.1038/s41467-018-06366-z OPEN Metastatic adrenocortical carcinoma displays higher mutation rate and tumor heterogeneity than primary tumors Sudheer Kumar Gara1, Justin Lack2, Lisa Zhang1, Emerson Harris1, Margaret Cam2 & Electron Kebebew1,3 Adrenocortical cancer (ACC) is a rare cancer with poor prognosis and high mortality due to metastatic disease. All reported genetic alterations have been in primary ACC, and it is 1234567890():,; unknown if there is molecular heterogeneity in ACC. Here, we report the genetic changes associated with metastatic ACC compared to primary ACCs and tumor heterogeneity. We performed whole-exome sequencing of 33 metastatic tumors. The overall mutation rate (per megabase) in metastatic tumors was 2.8-fold higher than primary ACC tumor samples. We found tumor heterogeneity among different metastatic sites in ACC and discovered recurrent mutations in several novel genes. We observed 37–57% overlap in genes that are mutated among different metastatic sites within the same patient. We also identified new therapeutic targets in recurrent and metastatic ACC not previously described in primary ACCs. 1 Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. 2 Center for Cancer Research, Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. 3 Department of Surgery and Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA. Correspondence and requests for materials should be addressed to E.K. (email: [email protected]) NATURE COMMUNICATIONS | (2018) 9:4172 | DOI: 10.1038/s41467-018-06366-z | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06366-z drenocortical carcinoma (ACC) is a rare malignancy with types including primary ACC from the TCGA to understand our A0.7–2 cases per million per year1,2.
    [Show full text]
  • Gene Co-Expression Network Mining Using Graph Sparsification
    Gene Co-expression Network Mining Using Graph Sparsification THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Jinchao Di Graduate Program in Electrical and Computer Engineering The Ohio State University 2013 Master’s Examination Committee: Dr. Kun Huang, Advisor Dr. Raghu Machiraju Dr. Yuejie Chi ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! Copyright by Jinchao Di 2013 ! ! Abstract Identifying and analyzing gene modules is important since it can help understand gene function globally and reveal the underlying molecular mechanism. In this thesis, we propose a method combining local graph sparsification and a gene similarity measurement method TOM. This method can detect gene modules from a weighted gene co-expression network more e↵ectively since we set a local threshold which can detect clusters with di↵erent densities. In our algorithm, we only retain one edge for each gene, which can generate more balanced gene clusters. To estimate the e↵ectiveness of our algorithm we use DAVID to functionally evaluate the gene list for each module we detect and compare our results with some well known algorithms. The result of our algorithm shows better biological relevance than the compared methods and the number of the meaningful biological clusters is much larger than other methods, implying we discover some previously missed gene clusters. Moreover, we carry out a robustness test by adding Gaussian noise with di↵erent variance to the expression data. We find that our algorithm is robust to noise. We also find that some hub genes considered as important genes could be artifacts.
    [Show full text]