Effect of Parity on Fatty Acids of Saudi Camels Milk and Colostrum

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Parity on Fatty Acids of Saudi Camels Milk and Colostrum International Journal of Research in Agricultural Sciences Volume 4, Issue 6, ISSN (Online): 2348 – 3997 Effect of Parity on Fatty Acids of Saudi Camels Milk and Colostrum Magdy Abdelsalam1,2*, Mohamed Ali1 and Khalid Al-Sobayil1 1Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University, Al-Qassim 51452, Saudi Arabia. 2Department of Animal Production, Faculty of Agriculture, Alexandria University, El-Shatby, Alexandria 21545, Egypt. Date of publication (dd/mm/yyyy): 29/11/2017 Abstract – Fourteen Saudi she-camels were machine milked locations and different feeding regimes, but there is a scare twice daily and fatty acids of colostrum (1-7 days post partum) on the effect of parity of lactating camels on the fatty acids. and milk (10-150 days post partum) were analyzed. Short Therefore, the objective of this experiment was to study the chain fatty acids were found in small percentage in colostrums changes in the fatty acids profile of colostrums and milk of and milk at different parities without insignificant differences she-camel during the first three parities. and the C4:0 and C6:0 don't appear in the analysis. Colostrums has higher unsaturated fatty acids percentage than that of saturated fatty acids while the opposite was found II. MATERIALS AND METHODS in milk of camels. Myiristic acid (C14:0), palmitic (C16:0), stearic (C18:0) and oleic (C18:1) showed the highest A. Animals and Management percentage in either colostrums or milk of she-camels. Parity The present study was carried out on fourteen Saudi she had significant effect on atherogenicity index (AI) which is camels raised at the experimental Farm, College of considered an important factor associated the healthy quality of camel milk. Conjugated linoleic acids (CLA) was recorded Agriculture and Veterinary Medicine, Qassim University. the highest percent in the second and third parity in milk and Machine milking was performed for lactating camels twice colostrums. Stage of lactation had significant effect on fatty daily. Animals were grazed for 2-3 hours a day and they acids profile except the short chain fatty acids. The percentage were fed ad libitum available berseem or 2 kg hay and 3 kg of unsaturated fatty acids decreased as stage of lactation concentrate mixture (16 % CP) besides 2 kg barely. Water advanced while the saturated fatty acids increased in older was offered to animals at all day times. All animals were camels. The results indicate that camel milk has an important healthy. role in human nutrition in the hot regions and arid countries B. Milk samples it contains high percentage of unsaturated fatty acids which is Milk samples were taken from fourteen lactating she- required to reduce the risk of coronary heart disease. camels in different parity numbers (1-3) between 0-7 day Keywords – Camel Milk, Conjugated linoleic acids CLA, (colostrum) and 10-150 days post partum. The samples of Colostrum, Fatty Acid Profile. milk were collected in the morning in polyethylene bottles (350 ml from each lactating camels). Samples were frozen I. INTRODUCTION and stored at - 20ºC up to analyses. C. Milk fatty Acids Analysis Camels are considered the most important livestock in Fatty acids (FAs) composition of milk fat was determined arid and semi-arid regions and play an important role in the using gas chromatography (apparatus: Chimadzu 2010) as life of rural population in these areas and survive under described by [9]. The FAs (g/100 g) were grouped as harsh conditions. In Saudi Arabia, there are about 270 saturated fatty acid (SFA), unsaturated fatty acid (UFA), thousand heads of Arabian camel (Camelus dromedaries) monounsaturated fatty acid (MUFA), polyunsaturated fatty and can produce around 105852 tons of milk and 42460 acid (PUFA), short chain fatty acid (SCFA), medium chain tons of meat [1]. Saudi Arabia is rated as the fifth highest fatty acid (MCFA) and long chain fatty acid (LCFA). producer of camel milk in the world. D. The index of Atherogenicity (IA) Camel milk is considered an important source of proteins, The IA is an indicator of fatty acids risk on health. The energy and vitamins for the people living in the arid and index of atherogenicity (IA) was calculated as reported by semi-arid lands of the world who consumed significant [10] and [11] as: amounts of camel milk as fresh [2]. Many people prefer 퐼퐴 = 푎푆12 + 푏푆14 + 푐푆16 / 푑푃 + 푒푀 + 푓푀" camel milk to other types of milks because they believe that where: S12 = C12:0, S14 = C14:0 and S16= C16:0; P = sum it is complete food source for the human body besides its of ω6 and ω3 PUFA; M= oleic acid and M"= sum of other medicinal benefits [3] and [4]. Compared to cow milk, MUFA. a–f are empirical constants: b = 4 and a, c, d, e and camel milk fat contains less amounts of short-chain fatty f are equal to 1. acids and saturated fatty acids [5] & [6] and high Iso fatty acids were not included in the last equation. unsaturated fatty acids [7]. Nowadays, knowledge showed Thus, the final calculation of the IA of the she camel milk the risk factor for cardiovascular disease from consuming and colostrum was as follows: fatty milk, where the fatty acid composition is considered an important factor affecting health [8]. C12:0 + (4*C14:0) + C16:0 IA = There is a great deal of interest in fatty acids composition C10:1 + C14:1 + C16:1 + C17:1 + C18:1 + C18:2 + C18:3 in camel milk under different productive systems, different Copyright © 2017 IJRAS, All right reserved 325 International Journal of Research in Agricultural Sciences Volume 4, Issue 6, ISSN (Online): 2348 – 3997 E. Statistical Analysis milk ranged between 0.49 and 3.91 %. [17] explained Data were analyzed using proc GLM according to [12]. disappear short chain or its low percentage to their rapid The model included parity as fixed effect, was as follows: metabolize by camel tissue before excreting in the milk. Yij = µ + Pi + eij where: Saturated fatty acids averaged 54.318, 58.898 and 57.621 th Yij = an observation taken on the j sample (g/100 g) in camel milk at the first three parities, Palmitic µ = overall mean acid (C16:0) had the highest value in she-camel milk (P = th Pj = a fixed effect of the i parity (i=1 to 3) 0.008) and its value increased as parity number increased. eij = Random error assumed to be independent by and The Stearic acid (C18:0) and myristic acid (C14:0) had the normally distributed with mean = 0 and variance = σ2 second high values and the camel in the second parity gave Duncan multiple range test was conducted to determine significantly higher mean than that milked at the first or differences among means, using 5% significant level. third parity. The present results are in agreement with results of [18], [13] and [14], who illustrated that C14:0, III. RESULTS AND DISCUSSION C16:0 and C18:0 are considered the major components of total fatty acids. The increase of those saturated fatty acids A. Fatty Acids Concentration in Colostrums can attributed to activity and fermentation in rumen. [19] The mean fatty acids of colostrum of lactating camels On Najdi ewes, pointed out that Palmitic, stearic and among different parities is presented in Table 1. It is clear palmetic acids had the highest percentages of milk total to note that C4:0 or C6:0 don't appear in the analysis of fatty acids. colostrums. Short chain fatty acids (C8:0) constituted a very The unsaturated fatty acid in milk varied by parity small amount and averaged 0.080 in the first parity, 0.082 (P<004), oleic acid (C18:1) were present in higher in the second parity and 0.096 in the third parity without concentration followed by Palmitoleic acid (C16:1). These any significant difference. It is worthy to note that the two acids were higher in milk of camels in first parity and highest values were recorded for C18:1, c16:0, C18:0, decline in the second parity and increased at the third parity. C16:1, C14:0 and C17:1. Reference [13] found that [13] and [20] reported that the C18:1 and C16:1 represented colostrum had low amount of short chain fatty acids (C4- the major unsaturated fatty acids of camel milk. Our results C8) and added that colostrums showed high amount of are higher than that of [7] who found that unsaturated fatty C18:1 and C16:1. Authors [14] stated that amount of C18:1 acid averaged 33.81 %. The authors [5] pointed out the and C16:0 recorded the highest value in colostrums. importance of camel milk in nutrition of human because Parity had highly significant effect on the concentration increasing supply of these unsaturated fatty acids is of C12:0, C13:0, C14:0, C14:1 and C15:0 and significant required to reduce the risk of coronary heart disease. effect on C16:0 (P<0.03). Colostrums has higher Results of [21] reported that the high percentage of C18:0 unsaturated fatty acids amount than that of saturated fatty and C18:1 is reflected changes in the energy balance of the acids (50.12, 50.36 & 49.99 vs. 48.98, 49.54 & 49.58 for camels during lactation. Negative energy balance was 1st, 2nd and 3rd parity, respectively). found in the first months of lactation, therefore animals CLA in colostrums increased as parity of camel increased used non-esterified fatty acids stored in adipose tissues with insignificant difference. It considered the best which were very rich in C18:0 and C18:1 fatty acids.
Recommended publications
  • Retention Indices for Frequently Reported Compounds of Plant Essential Oils
    Retention Indices for Frequently Reported Compounds of Plant Essential Oils V. I. Babushok,a) P. J. Linstrom, and I. G. Zenkevichb) National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA (Received 1 August 2011; accepted 27 September 2011; published online 29 November 2011) Gas chromatographic retention indices were evaluated for 505 frequently reported plant essential oil components using a large retention index database. Retention data are presented for three types of commonly used stationary phases: dimethyl silicone (nonpolar), dimethyl sili- cone with 5% phenyl groups (slightly polar), and polyethylene glycol (polar) stationary phases. The evaluations are based on the treatment of multiple measurements with the number of data records ranging from about 5 to 800 per compound. Data analysis was limited to temperature programmed conditions. The data reported include the average and median values of retention index with standard deviations and confidence intervals. VC 2011 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. [doi:10.1063/1.3653552] Key words: essential oils; gas chromatography; Kova´ts indices; linear indices; retention indices; identification; flavor; olfaction. CONTENTS 1. Introduction The practical applications of plant essential oils are very 1. Introduction................................ 1 diverse. They are used for the production of food, drugs, per- fumes, aromatherapy, and many other applications.1–4 The 2. Retention Indices ........................... 2 need for identification of essential oil components ranges 3. Retention Data Presentation and Discussion . 2 from product quality control to basic research. The identifi- 4. Summary.................................. 45 cation of unknown compounds remains a complex problem, in spite of great progress made in analytical techniques over 5.
    [Show full text]
  • WO 2017/074902 Al 4 May 20 17 (04.05.2017) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/074902 Al 4 May 20 17 (04.05.2017) W P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 8/37 (2006.01) A61Q 19/00 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, A61K 31/215 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, PCT/US2016/058591 MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (22) International Filing Date: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 25 October 2016 (25.10.201 6) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (25) Filing Language: English ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 62/247,803 29 October 20 15 (29. 10.20 15) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: GLAXOSMITHKLINE CONSUMER TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, HEALTHCARE HOLDINGS (US) LLC [US/US]; 271 1 DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Centerville Road, Suite 400, Wilmington, DE 19808 (US).
    [Show full text]
  • Modeling the Effect of Heat Treatment on Fatty Acid Composition in Home-Made Olive Oil Preparations
    Open Life Sciences 2020; 15: 606–618 Research Article Dani Dordevic, Ivan Kushkevych*, Simona Jancikova, Sanja Cavar Zeljkovic, Michal Zdarsky, Lucia Hodulova Modeling the effect of heat treatment on fatty acid composition in home-made olive oil preparations https://doi.org/10.1515/biol-2020-0064 refined olive oil in PUFAs, though a heating temperature received May 09, 2020; accepted May 25, 2020 of 220°C resulted in similar decrease in MUFAs and fi Abstract: The aim of this study was to simulate olive oil PUFAs, in both extra virgin and re ned olive oil samples. ff fi use and to monitor changes in the profile of fatty acids in The study showed di erences in fatty acid pro les that home-made preparations using olive oil, which involve can occur during the culinary heating of olive oil. repeated heat treatment cycles. The material used in the Furthermore, the study indicated that culinary heating experiment consisted of extra virgin and refined olive oil of extra virgin olive oil produced results similar to those fi samples. Fatty acid profiles of olive oil samples were of the re ned olive oil heating at a lower temperature monitored after each heating cycle (10 min). The out- below 180°C. comes showed that cycles of heat treatment cause Keywords: virgin olive oil, refined olive oil, saturated significant (p < 0.05) differences in the fatty acid profile fatty acids, monounsaturated fatty acids, polyunsatu- of olive oil. A similar trend of differences (p < 0.05) was rated fatty acids, cross-correlation analysis found between fatty acid profiles in extra virgin and refined olive oils.
    [Show full text]
  • Essential Oils and Oil from Seeds of Syagrus Coronata
    Vol. 10(23), pp. 310-317, 17 June, 2016 DOI: 10.5897/JMPR2016.6098 Article Number: 89CD55858997 ISSN 1996-0875 Journal of Medicinal Plants Research Copyright © 2016 Author(s) retain the copyright of this article http://www.academicjournals.org/JMPR Full Length Research Paper Syagrus coronata seed oils have antimicrobial action against multidrug-resistant Staphylococcus aureus Cibele Maria Alves da Silva Bessa1, Rodrigo Santana do Nascimento1, Renata Carla Corrêa Alves1*, José Matias Anselmo2, Ana Paula Sant'Anna da Silva1, Alexandre Gomes da Silva1, Vera Lúcia de Menezes Lima1, Josean Fechine Tavares3, Luís Cláudio Nascimento da Silva1,2, Márcia Vanusa da Silva1 and Maria Tereza dos Santos Correia1 1Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Av. Professor Moraes Rego, Cidade Universitária, 1235, 50670-901, Recife, Pernambuco, Brazil. 2Faculdade Pernambucana de Saúde, Av. Jean Emile Favre, 420, Imbiribeira, 51200-060, Recife, Pernambuco, Brazil. 3Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, Campus I, Castelo Branco, 58051-970, Joao Pessoa, Paraíba, Brazil. Received 15 March, 2016; Accepted 20 May, 2016 Syagrus coronata (Mart.) Becc. (Arecaceae) is a native Brazilian palm (ouricuri) and despite the use of its derived products by traditional communities, few scientific reports have been published regarding its biomedical activity. This study investigates the chemical composition and anti-Staphylococcus aureus effects of both manufactured oil (SCO) and essential oil (SCEO) from S. coronata seeds. SCO was provided by rural inhabitants, while SCEO was obtained by hydrodistillation. Chemical characterization was performed by gas chromatography-mass spectrometry (GC/MS). In vitro antimicrobial activity was determined against 17 S. aureus strains, including multidrug-resistant strains.
    [Show full text]
  • Improvement of Lipid Production from an Oil-Producing Filamentous Fungus, Penicillium Brevicompactum NRC 829, Through Central Composite Statistical Design
    Ann Microbiol (2017) 67:601–613 DOI 10.1007/s13213-017-1287-x ORIGINAL ARTICLE Improvement of lipid production from an oil-producing filamentous fungus, Penicillium brevicompactum NRC 829, through central composite statistical design Thanaa H. Ali1 & Mamdouh S. El-Gamal2 & Dina H. El-Ghonemy1 & Ghada E. Awad3 & Amir E. Tantawy1 Received: 12 March 2017 /Accepted: 13 July 2017 /Published online: 7 August 2017 # Springer-Verlag GmbH Germany and the University of Milan 2017 Abstract In the present study, 13 filamentous fungi were commercial development for the production of LA by fer- screened for their lipid production and an oleaginous fun- mentation using cheap raw material. gus, Penicillium brevicompactum NRC 829, was found to be the highest lipid producer. Screening of various agro- Keywords Linoleic acid . Penicillium brevicompactum NRC industrial residues was performed and sunflower oil cake 829 . Response surface methodology . Unsaturated fatty acids proved to be the best substrate for lipid production. A central composite design was employed to investigate the optimum concentrations of the most significant medi- Introduction um components required to improve the lipid production by P. brevicompactum. The results clearly revealed that Polyunsaturated fatty acids (PUFAs) are long-chain fatty − the maximal lipid production of 8.014 ± 0.06 gL 1 acids containing two or more double bonds in their acyl (representing 57.6% lipid/dry biomass) was achieved by chains. Biosynthesis of PUFAs involves both methyl- the fungus when grown for 6 days at 30 °C under static directed and carboxyl-directed desaturases. The primary condition in a medium containing sunflower oil cake, product of fatty acid biosynthesis in oilseed crops is the NaNO3 and KCl at final concentrations of 8, 0.75 and 18-carbon monounsaturated oleic acid (C18:1–9).
    [Show full text]
  • National Food Safety Standard Determination of Fatty Acids in Foods
    National Standard of the People’s Republic of China GB 5413.27 – 2010 National food safety standard Determination of fatty acids in foods for infants and young children, milk and milk products Issued on: 2010-03-26 Implemented on: 2010-06-01 Issued by the Ministry of Health of People’s Republic of China GB 5413.27–2010 Preface This standard replaces GB/T 21676 - 2008 Determination of Fatty Acids in Formula Foods and Milk Powder for Infants and Young Children, GB/T 5413.27 – 1997 Determination of DHA and EPA in Formula Foods and Milk Powder for Infants and Young Children and GB/T 5413.4 - 1997 Determination of Linoleic Acid in Formula Foods and Milk Powder for Infants and Young Children. Comparing with the original standards, the following main changes have been made to the Standard: the first method is Acetyl Chloride - Methanol Esterification; Integrate GB/T 21676 - 2008, GB/T 5413.27 – 1997 and GB/T 5413.4 – 1997 to the second method of this standard, Ammonia Water - Ethanol Extraction Method. Appendix A of this standard is informative. The versions replaced by this standard are: - GB/T 5413.4 – 1997, GB/T 5413.27 - 1997; - GB/T 21676 - 2008. 1 GB 5413.27–2010 National food safety standard Determination of fatty acids in foods for infants and young children, milk and milk products 1 Scope This standard provides the determination of fatty acids in infant foods and dairy. This standard applies to determination of fatty acids in infant foods and dairy; the second method doesn’t apply to determination of embedded fatty acid.
    [Show full text]
  • Biochemistry Prologue to Lipids
    Paper : 05 Metabolism of Lipids Module: 01 Prologue to Lipids Principal Investigator Dr. Sunil Kumar Khare, Professor, Department of Chemistry, IIT-Delhi Paper Coordinator and Dr. Suaib Luqman, Scientist (CSIR-CIMAP) Content Writer & Assistant Professor (AcSIR) CSIRDr. Vijaya-CIMAP, Khader Lucknow Dr. MC Varadaraj Content Reviewer Prof. Prashant Mishra, Professor, Department of Biochemical Engineering and Biotechnology, IIT-Delhi 1 METABOLISM OF LIPIDS Biochemistry Prologue to Lipids DESCRIPTION OF MODULE Subject Name Biochemistry Paper Name 05 Metabolism of Lipids Module Name/Title 01 Prologue to Lipids 2 METABOLISM OF LIPIDS Biochemistry Prologue to Lipids 1. Objectives To understand what is lipid Why they are important How they occur in nature 2. Concept Map LIPIDS Fatty Acids Glycerol 3. Description 3.1 Prologue to Lipids In 1943, the term lipid was first used by BLOOR, a German biochemist. Lipids are heterogeneous group of compounds present in plants and animal tissues related either actually or potentially to the fatty acids. They are amphipathic molecules, hydrophobic in nature originated utterly or in part by thioesters (carbanion-based condensations of fatty acids and/or polyketides etc) or by isoprene units (carbocation-based condensations of prenols, sterols, etc). Lipids have the universal property of being: i. Quite insoluble in water (polar solvent) ii. Soluble in benzene, chloroform, ether (non-polar solvent) 3 METABOLISM OF LIPIDS Biochemistry Prologue to Lipids Thus, lipids include oils, fats, waxes, steroids, vitamins (A, D, E and K) and related compounds, such as phospholipids, triglycerides, diglycerides, monoglycerides and others, which are allied more by their physical properties than by their chemical assests.
    [Show full text]
  • Fast and Simple Free Fatty Acids Analysis Using UPC2/MS Giorgis Isaac,1 Michael D
    Fast and Simple Free Fatty Acids Analysis Using UPC2/MS Giorgis Isaac,1 Michael D. Jones,1 Besnik Bajrami,1 Wassim Obeid,2 James Langridge,3 Patrick Hatcher2 1Waters Corporation, Milford, MA, USA 2Old Dominion University, Norfolk, VA, USA 3Waters Corporation, Manchester, UK APPLICATION BENEFITS INTRODUCTION ■■ Demonstrates the separation of free fatty Fatty acids, both free and as part of complex lipids, play a number of key roles acid (FFA) species based on chain length in metabolism – as major metabolic fuel (storage and transport of energy), as and number of double bonds essential components of all membranes, and as gene regulators. In addition, dietary lipids provide polyunsaturated fatty acids that are precursors of powerful ■■ No derivatization is required, which results in easier and fast sample preparation and locally acting metabolites, e.g., eicosanoids. eliminates artifact formation The common fatty acids of animal and plant origin have even-numbered chains ■■ Organic phase lipid extract can be directly of 16 to 24 carbon atoms with 0 to 6 double bonds. Nature provides countless injected onto the system, saving time and exceptions, however, and odd- and even-numbered fatty acids with up to nearly reducing cost per analysis 100 carbon atoms exist. In addition, double bonds can be of the cis (Z) and trans (E) configuration and there can be innumerable other structural features, ■■ Less than three-minute chromatographic including branch points, rings, oxygenated functions, and many more. separation is up to 10X faster compared to GC/MS Fatty acid chains may contain one or more double bonds at specific positions (unsaturated and poly unsaturated with cis (Z) or trans (E) configuration) or they ■■ Unlike GC/MS, low volatile and very long chain fatty acids (>24 carbon atoms) can be may be fully saturated.
    [Show full text]
  • Mass Spectrometry of Astrobiologically Relevant Organic Material – Implications on Future Space Missions to Ocean Worlds in the Outer Solar System
    Mass Spectrometry of Astrobiologically Relevant Organic Material – Implications on Future Space Missions to Ocean Worlds in the Outer Solar System Fabian Klenner1, Frank Postberg1, Ferdinand Stolz2, René Reviol1, and Nozair Khawaja1 1Institute of Earth Sciences, Heidelberg University, Germany 2Wilhelm-Ostwald-Institute, Leipzig University, Germany 51st ESLAB Symposium - Extreme Habitable Worlds ESA ESTEC, The Netherlands The Solar System‘s ocean worlds Steve Vance; NASA/JPL-Caltech December 6, 2017 2 The Solar System‘s ocean worlds Steve Vance; NASA/JPL-Caltech December 6, 2017 3 Sampling dust and ice particles in space E ring NASA/JPL December 6, 2017 4 The Cosmic Dust Analyzer (CDA) Chemical Analyzer subsystem (CA) § Sensitive to cations § Determines impact rates, mass, speed, electric charge, and composition § Mass resolution: ≤ 50 m/Dm § Maximum recorded mass: ca. 200 u Srama et al. 2004 December 6, 2017 5 Analog experiment: IR-FL-MALDI-ToF-MS IR Laser adapted from Beinsen 2011 § Liquid beam: r = 7.5 µm § Laser: l = 2480 nm; I ≤ 1152 MW/cm2 § Vaccum chamber: P = 5 x 10-5 mbar § ToF-MS: R = 700 – 800 m/Dm December 6, 2017 6 Comparison of the impact mechanisms of CDA and the analog experiment CDA Analog experiment Postberg et al. 2009 December 6, 2017 7 Comparison of the impact mechanisms of CDA and the analog experiment CDA Analog experiment Postberg et al. 2009 Khawaja 2016 December 6, 2017 8 Future missions and Enceladus Ice Analyzer (ENIA) § Sensitive to cations and anions § Mass resolution > 2000 m/Dm § Maximum recorded mass: 2000
    [Show full text]
  • Marine Oil Fatty Acids Named
    Method MARINE1 Page 1 Method: MARINE1 MARINE OIL ANALYSIS Version: 1.02 Description: Marine Oil Fatty Acid Analysis Naming Table: Index Peak Name IUPAC / Systematic Name Other Names 1 10:0 Decanoic Acid Capric Acid 2 11:0 iso 9-Methyldecanoic Acid 9-Methylcapric Acid 3 11:0 anteiso 8-Methyldecanoic Acid 8-Methylcapric Acid 4 11:0 Undecanoic Acid Undecylic Acid 5 10:0 2OH 2-Hydroxydecanoic Acid 2-Hydroxycapric Acid 6 10:0 3OH 3-Hydroxydecanoic Acid 3-Hydroxycapric Acid 0 Phthalate 1 --- --- 7 12:0 iso 10-Methylundecanoic Acid Isolauric Acid 8 12:0 anteiso 9-Methylundecanoic Acid Anteisolauric Acid 9 12:3 w3c (3Z, 6Z, 9Z)-3,6,9-Dodectrienoic Acid --- 10 12:1 w5c (7Z)-7-Dodecenoic Acid --- 11 12:0 Dodecanoic Acid Lauric Acid 0 11:0 iso 3OH 3-Hydroxy-9-Methyldecanoic Acid --- 12 13:0 iso 11-Methyldodecanoic Acid Isotridecanoic Acid 13 13:0 anteiso 10-Methyldodecanoic Acid Anteisotridecanoic Acid 14 13:1 w5c (8Z)-8-Tridecenoic Acid --- 15 13:1 w4c (9Z)-9-Tridecenoic Acid --- 16 13:1 w3c (10Z)-10-Tridecenoic Acid --- 17 13:0 Tridecanoic Acid Tridecylic Acid 0 12:0 2OH 2-Hydroxydodecanoic Acid 2-Hydroxylauric Acid 18 14:1 iso w7c (6Z)-12-Methyl-6-Tridecenoic Acid --- Printed on 27-Feb-2018 Method MARINE1 Page 2 19 14:0 iso 12-Methyltridecanoic Acid Isomyristic Acid 20 14:0 anteiso 11-Methyltridecanoic Acid Anteisomyristic Acid 21 14:1 w9c (5Z)-5-Tetradecenoic Acid --- 22 14:3 w3c (5Z, 8Z, 11Z)-5,8,11-Tetradectrienoic Acid --- 23 14:1 w7c (7Z)-7-Tetradecenoic Acid --- 24 14:1 w5c (9Z)-9-Tetradecenoic Acid Myristoleic Acid 25 15:0 aldehyde Pentadecanal
    [Show full text]
  • Fatty Acids, Trivial and Systematic Names
    FATTY ACIDS, TRIVIAL AND SYSTEMATIC NAMES Trivial Name Systematic Name Abbreviation Formic Acid Methanoic Acid Acetic Acid Ethanoic Acid Propionic Acid Propanoic Acid Butyric Acid Butanoic Acid 4:0 Valerianic Acid Pentanoic Acid 5:0 Caproic Acid Hexanoic Acid 6:0 Enanthic Acid Heptanoic Acid 7:0 Caprylic Acid Octanoic Acid 8:0 Pelargonic Acid Nonanoic Acid 9:0 Capric Acid Decanoic Acid 10:0 Obtusilic Acid 4-Decenoic Acid 10:1(n-6) Caproleic Acid 9-Decenoic Acid 10:1(n-1) Undecylic Acid Undecanoic Acid 11:0 Lauric Acid Dodecanoic Acid 12:0 Linderic Acid 4-Dodecenoic Acid 12:1(n-8) Denticetic Acid 5-Dodecenoic Acid 12:1(n-7) Lauroleic Acid 9-Dodecenoic Acid 12:1(n-3) Tridecylic Acid Tridecanoic Acid 13:0 Myristic Acid Tetradecanoic Acid 14:0 Tsuzuic Acid 4-Tetradecenoic Acid 14:1(n-10) Physeteric Acid 5-Tetradecenoic Acid 14:1(n-9) Myristoleic Acid 9-Tetradecenoic Acid 14:1(n-5) Pentadecylic Acid Pentadecanoic Acid 15:0 Palmitic Acid Hexadecanoic Acid 16:0 Gaidic acid 2-Hexadecenoic Acid 16:1(n-14) Sapienic Acid 6-Hexadecenoic Acid 16:1(n-10) Hypogeic Acid trans-7-Hexadecenoic Acid t16:1(n-9) cis-Hypogeic Acid 7-Hexadecenoic Acid 16:1(n-9) Palmitoleic Acid 9-Hexadecenoic Acid 16:1(n-7) Palmitelaidic Acid trans-9-Hexadecenoic Acid t16:1(n-7) Palmitvaccenic Acid 11-Hexadecenoic Acid 16:1(n-5) Margaric Acid Heptadecanoic Acid 17:0 Civetic Acid 8-Heptadecenoic Acid 17:1 Stearic Acid Octadecanoic Acid 18:0 Petroselinic Acid 6-Octadecenoic Acid 18:1(n-12) Oleic Acid 9-Octadecenoic Acid 18:1(n-9) Elaidic Acid trans-9-Octadecenoic acid t18:1(n-9)
    [Show full text]
  • Triglyceride Profiling in Adipose Tissues from Obese Insulin Sensitive, Insulin Resistant and Type 2 Diabetes Mellitus Individua
    Al‑Sulaiti et al. J Transl Med (2018) 16:175 https://doi.org/10.1186/s12967-018-1548-x Journal of Translational Medicine RESEARCH Open Access Triglyceride profling in adipose tissues from obese insulin sensitive, insulin resistant and type 2 diabetes mellitus individuals Haya Al‑Sulaiti1, Ilhame Diboun2, Sameem Banu1, Mohamed Al‑Emadi3, Parvaneh Amani3, Thomas M. Harvey1, Alex S. Dömling4, Aishah Latif1 and Mohamed A. Elrayess1,5* Abstract Background: Lipid intermediates produced during triacylglycerols (TAGs) synthesis and lipolysis in adipocytes inter‑ fere with the intracellular insulin signaling pathway and development of insulin resistance. This study aims to compare TAG species and their fatty acid composition in adipose tissues from insulin sensitive (IS), insulin resistant (IR) and type 2 diabetes mellitus (T2DM) obese individuals. Methods: Human subcutaneous and omental adipose tissue biopsies were obtained from 64 clinically characterized obese individuals during weight reduction surgery. TAGs were extracted from the adipose tissues using the Bligh and Dyer method, then were subjected to non-aqueous reverse phase ultra-high performance liquid chromatography and full scan mass spectrometry acquisition and data dependent MS/MS on LTQ dual cell linear ion trap. TAGs and their fatty acid contents were identifed and compared between IS, IR and T2DM individuals and their levels were cor‑ related with metabolic traits of participants and the adipogenic potential of preadipocyte cultures established from their adipose tissues. Results: Data revealed 76 unique TAG species in adipose tissues identifed based on their exact mass. Analysis of TAG levels revealed a number of TAGs that were signifcantly altered with disease progression including C46:4, C48:5, C48:4, C38:1, C50:3, C40:2, C56:3, C56:4, C56:7 and C58:7.
    [Show full text]