Arnau Soler2019.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Arnau Soler2019.Pdf This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Genetic responses to environmental stress underlying major depressive disorder Aleix Arnau Soler Doctor of Philosophy The University of Edinburgh 2019 Declaration I hereby declare that this thesis has been composed by myself and that the work presented within has not been submitted for any other degree or professional qualification. I confirm that the work submitted is my own, except where work which has formed part of jointly-authored publications has been included. My contribution and those of the other authors to this work are indicated below. I confirm that appropriate credit has been given within this thesis where reference has been made to the work of others. I composed this thesis under guidance of Dr. Pippa Thomson. Chapter 2 has been published in PLOS ONE and is attached in the Appendix A, chapter 4 and chapter 5 are published in Translational Psychiatry and are attached in the Appendix C and D, and I expect to submit chapter 6 as a manuscript for publication. Therefore, the use of “we” is retained in these chapters. Only minor changes have been applied in comparison to the submitted manuscripts to keep a uniform format along the entire body of the thesis. Co-authors to these studies are indicated below. Co-authors contributed with the collection, access and preliminary curation of some raw data and/or providing critical revisions. Dr. Pippa Thomson also contributed to the initial draft of the introduction in chapter 2 and with supervision of all chapters. I confirm that I performed all the analyses and wrote the draft manuscripts myself. Dr. Pippa Thomson, Dr. Caroline Hayward (my 2nd supervisor) and Dr. Mark Adams co-author chapters 2, 4, 5 and 6. Prof. Andrew McIntosh co-author chapters 4, 5 and 6 and was the Chair of my thesis committee. Dr. Toni-Kim Clarke, Dr. Donald MacIntyre, Mr. Keith Milburn and Dr. Lauren Navrady co-author chapters 4 and 5. MSc Erin Macdonald-Dunlop co-author chapter 5. Generation Scotland and the Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium co-author chapters 2, 4, 5 and 6. Aleix Arnau Soler 10th January 2019 i Abstract Major depressive disorder (MDD) is a common psychiatric disorder and a leading cause of disability worldwide. Such illness is the result of a complex interplay between genetic susceptibility and environmental risk factors. Adverse life events are experienced before the onset of depressive episodes in most patients, with robust evidence for the role of stressful life events (SLE) as a main trigger of depressive symptoms. However, not all individuals develop depression after episodes of stress. Thus, an individual’s sensitivity to stress is an important predictor of stress response that may mediate the association between stress and depression. A deeper understanding of the genetic mechanisms underlying stress-sensitivity and stress response is, therefore, crucial to a better understanding of MDD and thus to improve treatments for both depressive symptoms and other stress-related conditions. This PhD thesis uses empirical data from white Caucasian population-based samples. By incorporating in new hypothesis-free genome-wide association studies and polygenic approaches quantitative measures of recent SLE and neuroticism---a personality trait though to mediate or moderate the effects of adversity on depression risk---, this PhD thesis identifies the genetic influences to a proxy for sensitivity to environmental stress and genotype-by- environment interaction (GxE) effects underlying depressive symptoms. Following an introductory chapter, chapter 2 conceptualizes a proxy for our sensitivity to negative outcomes by modelling the interaction between genetic variants and MDD status on neuroticism score through a genome-wide interaction study. This chapter seeks to identify genetic variants contributing to a potential endophenotype mediating the associations between stress and depression, and examines whether genetic effects on such proxy for stress sensitivity partially explains the genetic contributions to liability not attributable to additive main effects. The strongest signals came from genetic variants associated with the glucocorticoid receptor function. Therefore, iii Chapter 3 assesses the enrichment of the genetic contributions to liability of MDD within three glucocorticoid-related gene sets: one gene set reflecting “up-stream” cortisol signalling genes and two gene sets reflecting “down- stream” cortisol response genes. Chapter 4 empirically tests and assesses the diathesis-stress theory for depression; using polygenic risk scores weighted by the additive effects of MDD derived from the Psychiatric Genetic Consortium MDD genome-wide association study and self-reported measures on recent SLE. This chapter provides evidence for the presence of GxE effects between stress and common genetic variants on risk of depressive symptoms. The empirical support for this theory validates other GxE approaches applying a genome-wide approach to investigate the causative effect of stress in the development of depressive symptoms. Thus, chapter 5 presents findings from genome-wide by environment interaction studies in two cohorts that seek to identify common variants displaying an increased risk of liability to depressive symptoms in response to SLE. Whether inclusion of GxE effects improves the prediction of liability to MDD over that explained by genetic additive main effects alone is also tested. Furthermore, two potential forms of gene-environment interplay (i.e. GxE and gene-environment correlation) and their biological interpretation are extensively discussed. Stress contributes to many human conditions. Therefore, the GxE effects are also used to predict other stress-related physical and mental conditions. This chapter reports evidence of a potential shared aetiology between depression and other traits, such as schizotypal personality or heart disease, due to genetic mechanism underlying the effects of SLE. Finally, chapter 6 brings back the diathesis-stress model investigated in chapter 4. This chapter incorporates into the diathesis framework the genetics effects for stress sensitivity and stress response estimated in chapters 2 and chapter 5, respectively, and assess their relevance to the diathesis-stress theory. Genetic differences between women and men in stress response underlying the aetiology of depression are also discussed. iv Genetics plays a significant role in the effects of stress. The findings presented in this thesis emphasize the relevance of genetic effects for stress sensitivity and stress response in depression and health in general. Overall, this thesis presents a range of original studies in order to advance our understanding of the genetic response to stress, comprehensively discussing the limitations and pitfalls of this research area, and provides a basis for future lines of research on gene-environment interplay in psychiatry. v Lay Summary Depression is a common mental disorder that impacts on individuals, families and society. Genetic and environmental factors combine to increase the risk of suffering from depression. Indeed, before developing symptoms, most patients are affected by adverse or stressful environments. However, not all individuals that are exposed to adverse circumstances get depressed, suggesting differences in vulnerability to stress. One can think about this sensitivity towards the effects of stress as a behavioural or personality trait that mediates the association between stress and depression. Hence, several genes may influence such trait. A genetic component is behind the differences in how people respond to the effects of stress. Some genes modulate the effects of negative environments incrementing the risk of illness. This is known as gene-by-environment interaction effect. In this PhD thesis, the theory that genetic variation and stressful life events combine to increase the liability to depression is investigated. Multiple methods are explored in order to identify the nature of the genetic variants underlying both sensitivity and response to the effects of stress, as well as their importance in predicting depressive symptoms, in white European population. Genetic response to stress plays a key role on the onset and development of depression. Identifying genetic mechanisms underpinning the causative effects of stress may help to advance our understanding, not only of depression, but also of other disease of which stress is a main trigger, and thus, improve current treatments. This PhD thesis encompasses several original studies on this area of research seeking along the entire genome those genes contributing to the responses to environmental
Recommended publications
  • Do Persistent Organic Pollutants Interact
    Do persistent organic pollutants interact with the stress response? Individual compounds, and their mixtures, interaction with the glucocorticoid receptor Wilson, J., Berntsen, H. F., Elisabeth Zimmer, K., Verhaegen, S., Frizzell, C., Ropstad, E., & Connolly, L. (2016). Do persistent organic pollutants interact with the stress response? Individual compounds, and their mixtures, interaction with the glucocorticoid receptor. Toxicology Letters, 241, 121-132. https://doi.org/10.1016/j.toxlet.2015.11.014 Published in: Toxicology Letters Document Version: Peer reviewed version Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights © 2015 Elsevier Ireland Ltd This is an open access article published under a Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits distribution and reproduction for non-commercial purposes, provided the author and source are cited. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:26.
    [Show full text]
  • Functions of the Mineralocorticoid Receptor in the Hippocampus By
    Functions of the Mineralocorticoid Receptor in the Hippocampus by Aaron M. Rozeboom A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Cellular and Molecular Biology) in The University of Michigan 2008 Doctoral Committee: Professor Audrey F. Seasholtz, Chair Professor Elizabeth A. Young Professor Ronald Jay Koenig Associate Professor Gary D. Hammer Assistant Professor Jorge A. Iniguez-Lluhi Acknowledgements There are more people than I can possibly name here that I need to thank who have helped me throughout the process of writing this thesis. The first and foremost person on this list is my mentor, Audrey Seasholtz. Between working in her laboratory as a research assistant and continuing my training as a graduate student, I spent 9 years in Audrey’s laboratory and it would be no exaggeration to say that almost everything I have learned regarding scientific research has come from her. Audrey’s boundless enthusiasm, great patience, and eager desire to teach students has made my time in her laboratory a richly rewarding experience. I cannot speak of Audrey’s laboratory without also including all the past and present members, many of whom were/are not just lab-mates but also good friends. I also need to thank all the members of my committee, an amazing group of people whose scientific prowess combined with their open-mindedness allowed me to explore a wide variety of interests while maintaining intense scientific rigor. Outside of Audrey’s laboratory, there have been many people in Ann Arbor without whom I would most assuredly have gone crazy.
    [Show full text]
  • CHD4/Nurd Complex Regulates Complement Gene Expression And
    Shao et al. Clinical Epigenetics (2020) 12:31 https://doi.org/10.1186/s13148-020-00827-3 RESEARCH Open Access CHD4/NuRD complex regulates complement gene expression and correlates with CD8 T cell infiltration in human hepatocellular carcinoma Simin Shao1†, Haowei Cao1†, Zhongkun Wang1, Dongmei Zhou2, Chaoshen Wu1, Shu Wang1, Dian Xia1 and Daoyong Zhang1* Abstract Backgrounds: The NuRD (Nucleosome Remodeling and Deacetylation) complex is a repressive complex in gene transcription by modulating chromatin accessibility of target genes to transcription factors and RNA polymerase II. Although individual subunits of the complex have been implicated in many other cancer types, the complex’s role in human hepatocellular carcinoma (HCC) is not fully understood. More importantly, the NuRD complex has not yet been investigated as a whole in cancers. Methods: We analyzed the expression of the NuRD complex in HCC and evaluated the prognostic value of NuRD complex expression in HCC using the RNA-seq data obtained from the TCGA project. We examined the effect of CHD4 knockdown on HCC cell proliferation, apoptosis, migration, invasion, epithelial-mesenchymal transition, colony-forming ability, and on complement gene expression. We also performed bioinformatic analyses to investigate the correlation between the NuRD complex expression and immune infiltration. Results: We found that nine subunits, out of 14 subunits of the NuRD complex examined, were significantly overexpressed in HCC, and their expression levels were positively correlated with cancer progression. More importantly, our data also demonstrated that these subunits tended to be overexpressed as a whole in HCC. Subsequent studies demonstrated that knockdown of CHD4 in HCC cells inhibits cell proliferation, migration, invasion, and colony-forming ability and promotes apoptosis of HCC cells, indicating that the CHD4/NuRD complex plays oncogenic roles in HCC.
    [Show full text]
  • Responses of Bats to White-Nose Syndrome and Implications for Conservation
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2020 Responses of Bats to White-Nose Syndrome and Implications for Conservation Meghan Stark University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Stark, Meghan, "Responses of Bats to White-Nose Syndrome and Implications for Conservation" (2020). Doctoral Dissertations. 2518. https://scholars.unh.edu/dissertation/2518 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. RESPONSES OF BATS TO WHITE-NOSE SYNDROME AND IMPLICATIONS FOR CONSERVATION BY MEGHAN A. STARK B.S., University of Alabama at Birmingham, 2013 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy In Genetics May 2020 i This dissertation was examined and approved in partial fulfillment of the requirements for the degree of Ph.D. in Genetics by: Dissertation Director, Matthew MacManes, Assoc. Prof. UNH MCBS Jeffrey T. Foster, Associate Professor, NAU PMI W. Kelley Thomas, Professor, UNH MCBS Rebecca Rowe, Associate Professor, UNH NREN Thomas Lee, Associate Professor Emeritus, UNH NREN On April 6, 2020 Approval signatures are on file with the University of New Hampshire Graduate School. ii DEDICATION I dedicate this work to all of the strong women in my life: Myra Michele Ange Heather Michelle Coons Kaitlyn Danielle Cagle Brindlee Michelle Coons Patricia Gail Miller Sarah Jean Lane “Here’s to strong women.
    [Show full text]
  • An Order Estimation Based Approach to Identify Response Genes
    AN ORDER ESTIMATION BASED APPROACH TO IDENTIFY RESPONSE GENES FOR MICRO ARRAY TIME COURSE DATA A Thesis Presented to The Faculty of Graduate Studies of The University of Guelph by ZHIHENG LU In partial fulfilment of requirements for the degree of Doctor of Philosophy September, 2008 © Zhiheng Lu, 2008 Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-47605-5 Our file Notre reference ISBN: 978-0-494-47605-5 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par Plntemet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non­ sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these. this thesis. Neither the thesis Ni la these ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent etre imprimes ou autrement may be printed or otherwise reproduits sans son autorisation.
    [Show full text]
  • Differentiation-Defective Phenotypes Revealed by Large-Scale Analyses of Human Pluripotent Stem Cells
    Differentiation-defective phenotypes revealed by large-scale analyses of human pluripotent stem cells Michiyo Koyanagi-Aoia,1, Mari Ohnukia,1, Kazutoshi Takahashia, Keisuke Okitaa, Hisashi Nomab, Yuka Sawamuraa, Ito Teramotoa, Megumi Naritaa, Yoshiko Satoa, Tomoko Ichisakaa, Naoki Amanoa, Akira Watanabea, Asuka Morizanea, Yasuhiro Yamadaa,c, Tosiya Satod, Jun Takahashia,e, and Shinya Yamanakaa,f,2 aCenter for iPS Cell Research and Application, eDepartment of Biological Repair, Institute for Frontier Medical Sciences, and cInstitute for Integrated Cell- Material Sciences, Kyoto University, Kyoto 606-8507, Japan; bDepartment of Data Science, The Institute of Statistical Mathematics, Tokyo 190-8562, Japan; dDepartment of Biostatistics, Kyoto University School of Public Health, Kyoto 606-8501, Japan; and fGladstone Institute of Cardiovascular Disease, San Francisco, CA 94158 Contributed by Shinya Yamanaka, October 30, 2013 (sent for review September 13, 2013) We examined the gene expression and DNA methylation of 49 at least three passages. In addition, we analyzed the original somatic human induced pluripotent stem cells (hiPSCs) and 10 human cells, two human embryonic carcinoma cell (hECC) lines (NTera2 embryonic stem cells and found overlapped variations in gene cloneD1 and 2102Ep 4D3), and three cancer cell lines (HepG2, expression and DNA methylation in the two types of human MCF7, and Jurkat). pluripotent stem cell lines. Comparisons of the in vitro neural The mRNA microarray analyses (Fig. 1A) identified 61 probes fi differentiation of 40 hiPSCs and 10 human embryonic stem cells with signi cant differences in expression between hESCs and < showed that seven hiPSC clones retained a significant number of hiPSCs [t test, false discovery rate (FDR) 0.05].
    [Show full text]
  • Differences Between Human and Chimpanzee Genomes and Their Implications in Gene Expression, Protein Functions and Biochemical Properties of the Two Species Maria V
    Suntsova and Buzdin BMC Genomics 2020, 21(Suppl 7):535 https://doi.org/10.1186/s12864-020-06962-8 REVIEW Open Access Differences between human and chimpanzee genomes and their implications in gene expression, protein functions and biochemical properties of the two species Maria V. Suntsova1 and Anton A. Buzdin1,2,3,4* From 11th International Young Scientists School “Systems Biology and Bioinformatics”–SBB-2019 Novosibirsk, Russia. 24-28 June 2019 Abstract Chimpanzees are the closest living relatives of humans. The divergence between human and chimpanzee ancestors dates to approximately 6,5–7,5 million years ago. Genetic features distinguishing us from chimpanzees and making us humans are still of a great interest. After divergence of their ancestor lineages, human and chimpanzee genomes underwent multiple changes including single nucleotide substitutions, deletions and duplications of DNA fragments of different size, insertion of transposable elements and chromosomal rearrangements. Human-specific single nucleotide alterations constituted 1.23% of human DNA, whereas more extended deletions and insertions cover ~ 3% of our genome. Moreover, much higher proportion is made by differential chromosomal inversions and translocations comprising several megabase-long regions or even whole chromosomes. However, despite of extensive knowledge of structural genomic changes accompanying human evolution we still cannot identify with certainty the causative genes of human identity. Most structural gene-influential changes happened at the level of expression regulation, which in turn provoked larger alterations of interactome gene regulation networks. In this review, we summarized the available information about genetic differences between humans and chimpanzees and their potential functional impacts on differential molecular, anatomical, physiological and cognitive peculiarities of these species.
    [Show full text]
  • Cyclin D1 Is a Direct Transcriptional Target of GATA3 in Neuroblastoma Tumor Cells
    Oncogene (2010) 29, 2739–2745 & 2010 Macmillan Publishers Limited All rights reserved 0950-9232/10 $32.00 www.nature.com/onc SHORT COMMUNICATION Cyclin D1 is a direct transcriptional target of GATA3 in neuroblastoma tumor cells JJ Molenaar1,2, ME Ebus1, J Koster1, E Santo1, D Geerts1, R Versteeg1 and HN Caron2 1Department of Human Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands and 2Department of Pediatric Oncology, Emma Kinderziekenhuis, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands Almost all neuroblastoma tumors express excess levels of 2000). Several checkpoints normally prevent premature Cyclin D1 (CCND1) compared to normal tissues and cell-cycle progression and cell division. The crucial G1 other tumor types. Only a small percentage of these entry point is controlled by the D-type Cyclins that can neuroblastoma tumors have high-level amplification of the activate CDK4/6 that in turn phosphorylate the pRb Cyclin D1 gene. The other neuroblastoma tumors have protein. This results in a release of the E2F transcription equally high Cyclin D1 expression without amplification. factor that causes transcriptional upregulation of Silencing of Cyclin D1 expression was previously found to numerous genes involved in further progression of the trigger differentiation of neuroblastoma cells. Over- cell cycle (Sherr, 1996). expression of Cyclin D1 is therefore one of the most Neuroblastomas are embryonal tumors that originate frequent mechanisms with a postulated function in neuro- from precursor cells of the sympathetic nervous system. blastoma pathogenesis. The cause for the Cyclin D1 This tumor has a very poor prognosis and despite the overexpression is unknown.
    [Show full text]
  • Proteomic Profiling of Liver from Elaphe Taeniura, a Common Snake in Eastern and Southeastern Asia
    Genetics and Molecular Biology, 36, 3, 438-447 (2013) Copyright © 2013, Sociedade Brasileira de Genética. Printed in Brazil www.sbg.org.br Research Article Proteomic profiling of liver from Elaphe taeniura, a common snake in eastern and southeastern Asia Liang Chen1, Hengchuan Xia3, Yiting Wang2, Keping Chen3, Lvgao Qin3, Bin Wang3, Qin Yao3, Jun Li4, Yuanqing He3 and Ermi Zhao1,5 1Key Laboratory of Bio-resources and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, China. 2College of Athletic Sports, Yangzhou University, Yangzhou, Jiangsu Province, China. 3Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China. 4Center for Physics and Chemistry, Jiangsu University, Zhenjiang, Jiangsu Province, China. 5Chengdu Institute of Biology, the Chinese Academy of Sciences, Chengdu, Sichuan Province, China. Abstract Snake liver has been implicated in the adaptation of snakes to a variety of habitats. However, to date, there has been no systematic analysis of snake liver proteins. In this study, we undertook a proteomic analysis of liver from the colubrid snake Elaphe taeniura using a combination of two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time of flightmass spectrometry (MALDI-TOF MS). We also constructed a local protein sequence database based on transcriptome sequencing to facilitate protein identification. Of the 268 protein spots revealed by 2-DE 109 gave positive MS signals, 84 of which were identified by searching the NCBInr, Swiss-Prot and local databases. The other 25 protein spots could not be identified, possibly because their transcripts were not be stable enough to be detected by transcriptome sequencing. GO analysis showed that most proteins may be involved in binding, catalysis, cellular processes and metabolic processes.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Molecular Evolutionary Routes That Lead to Innovations
    International Journal of Evolutionary Biology Molecular Evolutionary Routes That Lead to Innovations Guest Editors: Frédéric Brunet, Hideki Innan, Ben-Yang Liao, and Wen Wang Molecular Evolutionary Routes That Lead to Innovations International Journal of Evolutionary Biology Molecular Evolutionary Routes That Lead to Innovations Guest Editors: Fred´ eric´ Brunet, Hideki Innan, Ben-YangLiao, and Wen Wang Copyright © 2012 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “International Journal of Evolutionary Biology.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board Giacomo Bernardi, USA Kazuho Ikeo, Japan Jeffrey R. Powell, USA Terr y Burke, UK Yoh Iwasa, Japan Hudson Kern Reeve, USA Ignacio Doadrio, Spain Henrik J. Jensen, UK Y. Satta, Japan Simon Easteal, Australia Amitabh Joshi, India Koji Tamura, Japan Santiago F. Elena, Spain Hirohisa Kishino, Japan Yoshio Tateno, Japan Renato Fani, Italy A. Moya, Spain E. N. Trifonov, Israel Dmitry A. Filatov, UK G. Pesole, Italy Eske Willerslev, Denmark F. Gonzalez-Candelas,´ Spain I. Popescu, USA Shozo Yokoyama, Japan D. Graur, USA David Posada, Spain Contents Molecular Evolutionary Routes That Lead to Innovations,Fred´ eric´ Brunet, Hideki Innan, Ben-Yang Liao, and Wen Wang Volume 2012, Article ID 483176, 2 pages Purifying Selection Bias against Microsatellites in Gene
    [Show full text]
  • CEMIP Sirna (H): Sc-90061
    SANTA CRUZ BIOTECHNOLOGY, INC. CEMIP siRNA (h): sc-90061 BACKGROUND STORAGE AND RESUSPENSION Encoding more than 700 genes, chromosome 15 is made up of approximately Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least 106 million base pairs and is about 3% of the human genome. Angelman and one year from the date of shipment. Once resuspended, store at -20° C, Prader-Willi syndromes are associated with loss of function or deletion of avoid contact with RNAses and repeated freeze thaw cycles. genes in the 15q11-q13 region. In the case of Angelman syndrome, this loss Resuspend lyophilized siRNA duplex in 330 µl of the RNAse-free water is due to inactivity of the maternal 15q11-q13-encoded UBE3A gene in the provided. Resuspension of the siRNA duplex in 330 µl of RNAse-free water brain by either chromosomal deletion or mutation. In cases of Prader-Willi makes a 10 µM solution in a 10 µM Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM syndrome, there is a partial or complete deletion of this region from the pater- EDTA buffered solution. nal copy of chromosome 15. Tay-Sachs disease is a lethal disorder associated with mutations of the HEXA gene, which is encoded by chromosome 15. APPLICATIONS Marfan syndrome is associated with chromosome 15 through the FBN1 gene. CEMIP siRNA (h) is recommended for the inhibition of CEMIP expression in REFERENCES human cells. 1. Hurowitz, G.I., et al. 1993. Neuropsychiatric aspects of adult-onset SUPPORT REAGENTS Tay-Sachs disease: two case reports with several new findings.
    [Show full text]