Genome Sequence, Population History, and Pelage Genetics of the Endangered African Wild Dog (Lycaon Pictus) Michael G

Total Page:16

File Type:pdf, Size:1020Kb

Genome Sequence, Population History, and Pelage Genetics of the Endangered African Wild Dog (Lycaon Pictus) Michael G Campana et al. BMC Genomics (2016) 17:1013 DOI 10.1186/s12864-016-3368-9 RESEARCH ARTICLE Open Access Genome sequence, population history, and pelage genetics of the endangered African wild dog (Lycaon pictus) Michael G. Campana1,2*, Lillian D. Parker1,2,3, Melissa T. R. Hawkins1,2,3, Hillary S. Young4, Kristofer M. Helgen2,3, Micaela Szykman Gunther5, Rosie Woodroffe6, Jesús E. Maldonado1,2 and Robert C. Fleischer1 Abstract Background: The African wild dog (Lycaon pictus) is an endangered African canid threatened by severe habitat fragmentation, human-wildlife conflict, and infectious disease. A highly specialized carnivore, it is distinguished by its social structure, dental morphology, absence of dewclaws, and colorful pelage. Results: We sequenced the genomes of two individuals from populations representing two distinct ecological histories (Laikipia County, Kenya and KwaZulu-Natal Province, South Africa). We reconstructed population demographic histories for the two individuals and scanned the genomes for evidence of selection. Conclusions: We show that the African wild dog has undergone at least two effective population size reductions in the last 1,000,000 years. We found evidence of Lycaon individual-specific regions of low diversity, suggestive of inbreeding or population-specific selection. Further research is needed to clarify whether these population reductions and low diversity regions are characteristic of the species as a whole. We documented positive selection on the Lycaon mitochondrial genome. Finally, we identified several candidate genes (ASIP, MITF, MLPH, PMEL) that may play a role in the characteristic Lycaon pelage. Keywords: Lycaon pictus, Genome, Population history, Selection, Pelage Background Primarily a hunter of antelopes, the African wild dog is a The African wild dog (Lycaon pictus) is an endangered highly distinct canine. Wild dogs are differentiated from canid species (International Union for Conservation of other canine species by their anatomical adaptations re- Nature Red List Classification: C2a (i)) [1]. While the lated to hypercarnivory and cursorial hunting, including species formerly ranged over most of sub-Saharan high-crowned, sectorial teeth and the lack of dewclaws Africa, wild dogs suffer from a suite of threats including [4]. They have a highly specialized social structure in severe habitat fragmentation, human persecution, and which both males and females disperse to form new disease epidemics. They are now restricted to less than packs and only a single dominant pair in each pack re- seven percent of their former range [2], with only small, produces [5]. Wild dogs are also noted for their colorful and frequently declining, remnant populations in frag- pelage, from which they derive their species name pictus mented pockets of eastern and southern Africa (Fig. 1). (‘painted’), and the absence of an undercoat. They maintain enormous home ranges (varying between Eastern and southern populations of wild dogs are 200 and 2000 km2) and naturally live at very low genetically and morphologically distinct [6], although densities, even compared to other carnivores [3]. there is a large admixture zone covering Botswana, south-eastern Tanzania, and Zimbabwe [7]. Gene flow occurs across the species’ entire range [8], which is * Correspondence: [email protected] 1Center for Conservation Genomics, Smithsonian Conservation Biology unsurprising given the excellent dispersal capabilities Institute, 3001 Connecticut Avenue NW, Washington, DC 20008, USA documented in Lycaon pictus [1]. Nevertheless, Marsden 2Department of Environmental Science and Policy, George Mason University, et al. [2] documented both genetic structuring between 4400 University Drive, Fairfax, VA 22030, USA Lycaon Full list of author information is available at the end of the article extant populations (likely the result of habitat © The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Campana et al. BMC Genomics (2016) 17:1013 Page 2 of 10 packs [9]. We sequenced a female (sampled July 2003) from this recolonized population. In contrast, wild dogs were reintroduced to Hluhluwe-Imfolozi Park, KwaZulu-Natal Province in 1980 and remained as a single pack for many years [10]. Eventually, Lycaon breeding effectively ceased until new animals were intro- duced in 1997 and afterwards (2001, 2003, etc.) [11]. The KwaZulu-Natal wild dogs are now managed as part of the South African Lycaon “metapopulation” [12, 13]. We sequenced a male (sampled October 2007), born in KwaZulu-Natal to parents that were translocated from Limpopo province in 2003. Therefore, the South African individual’s ancestry represents genes from the northeastern part of the country. The genomes from these two populations represent some of the first published wild canid genomes and are particularly valuable given the susceptibility of wild dogs to diseases and habitat fragmentation [9, 14]. We used our novel genome sequences to reconstruct the last 1,000,000 years of Lycaon genome demography and population history. We identified over a million poly- morphic sequence variants for further population-level study. These variants produced ~35 million predicted genic effects. We identified over 15,000 candidate genes that may have undergone adaptation since the Lycaon/ Canis divergence. We found evidence of positive selec- tion on the Lycaon mitochondrial genome. Finally, we examined genes involved in canid coat phenotype to Fig. 1 South African wild dog pack (top)andmapofextantandformer wild dog range (bottom). The sampling locations of the two individuals identify candidate genes underlying the characteristic are noted on the map. Ranges are modified from Woodroffe Lycaon pelage. and Sillero-Zubiri [1] and Marsden et al. [2]. Extant range data used with permission from the International Union for the Conservation Results and discussion of Nature [Woodroffe R, Sillero-Zubiri C 2012. Lycaon pictus.In:IUCN Genome sequencing of the African wild dog 2016. IUCN Red List of Threatened Species. Version 2016–2. http:// www.iucnredlist.org. Downloaded 12 July 2016]. Photograph by Based on alignment with the domestic dog genome, we Micaela Szykman Gunther have sequenced ~90% (5.8× mean read depth) of the Kenyan individual’s genome and ~93% (5.7×) of the South African Lycaon individual’s genome. We identified 16,967,383 autosomal sequence variants (including fragmentation) and a recent reduction in effective 14,360,480 single nucleotide polymorphisms [SNPs] and population size (Ne) since the 1980s. Furthermore, 2,606,903 indels) separating our Lycaon genomes from African wild dogs exhibit very little major histocom- the domestic dog (Canis familiaris) genome [GenBank: patibility complex variation, which may reflect popu- CanFam3.1] (Additional files 1 and 2) [15]. Of these, lation decline [8]. 1,092,450 (781,329 SNPs and 311,121 indels) were To better understand African wild dog genomic evolu- polymorphic in the African wild dog. The remaining tion, genetic variation and population history, we 15,874,933 autosomal sequence variants (13,579,151 shotgun sequenced whole genomes from two individuals SNPs and 2,295,782 indels) were monomorphic in the from widely separated populations with very different two Lycaon individuals. We identified 717,870 X- modern ecological histories: Laikipia County, Kenya and chromosomal variants (619,606 SNPs and 98,264 indels), Hluhluwe-Imfolozi Park, KwaZulu-Natal Province, of which 32,801 (23,001 SNPs and 9,800 indels) were South Africa. Wild dogs disappeared from Laikipia, polymorphic and 685,069 (596,605 SNPs and 88,464 Kenya in the 1980s and reappeared in 2000 – likely indels) were monomorphic in the African wild dog. recolonizing from a small population in neighboring Additionally, we sequenced the Kenyan and South Samburu district (~50 km distant). The population in African wild dog mitochondrial genomes to depths of Laikipia alone now numbers more than 150 dogs and 15 943× and 1021×, respectively. We annotated the Lycaon Campana et al. BMC Genomics (2016) 17:1013 Page 3 of 10 autosomal and X-chromosomal sequences using the do- Candidate selected processes and genomic regions mestic dog genome annotations [GenBank:CanFam3.1.81] Based on the domestic dog genome annotations, SnpEff and the mitochondrial genome [GenBank:NC_002008.4] 4.1 L predicted that the identified Lycaon autosomal and and MSY sequences [GenBank:KP081776.1] using their X-chromosomal sequence variants would cause 34,001,288 reference sequence annotations [15–17]. and 36,362,161 genic effects in the Kenyan and South African individuals, respectively (Additional files 1 and 2) [22]. The majority of sequence variant effects fell within Lycaon demographic history introns (Kenyan: 62.604%, South African: 63.383%) and We analyzed the two wild dogs’ autosomal population intergenic regions (Kenyan: 23.081%, South African: histories using PSMC (Fig. 2) [18]. Both genomes exhib- 23.162%). To discover candidate genes that have diverged ited a strong
Recommended publications
  • 32-12012: Human Beta Defensin-3 Description Product
    9853 Pacific Heights Blvd. Suite D. San Diego, CA 92121, USA Tel: 858-263-4982 Email: [email protected] 32-12012: Human Beta Defensin-3 Gene : DEFB103A Gene ID : 414325 Uniprot ID : P81534 Alternative Name : DEFB-3, Beta-defensin 3, Defensin, beta 103, Defensin-like protein Description Source: Genetically modified E.coli. Predicted MW: Monomer, 5.2 kDa (45 aa) Beta-Defensin 3 (BD-3), also known as DEFB-3, is a member of the defensin class of antimicrobial peptides. Beta defensins exert host defense responses against viruses, bacteria, and fungi through the binding and permeabilizing of microbial membranes. BD-3 expression is stimulated by interferon-gamma and is an important molecule during adaptive immunity. BD-3 functions to activate monocytes and mast cells, and has antibacterial functions towards Gram-negative and Gram-positive bacteria. Further, BD-3 blocks human immunodeficiency virus type 1 (HIV-1) replication through the downregulation of the HIV-1 co-receptor, CXCR4. Product Info Amount : 20 µg / 100 µg Purification : Reducing and Non-Reducing SDS PAGE at >= 95% Lyophilized from a sterile (0.2 micron) filtered aqueous solution containing 0.1% Trifluoroacetic Content : Acid (TFA) Sterile water at 0.1 mg/mL Storage condition : Store at -20°C Amino Acid : GIINTLQKYY CRVRGGRCAV LSCLPKEEQI GKCSTRGRKC CRRKK Application Note Endotoxin: Less than 0.1 ng/µg (1 IEU/µg) as determined by LAL test. Centrifuge vial before opening, Suspend the product by gently pipetting the above recommended solution down the sides of the vial. DO NOT VORTEX. Allow several minutes for complete reconstitution. For prolonged storage, dilute to working aliquots in a 0.1% BSA solution, store at -80°C and avoid repeat freeze thaws.
    [Show full text]
  • Mapping DNA Structural Variation in Dogs
    Downloaded from genome.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press Resource Mapping DNA structural variation in dogs Wei-Kang Chen,1,4 Joshua D. Swartz,1,4,5 Laura J. Rush,2 and Carlos E. Alvarez1,3,6 1Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio 43205, USA; 2Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA; 3Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA DNA structural variation (SV) comprises a major portion of genetic diversity, but its biological impact is unclear. We propose that the genetic history and extraordinary phenotypic variation of dogs make them an ideal mammal in which to study the effects of SV on biology and disease. The hundreds of existing dog breeds were created by selection of extreme morphological and behavioral traits. And along with those traits, each breed carries increased risk for different diseases. We used array CGH to create the first map of DNA copy number variation (CNV) or SV in dogs. The extent of this variation, and some of the gene classes affected, are similar to those of mice and humans. Most canine CNVs affect genes, including disease and candidate disease genes, and are thus likely to be functional. We identified many CNVs that may be breed or breed class specific. Cluster analysis of CNV regions showed that dog breeds tend to group according to breed classes. Our combined findings suggest many CNVs are (1) in linkage disequilibrium with flanking sequence, and (2) associated with breed-specific traits.
    [Show full text]
  • Gene Co-Expression Network Mining Using Graph Sparsification
    Gene Co-expression Network Mining Using Graph Sparsification THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Jinchao Di Graduate Program in Electrical and Computer Engineering The Ohio State University 2013 Master’s Examination Committee: Dr. Kun Huang, Advisor Dr. Raghu Machiraju Dr. Yuejie Chi ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! Copyright by Jinchao Di 2013 ! ! Abstract Identifying and analyzing gene modules is important since it can help understand gene function globally and reveal the underlying molecular mechanism. In this thesis, we propose a method combining local graph sparsification and a gene similarity measurement method TOM. This method can detect gene modules from a weighted gene co-expression network more e↵ectively since we set a local threshold which can detect clusters with di↵erent densities. In our algorithm, we only retain one edge for each gene, which can generate more balanced gene clusters. To estimate the e↵ectiveness of our algorithm we use DAVID to functionally evaluate the gene list for each module we detect and compare our results with some well known algorithms. The result of our algorithm shows better biological relevance than the compared methods and the number of the meaningful biological clusters is much larger than other methods, implying we discover some previously missed gene clusters. Moreover, we carry out a robustness test by adding Gaussian noise with di↵erent variance to the expression data. We find that our algorithm is robust to noise. We also find that some hub genes considered as important genes could be artifacts.
    [Show full text]
  • Molecular Features of Triple Negative Breast Cancer Cells by Genome-Wide Gene Expression Profiling Analysis
    478 INTERNATIONAL JOURNAL OF ONCOLOGY 42: 478-506, 2013 Molecular features of triple negative breast cancer cells by genome-wide gene expression profiling analysis MASATO KOMATSU1,2*, TETSURO YOSHIMARU1*, TAISUKE MATSUO1, KAZUMA KIYOTANI1, YASUO MIYOSHI3, TOSHIHITO TANAHASHI4, KAZUHITO ROKUTAN4, RUI YAMAGUCHI5, AYUMU SAITO6, SEIYA IMOTO6, SATORU MIYANO6, YUSUKE NAKAMURA7, MITSUNORI SASA8, MITSUO SHIMADA2 and TOYOMASA KATAGIRI1 1Division of Genome Medicine, Institute for Genome Research, The University of Tokushima; 2Department of Digestive and Transplantation Surgery, The University of Tokushima Graduate School; 3Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Hyogo 663-8501; 4Department of Stress Science, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503; Laboratories of 5Sequence Analysis, 6DNA Information Analysis and 7Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639; 8Tokushima Breast Care Clinic, Tokushima 770-0052, Japan Received September 22, 2012; Accepted November 6, 2012 DOI: 10.3892/ijo.2012.1744 Abstract. Triple negative breast cancer (TNBC) has a poor carcinogenesis of TNBC and could contribute to the develop- outcome due to the lack of beneficial therapeutic targets. To ment of molecular targets as a treatment for TNBC patients. clarify the molecular mechanisms involved in the carcino- genesis of TNBC and to identify target molecules for novel Introduction anticancer drugs, we analyzed the gene expression profiles of 30 TNBCs as well as 13 normal epithelial ductal cells that were Breast cancer is one of the most common solid malignant purified by laser-microbeam microdissection. We identified tumors among women worldwide. Breast cancer is a heteroge- 301 and 321 transcripts that were significantly upregulated neous disease that is currently classified based on the expression and downregulated in TNBC, respectively.
    [Show full text]
  • A Chromosome Level Genome of Astyanax Mexicanus Surface Fish for Comparing Population
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.06.189654; this version posted July 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Title 2 A chromosome level genome of Astyanax mexicanus surface fish for comparing population- 3 specific genetic differences contributing to trait evolution. 4 5 Authors 6 Wesley C. Warren1, Tyler E. Boggs2, Richard Borowsky3, Brian M. Carlson4, Estephany 7 Ferrufino5, Joshua B. Gross2, LaDeana Hillier6, Zhilian Hu7, Alex C. Keene8, Alexander Kenzior9, 8 Johanna E. Kowalko5, Chad Tomlinson10, Milinn Kremitzki10, Madeleine E. Lemieux11, Tina 9 Graves-Lindsay10, Suzanne E. McGaugh12, Jeff T. Miller12, Mathilda Mommersteeg7, Rachel L. 10 Moran12, Robert Peuß9, Edward Rice1, Misty R. Riddle13, Itzel Sifuentes-Romero5, Bethany A. 11 Stanhope5,8, Clifford J. Tabin13, Sunishka Thakur5, Yamamoto Yoshiyuki14, Nicolas Rohner9,15 12 13 Authors for correspondence: Wesley C. Warren ([email protected]), Nicolas Rohner 14 ([email protected]) 15 16 Affiliation 17 1Department of Animal Sciences, Department of Surgery, Institute for Data Science and 18 Informatics, University of Missouri, Bond Life Sciences Center, Columbia, MO 19 2 Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 20 3 Department of Biology, New York University, New York, NY 21 4 Department of Biology, The College of Wooster, Wooster, OH 22 5 Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 23 6 Department of Genome Sciences, University of Washington, Seattle, WA 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.06.189654; this version posted July 6, 2020.
    [Show full text]
  • Detailed Characterization of Human Induced Pluripotent Stem Cells Manufactured for Therapeutic Applications
    Stem Cell Rev and Rep DOI 10.1007/s12015-016-9662-8 Detailed Characterization of Human Induced Pluripotent Stem Cells Manufactured for Therapeutic Applications Behnam Ahmadian Baghbaderani 1 & Adhikarla Syama2 & Renuka Sivapatham3 & Ying Pei4 & Odity Mukherjee2 & Thomas Fellner1 & Xianmin Zeng3,4 & Mahendra S. Rao5,6 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract We have recently described manufacturing of hu- help determine which set of tests will be most useful in mon- man induced pluripotent stem cells (iPSC) master cell banks itoring the cells and establishing criteria for discarding a line. (MCB) generated by a clinically compliant process using cord blood as a starting material (Baghbaderani et al. in Stem Cell Keywords Induced pluripotent stem cells . Embryonic stem Reports, 5(4), 647–659, 2015). In this manuscript, we de- cells . Manufacturing . cGMP . Consent . Markers scribe the detailed characterization of the two iPSC clones generated using this process, including whole genome se- quencing (WGS), microarray, and comparative genomic hy- Introduction bridization (aCGH) single nucleotide polymorphism (SNP) analysis. We compare their profiles with a proposed calibra- Induced pluripotent stem cells (iPSCs) are akin to embryonic tion material and with a reporter subclone and lines made by a stem cells (ESC) [2] in their developmental potential, but dif- similar process from different donors. We believe that iPSCs fer from ESC in the starting cell used and the requirement of a are likely to be used to make multiple clinical products. We set of proteins to induce pluripotency [3]. Although function- further believe that the lines used as input material will be used ally identical, iPSCs may differ from ESC in subtle ways, at different sites and, given their immortal status, will be used including in their epigenetic profile, exposure to the environ- for many years or even decades.
    [Show full text]
  • Single Cell Derived Clonal Analysis of Human Glioblastoma Links
    SUPPLEMENTARY INFORMATION: Single cell derived clonal analysis of human glioblastoma links functional and genomic heterogeneity ! Mona Meyer*, Jüri Reimand*, Xiaoyang Lan, Renee Head, Xueming Zhu, Michelle Kushida, Jane Bayani, Jessica C. Pressey, Anath Lionel, Ian D. Clarke, Michael Cusimano, Jeremy Squire, Stephen Scherer, Mark Bernstein, Melanie A. Woodin, Gary D. Bader**, and Peter B. Dirks**! ! * These authors contributed equally to this work.! ** Correspondence: [email protected] or [email protected]! ! Supplementary information - Meyer, Reimand et al. Supplementary methods" 4" Patient samples and fluorescence activated cell sorting (FACS)! 4! Differentiation! 4! Immunocytochemistry and EdU Imaging! 4! Proliferation! 5! Western blotting ! 5! Temozolomide treatment! 5! NCI drug library screen! 6! Orthotopic injections! 6! Immunohistochemistry on tumor sections! 6! Promoter methylation of MGMT! 6! Fluorescence in situ Hybridization (FISH)! 7! SNP6 microarray analysis and genome segmentation! 7! Calling copy number alterations! 8! Mapping altered genome segments to genes! 8! Recurrently altered genes with clonal variability! 9! Global analyses of copy number alterations! 9! Phylogenetic analysis of copy number alterations! 10! Microarray analysis! 10! Gene expression differences of TMZ resistant and sensitive clones of GBM-482! 10! Reverse transcription-PCR analyses! 11! Tumor subtype analysis of TMZ-sensitive and resistant clones! 11! Pathway analysis of gene expression in the TMZ-sensitive clone of GBM-482! 11! Supplementary figures and tables" 13" "2 Supplementary information - Meyer, Reimand et al. Table S1: Individual clones from all patient tumors are tumorigenic. ! 14! Fig. S1: clonal tumorigenicity.! 15! Fig. S2: clonal heterogeneity of EGFR and PTEN expression.! 20! Fig. S3: clonal heterogeneity of proliferation.! 21! Fig.
    [Show full text]
  • Elucidation of Dose-Dependent Transcriptional Events Immediately Following Ionizing Radiation Exposure
    bioRxiv preprint doi: https://doi.org/10.1101/207951; this version posted October 23, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 2 3 4 Elucidation of dose-dependent transcriptional events immediately following 5 ionizing radiation exposure 6 7 Eric C. Rouchka1,2,*, Robert M. Flight3, Brigitte H. Fasciotto4, Rosendo Estrada5, John W. 8 Eaton6,7,8, Phani K. Patibandla5, Sabine J. Waigel8, Dazhuo Li1, John K. Kirtley1, Palaniappan 9 Sethu9,10, and Robert S. Keynton5 10 11 1Department of Computer Engineering and Computer Science, University of Louisville, 12 Louisville, Kentucky, United States of America 13 14 2Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, University of 15 Louisville, Louisville, Kentucky, United States of America 16 17 3Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, 18 Kentucky, United States of America 19 20 4The ElectroOptics Research Institute and Nanotechnology Center, University of Louisville, 21 Louisville, Kentucky, United States of America 22 23 5Department of Bioengineering, University of Louisville, Louisville, Kentucky, United States of 24 America 25 26 6Department of Medicine, University of Louisville, Louisville, Kentucky, United States of 27 America 28 29 7Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, 30 United States of America 31 32 8James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United 33 States of America 34 35 9Division of Cardiovascular Disease, Department of Medicine, University of Alabama at 36 Birmingham, Birmingham, Alabama, United States of America 37 38 10Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, 39 Alabama, United States of America 1 bioRxiv preprint doi: https://doi.org/10.1101/207951; this version posted October 23, 2017.
    [Show full text]
  • Sperm Differentiation
    International Journal of Molecular Sciences Review Sperm Differentiation: The Role of Trafficking of Proteins Maria E. Teves 1,* , Eduardo R. S. Roldan 2,*, Diego Krapf 3 , Jerome F. Strauss III 1 , Virali Bhagat 4 and Paulene Sapao 5 1 Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA 23298, USA; [email protected] 2 Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain 3 Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA; [email protected] 4 Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA; [email protected] 5 Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA; [email protected] * Correspondence: [email protected] (M.E.T.); [email protected] (E.R.S.R.) Received: 4 March 2020; Accepted: 20 May 2020; Published: 24 May 2020 Abstract: Sperm differentiation encompasses a complex sequence of morphological changes that takes place in the seminiferous epithelium. In this process, haploid round spermatids undergo substantial structural and functional alterations, resulting in highly polarized sperm. Hallmark changes during the differentiation process include the formation of new organelles, chromatin condensation and nuclear shaping, elimination of residual cytoplasm, and assembly of the sperm flagella. To achieve these transformations, spermatids have unique mechanisms for protein trafficking that operate in a coordinated fashion. Microtubules and filaments of actin are the main tracks used to facilitate the transport mechanisms, assisted by motor and non-motor proteins, for delivery of vesicular and non-vesicular cargos to specific sites.
    [Show full text]
  • Nº Ref Uniprot Proteína Péptidos Identificados Por MS/MS 1 P01024
    Document downloaded from http://www.elsevier.es, day 26/09/2021. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. Nº Ref Uniprot Proteína Péptidos identificados 1 P01024 CO3_HUMAN Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2 por 162MS/MS 2 P02751 FINC_HUMAN Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=4 131 3 P01023 A2MG_HUMAN Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 SV=3 128 4 P0C0L4 CO4A_HUMAN Complement C4-A OS=Homo sapiens GN=C4A PE=1 SV=1 95 5 P04275 VWF_HUMAN von Willebrand factor OS=Homo sapiens GN=VWF PE=1 SV=4 81 6 P02675 FIBB_HUMAN Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 78 7 P01031 CO5_HUMAN Complement C5 OS=Homo sapiens GN=C5 PE=1 SV=4 66 8 P02768 ALBU_HUMAN Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 66 9 P00450 CERU_HUMAN Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1 64 10 P02671 FIBA_HUMAN Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 58 11 P08603 CFAH_HUMAN Complement factor H OS=Homo sapiens GN=CFH PE=1 SV=4 56 12 P02787 TRFE_HUMAN Serotransferrin OS=Homo sapiens GN=TF PE=1 SV=3 54 13 P00747 PLMN_HUMAN Plasminogen OS=Homo sapiens GN=PLG PE=1 SV=2 48 14 P02679 FIBG_HUMAN Fibrinogen gamma chain OS=Homo sapiens GN=FGG PE=1 SV=3 47 15 P01871 IGHM_HUMAN Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 SV=3 41 16 P04003 C4BPA_HUMAN C4b-binding protein alpha chain OS=Homo sapiens GN=C4BPA PE=1 SV=2 37 17 Q9Y6R7 FCGBP_HUMAN IgGFc-binding protein OS=Homo sapiens GN=FCGBP PE=1 SV=3 30 18 O43866 CD5L_HUMAN CD5 antigen-like OS=Homo
    [Show full text]
  • High-Resolution Analysis of Chromosomal Alterations in Adult Acute Lymphoblastic Leukemia
    Elmer Press Original Article J Hematol. 2014;3(3):65-71 High-Resolution Analysis of Chromosomal Alterations in Adult Acute Lymphoblastic Leukemia Lam Kah Yuena, c, Zakaria Zubaidaha, Ivyna Bong Pau Nia, Megat Baharuddin Puteri Jamilatul Noora, Esa Ezaliaa, Chin Yuet Menga, Ong Tee Chuanb, Vegappan Subramanianb, Chang Kiang Mengb Abstract Introduction Background: Chromosomal alterations occur frequently in acute Acute lymphoblastic leukemia (ALL) is a heterogeneous lymphoblastic leukemia (ALL), affecting either the chromosome disease, resulting from the accumulation of chromosomal al- number or structural changes. These alterations can lead to inacti- terations either in the form of numerical or structural chang- vation of tumor suppressor genes and/or activation of oncogenes. es such as amplification, deletion, inversion or translocation. The objective of this study was to identify recurrent and/or novel The frequency of chromosomal alterations in adult ALL is chromosomal alterations in adult ALL using single nucleotide poly- 64-85% [1], compared to 60-69% in childhood ALL. Trans- morphism (SNP) array analysis. location t(9.22), one of the most common recurring chromo- Methods: We studied 41 cases of adult ALL compared with healthy somal alterations, is found in 20-40% adult ALL patients [2], normal controls using SNP array. and its incidence increases with age. Some of the chromo- somal alterations are significantly associated with remission Results: Our analysis revealed 43 copy number variant regions, duration, complete remission rate and disease-free survival of which 44% were amplifications and 56% were deletions. The [1]. Increasing age is also associated with lower remission most common amplifications were on chromosome regions 8p23.1 rates, shorter remissions and poor outcomes in adult ALL (71%), 1q44 (66%), 1q23.3 (54%), 11q23.3 (54%), 12p13.33 [1].
    [Show full text]
  • Measurement of Copy Number at Complex Loci Using High-Throughput Sequencing Data
    METHODS ARTICLE published: 01 August 2014 doi: 10.3389/fgene.2014.00248 The CNVrd2 package: measurement of copy number at complex loci using high-throughput sequencing data HoangT.Nguyen1,2,3,TonyR.Merriman1,3* and Michael A. Black 1,3 1 Department of Biochemistry, University of Otago, Dunedin, New Zealand 2 Department of Mathematics and Statistics, University of Otago, Dunedin, New Zealand 3 Department of Biochemistry, Virtual Institute of Statistical Genetics, University of Otago, Dunedin, New Zealand Edited by: Recent advances in high-throughout sequencing technologies have made it possible to Alexandre V. Morozov, Rutgers accurately assign copy number (CN) at CN variable loci. However, current analytic methods University, USA often perform poorly in regions in which complex CN variation is observed. Here we Reviewed by: report the development of a read depth-based approach, CNVrd2, for investigation of David John Studholme, University of Exeter, UK CN variation using high-throughput sequencing data. This methodology was developed Mikhail P.Ponomarenko, Institute of using data from the 1000 Genomes Project from the CCL3L1 locus, and tested using Cytology and Genetics of Siberian data from the DEFB103A locus. In both cases, samples were selected for which paralog Branch of Russian Academy of ratio test data were also available for comparison. The CNVrd2 method first uses Sciences, Russia observed read-count ratios to refine segmentation results in one population. Then a *Correspondence: Tony R. Merriman, Department of linear regression model is applied to adjust the results across multiple populations, in Biochemistry, University of Otago, combination with a Bayesian normal mixture model to cluster segmentation scores into 710 Cumberland Street, Dunedin groups for individual CN counts.
    [Show full text]