Modeling the Effect of Heat Treatment on Fatty Acid Composition in Home-Made Olive Oil Preparations

Total Page:16

File Type:pdf, Size:1020Kb

Modeling the Effect of Heat Treatment on Fatty Acid Composition in Home-Made Olive Oil Preparations Open Life Sciences 2020; 15: 606–618 Research Article Dani Dordevic, Ivan Kushkevych*, Simona Jancikova, Sanja Cavar Zeljkovic, Michal Zdarsky, Lucia Hodulova Modeling the effect of heat treatment on fatty acid composition in home-made olive oil preparations https://doi.org/10.1515/biol-2020-0064 refined olive oil in PUFAs, though a heating temperature received May 09, 2020; accepted May 25, 2020 of 220°C resulted in similar decrease in MUFAs and fi Abstract: The aim of this study was to simulate olive oil PUFAs, in both extra virgin and re ned olive oil samples. ff fi use and to monitor changes in the profile of fatty acids in The study showed di erences in fatty acid pro les that home-made preparations using olive oil, which involve can occur during the culinary heating of olive oil. repeated heat treatment cycles. The material used in the Furthermore, the study indicated that culinary heating experiment consisted of extra virgin and refined olive oil of extra virgin olive oil produced results similar to those fi samples. Fatty acid profiles of olive oil samples were of the re ned olive oil heating at a lower temperature monitored after each heating cycle (10 min). The out- below 180°C. comes showed that cycles of heat treatment cause Keywords: virgin olive oil, refined olive oil, saturated significant (p < 0.05) differences in the fatty acid profile fatty acids, monounsaturated fatty acids, polyunsatu- of olive oil. A similar trend of differences (p < 0.05) was rated fatty acids, cross-correlation analysis found between fatty acid profiles in extra virgin and refined olive oils. As expected, the main differences occurred in monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs).Cross-correlation 1 Introduction analysis also showed differences between the fatty acid profiles. The most prolific changes were observed between Olive oil, especially extra virgin olive oil, is the major - the control samples and the heated (at 180°C) samples of source of fat in the so called Mediterranean diet that very often has positive health benefits. The reason for this attribute is mainly the lower content of saturated fatty acids (SFAs) and the higher content of polyphenolic * Corresponding author: Ivan Kushkevych, Department of compounds. The fatty acid profile is important for the Experimental Biology, Faculty of Science, Masaryk University, quality and stability of oils. Oleic acid (C18:1) is a Kamenice 753/5, 62500, Brno, Czech Republic, monounsaturated fatty acid (MUFA), and it is more - e mail: [email protected] ( ) Dani Dordevic: Department of Plant Origin Foodstuffs Hygiene and stable than polyunsaturated fatty acids PUFAs . PUFAs Technology, Faculty of Veterinary Hygiene and Ecology, University of are usually present in lower percentages in olive oil Veterinary and Pharmaceutical Sciences Brno, 61242, Brno, Czech [1–4]. Cold-pressed edible plant oils, such as extra virgin Republic; Department of Technology and Organization of Public olive oil, are usually added to different salads. This may Catering, South Ural State University, 454080, Chelyabinsk, Russia mean that they are consumed without heat treatment. Simona Jancikova, Michal Zdarsky, Lucia Hodulova: Department of Recently, these types of edible plant oils have been used Plant Origin Foodstuffs Hygiene and Technology, Faculty of ff Veterinary Hygiene and Ecology, University of Veterinary and for cooking, as part of di erent culinary techniques and Pharmaceutical Sciences Brno, 61242, Brno, Czech Republic recipes. In this case, even cold-pressed edible plant oils Sanja Cavar Zeljkovic: Department of Genetic Resources for are heated at high temperatures. Such heating processes Vegetables, Centre of the Region Haná for Biotechnological and can affect the fatty acid profile of these oils, for instance, Agricultural Research, Medicinal and Special Plants, Crop Research heating increases the trans fatty acids, which have Institute, 78371, Olomouc, Czech Republic; Department of ff [ ] Phytochemistry, Centre of Region Haná for Biotechnological and potentially harmful health e ects 5 . Agricultural Research, Faculty of Science, Palacky University, 78371, Different culinary conditions, especially the tem- Olomouc, Czech Republic perature and the time of heat processing, can influence Open Access. © 2020 Dani Dordevic et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 Public License. Olive oil fatty acid changes during heating cycles 607 the fatty acid composition of oils [6,7]. The type of oil below the allowed limits proposed by Codex Alimentarius also influences the changes in oil and its stability during (refined olive oil: PV < 5 mEq of active oxygen/kg oil, FFAs heat treatment due to difference in fatty acid profiles. < 0.3 mg KOH/g oil; cold-pressed olive oil: PV < 20 mEq of SFAs are more stable than unsaturated fatty acids, and active oxygen/kg oil, FFAs < 0.8 mg KOH/g oil; the similarly MUFAs are more stable when compared to standard limits were written on the labeling of extra virgin PUFAs [8]. The advantage of olive oil is the higher olive oil samples). Part of the olive oil sample was taken to content of MUFA (oleic acid), and this property gives serve as a control sample without heat treatment. The olive oil a higher level of oxidative stability than that of remainder of the olive oil sample (300 mL) was heated in other edible plant oils with a higher content of PUFAs. open glass tubes (250 mL glass tubes used for Kjeltec 2300 Cold-pressed olive oil or extra virgin olive oil has the digestion) at 180°C and 220°C, in an oven (Professional additional advantage of high levels of polyphenols, Ovens GARB-IN, Model:23 GM). The heat treatment lasted tocopherols, and carotenoids [4,9,10]. The fatty acid for 10 min and was repeated for three cycles (3 × 10 min). profile of olive oil is influenced by olive variety, weather, Between each cycle, part of the olive oil sample (100 mL) environment, and harvest conditions, as well as agro- was taken for analysis (of fatty acid composition) and the nomic and technologic factors [11,12]. remainder was heated again. Between heat cycles, the Olive oil, especially extra virgin olive oil (cold- samples were allowed to cool for 20 min. pressed olive oil), is considered beneficial for the health of consumers due to the presence of phenolic com- pounds, such as hydroxytyrosol (which improves radical stability) and oleuropein. Such compounds are involved 2.2 Fatty acid composition in inhibiting inflammatory processes. They additionally prevent liver damage by reducing oxidative stress, mito- Fatty acids were methylated with 0.5 M NaOMe/MeOH chondrial dysfunction, endoplasmic reticulum stress, and solution and extracted into n-hexane. The resulting fatty insulin resistance [13,14]. acid methyl esters (FAMEs) were analyzed by the gas Deep frying is a frequently used culinary practice. chromatography–mass spectrometry method on the The temperature during deep frying is usually around Agilent system (GC 7890 A; MSD 5975C series II) on a 180°C. This practice is popular among consumers since fused silica HP-5MS UI column (30 m × 0.25 mm × deep fried food usually have attractive sensory proper- 0.25 mm) and carrier gas He (1.1 mL/min).Thetemperature ties [15,16]. The legislation concerning the fatty acid was programmed at 40°C for 2 min, 10°C/min to 200°C, and profile of different olive oils is given in percentages, with finally 2°C/min to 250°C for 2 min. Post run of 15 min was set a key emphasis on oleic fatty acid (C18:1)[17]. at 310°C. The temperature of the injection port was 250°C and This study aimed to simulate home-based heat that of the detector was 280°C. Ionization was performed treatment of olive oil and to measure the changes in in the EI mode (70 eV).Identification was performed by the profile of fatty acids due to repeated heating cycles. comparison of retention times and mass spectra with authentic standards (Supelco. Merck KGaA, Darmstadt, Germany), and the results were presented as mg/mL. The results were calculated according to the official method 2 Materials and methods for fatty acid profile determination [18–20]. The successful separation of the evaluated FAMEs, including n-undecane 2.1 Heat treatment of olive oil samples that was used as an internal standard, is shown in Figure 1. The samples (n = 10) used in the experiment consisted of refined olive oils (n = 4) and multivariate extra virgin olive oils (n = 6; olive oil purchased in retail markets in 2.3 Antioxidant profile the Czech Republic, originating from Spain and Greece). Each purchased olive oil had around 18 months for the Chlorophyll, carotenoid, and polyphenol contents were expiration date. The purchased olive oil samples were measured in the samples of olive oil before (control packed in glass bottles (volume: from 0.5 to 1 L). The samples) and after three heating cycles at 180°C and labeling of the olive oil samples indicated that they had 220°C. All the samples were measured in triplicates to peroxide value (PV) and free fatty acid (FFA) content reduce the possibility of error. 608 Dani Dordevic et al. Figure 1: Chromatogram of FAME standards (Supelco). Carotenoid, polyphenol, and chlorophyll contents were WA, USA). Triplicate sampling was used in all data evaluated on a Cecil Instrument spectrophotometer calculations. Statistical significance (p < 0.05) was (CE7210). The wavelength for calculating carotenoids estimated by the analysis of variance. The Shapiro–Wilk was 445 nm. The cuvettes were rinsed with n-hexane to test was used to determine the results’ normality, whereas avoid mixing of samples. The carotenoid contents were Levene’s test was used to estimate the homogeneity of expressed as β-carotene. The quantification was done variances.
Recommended publications
  • Effect of Parity on Fatty Acids of Saudi Camels Milk and Colostrum
    International Journal of Research in Agricultural Sciences Volume 4, Issue 6, ISSN (Online): 2348 – 3997 Effect of Parity on Fatty Acids of Saudi Camels Milk and Colostrum Magdy Abdelsalam1,2*, Mohamed Ali1 and Khalid Al-Sobayil1 1Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University, Al-Qassim 51452, Saudi Arabia. 2Department of Animal Production, Faculty of Agriculture, Alexandria University, El-Shatby, Alexandria 21545, Egypt. Date of publication (dd/mm/yyyy): 29/11/2017 Abstract – Fourteen Saudi she-camels were machine milked locations and different feeding regimes, but there is a scare twice daily and fatty acids of colostrum (1-7 days post partum) on the effect of parity of lactating camels on the fatty acids. and milk (10-150 days post partum) were analyzed. Short Therefore, the objective of this experiment was to study the chain fatty acids were found in small percentage in colostrums changes in the fatty acids profile of colostrums and milk of and milk at different parities without insignificant differences she-camel during the first three parities. and the C4:0 and C6:0 don't appear in the analysis. Colostrums has higher unsaturated fatty acids percentage than that of saturated fatty acids while the opposite was found II. MATERIALS AND METHODS in milk of camels. Myiristic acid (C14:0), palmitic (C16:0), stearic (C18:0) and oleic (C18:1) showed the highest A. Animals and Management percentage in either colostrums or milk of she-camels. Parity The present study was carried out on fourteen Saudi she had significant effect on atherogenicity index (AI) which is camels raised at the experimental Farm, College of considered an important factor associated the healthy quality of camel milk.
    [Show full text]
  • Retention Indices for Frequently Reported Compounds of Plant Essential Oils
    Retention Indices for Frequently Reported Compounds of Plant Essential Oils V. I. Babushok,a) P. J. Linstrom, and I. G. Zenkevichb) National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA (Received 1 August 2011; accepted 27 September 2011; published online 29 November 2011) Gas chromatographic retention indices were evaluated for 505 frequently reported plant essential oil components using a large retention index database. Retention data are presented for three types of commonly used stationary phases: dimethyl silicone (nonpolar), dimethyl sili- cone with 5% phenyl groups (slightly polar), and polyethylene glycol (polar) stationary phases. The evaluations are based on the treatment of multiple measurements with the number of data records ranging from about 5 to 800 per compound. Data analysis was limited to temperature programmed conditions. The data reported include the average and median values of retention index with standard deviations and confidence intervals. VC 2011 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. [doi:10.1063/1.3653552] Key words: essential oils; gas chromatography; Kova´ts indices; linear indices; retention indices; identification; flavor; olfaction. CONTENTS 1. Introduction The practical applications of plant essential oils are very 1. Introduction................................ 1 diverse. They are used for the production of food, drugs, per- fumes, aromatherapy, and many other applications.1–4 The 2. Retention Indices ........................... 2 need for identification of essential oil components ranges 3. Retention Data Presentation and Discussion . 2 from product quality control to basic research. The identifi- 4. Summary.................................. 45 cation of unknown compounds remains a complex problem, in spite of great progress made in analytical techniques over 5.
    [Show full text]
  • WO 2017/074902 Al 4 May 20 17 (04.05.2017) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/074902 Al 4 May 20 17 (04.05.2017) W P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 8/37 (2006.01) A61Q 19/00 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, A61K 31/215 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, PCT/US2016/058591 MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (22) International Filing Date: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 25 October 2016 (25.10.201 6) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (25) Filing Language: English ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 62/247,803 29 October 20 15 (29. 10.20 15) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: GLAXOSMITHKLINE CONSUMER TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, HEALTHCARE HOLDINGS (US) LLC [US/US]; 271 1 DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Centerville Road, Suite 400, Wilmington, DE 19808 (US).
    [Show full text]
  • Improvement of Lipid Production from an Oil-Producing Filamentous Fungus, Penicillium Brevicompactum NRC 829, Through Central Composite Statistical Design
    Ann Microbiol (2017) 67:601–613 DOI 10.1007/s13213-017-1287-x ORIGINAL ARTICLE Improvement of lipid production from an oil-producing filamentous fungus, Penicillium brevicompactum NRC 829, through central composite statistical design Thanaa H. Ali1 & Mamdouh S. El-Gamal2 & Dina H. El-Ghonemy1 & Ghada E. Awad3 & Amir E. Tantawy1 Received: 12 March 2017 /Accepted: 13 July 2017 /Published online: 7 August 2017 # Springer-Verlag GmbH Germany and the University of Milan 2017 Abstract In the present study, 13 filamentous fungi were commercial development for the production of LA by fer- screened for their lipid production and an oleaginous fun- mentation using cheap raw material. gus, Penicillium brevicompactum NRC 829, was found to be the highest lipid producer. Screening of various agro- Keywords Linoleic acid . Penicillium brevicompactum NRC industrial residues was performed and sunflower oil cake 829 . Response surface methodology . Unsaturated fatty acids proved to be the best substrate for lipid production. A central composite design was employed to investigate the optimum concentrations of the most significant medi- Introduction um components required to improve the lipid production by P. brevicompactum. The results clearly revealed that Polyunsaturated fatty acids (PUFAs) are long-chain fatty − the maximal lipid production of 8.014 ± 0.06 gL 1 acids containing two or more double bonds in their acyl (representing 57.6% lipid/dry biomass) was achieved by chains. Biosynthesis of PUFAs involves both methyl- the fungus when grown for 6 days at 30 °C under static directed and carboxyl-directed desaturases. The primary condition in a medium containing sunflower oil cake, product of fatty acid biosynthesis in oilseed crops is the NaNO3 and KCl at final concentrations of 8, 0.75 and 18-carbon monounsaturated oleic acid (C18:1–9).
    [Show full text]
  • Component, Fatty Acid and Mineral Composition of Rice Bran Oil Extracted by Multistage with Hexane and Ethanol
    INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 6, ISSUE 11, NOVEMBER 2017 ISSN 2277-8616 Component, Fatty Acid And Mineral Composition Of Rice Bran Oil Extracted By Multistage With Hexane And Ethanol Fajriyati Mas’ud, Meta Mahendradatta, Amran Laga, Zainal Zainal Abstract: Rice bran oil (RBO) has been extracted from Celebes rice bran by multistage extraction with hexane solvent followed by ethanol to see the component, profile of fatty acids and mineral contained in both of them. As a comparison, RBO directly extracted with ethanol was also presented. Extraction process was performed using reflux method at 55oC, for 5 hours with bran and solvent ratio of 1:7. Analysis of components and fatty acids of RBO was conducted with GC-MS QP 2010 Shimadzu. Oleic, linoleic and palmitic were found dominant in first stage extraction by hexane with concentration of 3716.56, 1630.78 and 1021.89 mg/L, respectively. Palmitic (6.34 mg/L), lauric (4.78 mg/L), and linoleic (3.52 mg/L) were dominant in the second stage extraction by ethanol. Linoleic (28.85 mg/L), stearic (2.88 mg/L) and myristic (2.02 mg/L) were found in extracted directly by ethanol. RBO extracted with hexane had 18.6% of saturated fatty acid and 81.4% of unsaturated fatty acids, with ratio of saturated fatty acids : monounsaturated fatty acids: polyunsaturated fatty acids of approximately 1: 2.3 : 1.3. It contained about 56.7% of monounsaturated, 24.7% of polyunsaturated, and 18.6% of saturated fatty acids. In the present paper, we provide also an analysis of mineral composition of RBO by X-ray Spectrometer and melting point of RBO by Differential Scanning Calorimeter (DSC) instrument.
    [Show full text]
  • Biochemistry Prologue to Lipids
    Paper : 05 Metabolism of Lipids Module: 01 Prologue to Lipids Principal Investigator Dr. Sunil Kumar Khare, Professor, Department of Chemistry, IIT-Delhi Paper Coordinator and Dr. Suaib Luqman, Scientist (CSIR-CIMAP) Content Writer & Assistant Professor (AcSIR) CSIRDr. Vijaya-CIMAP, Khader Lucknow Dr. MC Varadaraj Content Reviewer Prof. Prashant Mishra, Professor, Department of Biochemical Engineering and Biotechnology, IIT-Delhi 1 METABOLISM OF LIPIDS Biochemistry Prologue to Lipids DESCRIPTION OF MODULE Subject Name Biochemistry Paper Name 05 Metabolism of Lipids Module Name/Title 01 Prologue to Lipids 2 METABOLISM OF LIPIDS Biochemistry Prologue to Lipids 1. Objectives To understand what is lipid Why they are important How they occur in nature 2. Concept Map LIPIDS Fatty Acids Glycerol 3. Description 3.1 Prologue to Lipids In 1943, the term lipid was first used by BLOOR, a German biochemist. Lipids are heterogeneous group of compounds present in plants and animal tissues related either actually or potentially to the fatty acids. They are amphipathic molecules, hydrophobic in nature originated utterly or in part by thioesters (carbanion-based condensations of fatty acids and/or polyketides etc) or by isoprene units (carbocation-based condensations of prenols, sterols, etc). Lipids have the universal property of being: i. Quite insoluble in water (polar solvent) ii. Soluble in benzene, chloroform, ether (non-polar solvent) 3 METABOLISM OF LIPIDS Biochemistry Prologue to Lipids Thus, lipids include oils, fats, waxes, steroids, vitamins (A, D, E and K) and related compounds, such as phospholipids, triglycerides, diglycerides, monoglycerides and others, which are allied more by their physical properties than by their chemical assests.
    [Show full text]
  • Graham Centre Monograph No. 4
    Long-chain omega-3 polyunsaturated fatty acids in ruminant nutrition: benefits to animals and humans Edward H. Clayton Livestock Research Officer – Ruminant Nutrition NSW Department of Primary Industries, Wagga Wagga Agricultural Institute Pine Gully Rd, Wagga Wagga NSW 2650 Graham Centre Monograph No. 4 Edited by: Toni Nugent and Catriona Nicholls August 2014 © State of New South Wales through Department of Trade and Investment, Regional Infrastructure and Services 2014 This publication is copyright. You may download, display, print and reproduce this material in an unaltered form only (retaining this notice) for your personal use or for non-commercial use within your organisation. To copy, adapt, publish, distribute or commercialise any of this publication you will need to seek permission from the NSW Department of Primary Industries. Disclaimer: The information contained in this publication is based on knowledge and understanding at the time of writing (August 2014). However, because of advances in knowledge, users are reminded of the need to ensure that information upon which they rely is up to date and to check currency of the information with the appropriate officer of the NSW Department of Primary Industries or the user’s independent advisor. All sources of information in the current publication are acknowledged in the text. No further reproduction should be made without first obtaining prior written approval of the copyright owner. For updates to this publication, check www.grahamcentre.net/ Published by the NSW Department of Primary Industries. First published August 2014 ISBN 978 1 74256 678 8 Cover design by: Sharon Kiss Cover photo by: Toni Nugent, Graham Centre for Agricultural Innovation Author’s Contact: Dr Edward Clayton, Livestock Research Officer, NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Pine Gully Rd, Wagga Wagga NSW 2650 Email: [email protected] Citation: Clayton EH (2014).
    [Show full text]
  • Obese Mice with Dyslipidemia Exhibit Meibomian Gland Hypertrophy and Alterations in Meibum Composition and Aqueous Tear Production
    International Journal of Molecular Sciences Article Obese Mice with Dyslipidemia Exhibit Meibomian Gland Hypertrophy and Alterations in Meibum Composition and Aqueous Tear Production Eugene A. Osae 1,* , Tiffany Bullock 2, Madhavi Chintapalati 2, Susanne Brodesser 3 , Samuel Hanlon 1, Rachel Redfern 1, Philipp Steven 4 , C. Wayne Smith 2, Rolando E. Rumbaut 2,5 and Alan R. Burns 1 1 College of Optometry, University of Houston, Houston, TX 77204, USA; [email protected] (S.H.); [email protected] (R.R.); [email protected] (A.R.B.) 2 Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA; [email protected] (T.B.); [email protected] (M.C.); [email protected] (C.W.S.); [email protected] (R.E.R.) 3 CECAD Research Center, Lipidomics/Metabolomics Facility, University of Cologne, 50931 Cologne, Germany; [email protected] 4 Department of Ophthalmology, Division for Dry-Eye and Ocular GvHD, Medical Faculty, University of Cologne, 50937 Cologne, Germany; [email protected] 5 Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030, USA * Correspondence: [email protected]; Tel.: +1-346-317-6273 Received: 14 October 2020; Accepted: 16 November 2020; Published: 20 November 2020 Abstract: Background: Dyslipidemia may be linked to meibomian gland dysfunction (MGD) and altered meibum lipid composition. The purpose was to determine if plasma and meibum cholesteryl esters (CE), triglycerides (TG), ceramides (Cer) and sphingomyelins (SM) change in a mouse model of diet-induced obesity where mice develop dyslipidemia. Methods: Male C57/BL6 mice (8/group, age = 6 wks) were fed a normal (ND; 15% kcal fat) or an obesogenic high-fat diet (HFD; 42% kcal fat) for 10 wks.
    [Show full text]
  • Presentación De Powerpoint
    Suspect and Non-Target Analysis of polar organic compounds in biota using LC-HRMS Pablo Gago-Ferrero Contact: [email protected] Introduction Emerging Pollutants (EPs) Pharmaceuticals Personal care products Flame retardants Food additives Disinfection by-products Pesticides + Metabolites & Transformation Products (TPs) aquatic environment & Biota 2 Introduction Challenges in the analysis of organic contaminants in biota Sample preparation (lipid content, trace level, sample size) Thousands of organic contaminants with very different physicochemical properties Investigation of new (unknown) contaminants potentially dangerous for the ecosystems (and human health) Metabolites 3 Target screening Target screening • Known EP Well-established analytical (quantitative) • Reference standards methods for many priority contaminants available Good limits of detection • Unequivocal identification High accuracy Reliable quantification 4 Why Suspect / non-target? Target screening is biased due to preselection of substances Most organic constitutes of environmental samples are not identified! Potential chemical stressors may be omitted Most of the labs analyse the same substances Reference standards are necessary for all compounds 5 Suspect & non-target: Where to put our efforts? Thousands of chromatographic peaks in one sample Impossible & Pointless to identify all of them Smart use Suspect & Non target strategies Define Research question &Prioritization Suspect screening Classical micropollutants for which their presence in biota has
    [Show full text]
  • Physicochemical Properties and Fatty Acids Composition of Sudanese Moringa Oleifera Seed Oil
    Idris AA et al. JOTCSA. 2020; 7(3): 911-920. RESEARCH ARTICLE Physicochemical Properties and Fatty Acids Composition of Sudanese Moringa oleifera Seed Oil Abeer A. Idris1 , Azhari H. Nour1* , Omer A. Omer Ishag1 , Mahmoud M. Ali1 , Ibrahim Y. Erwa1 , Abdurahman H. Nour2 1 International University of Africa (IUA), Department of Applied and Industrial Chemistry, Faculty of Pure and Applied Sciences, 12223, Khartoum, Sudan. 2 Universiti Malaysia Pahang (UMP), Faculty of Chemical and Process Engineering Technology, College of Engineering Technology,26300, Gambang, Malaysia. Abstract: Moringa oleifera is a robust and fast-growing tree considered as one of the most beneficial trees worldwide since almost all parts of it are used as food, medicine, and for industrial purposes. This study aimed to investigate the physicochemical properties and fatty acid composition of M. oleifera seed oil. The oil was extracted by Soxhlet using n-hexane; the physicochemical properties of the seed oil were assessed by standard and established methods, as well, the fatty acid composition of the seed oil was determined by GC-MS. The golden yellow oil with characteristic odor obtained from the seeds had the following physicochemical properties: yield, 42.87%; freezing point, 0 °C; melting point, 21 °C; boiling point, 225 °C; refractive index (25 °C), 1.447; iodine value, 96.6 g/100g of oil; peroxide value, 7.6 meq.O2/kg of oil; free fatty acids, 0.07%; acid value, 1.4 mg of KOH/g of oil; saponification value, 185.2 mg KOH/g of oil; unsaponifiable matter, 3.2; moisture and volatile value, 4.91 (wt.%); density, 0.900 g/cm3; viscosity, 60.99 mm2/s; specific gravity, 0.907.
    [Show full text]
  • BBA Clinical 7 (2017) 105–114
    BBA Clinical 7 (2017) 105–114 Contents lists available at ScienceDirect BBA Clinical journal homepage: www.elsevier.com/locate/bbaclin The plasma lipidome in acute myeloid leukemia at diagnosis in relation to clinical disease features Thomas Pabst a, Linda Kortz b, Georg M. Fiedler c, Uta Ceglarek b,JeffreyR.Idled, Diren Beyoğlu d,⁎ a Department of Medical Oncology, Inselspital Bern, Switzerland b Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Germany c Institute of Clinical Chemistry, Inselspital Bern, Switzerland d Hepatology Research Group, Department of Clinical Research, University of Bern, Switzerland article info abstract Article history: Background: Early studies established that certain lipids were lower in acute myeloid leukemia (AML) cells than Received 13 January 2017 normal leukocytes. Because lipids are now known to play an important role in cell signaling and regulation of ho- Received in revised form 4 March 2017 meostasis, and are often perturbed in malignancies, we undertook a comprehensive lipidomic survey of plasma Accepted 4 March 2017 from AML patients at time of diagnosis and also healthy blood donors. Available online 08 March 2017 Methods: Plasma lipid profiles were measured using three mass spectrometry platforms in 20 AML patients and 20 healthy blood donors. Data were collected on total cholesterol and fatty acids, fatty acid amides, glycerolipids, Keywords: phospholipids, sphingolipids, cholesterol esters, coenzyme Q10 and eicosanoids. Acute myeloid leukemia Lipidomics Results: We observed a depletion of plasma total fatty acids and cholesterol, but an increase in certain free fatty Fatty acids acids with the observed decline in sphingolipids, phosphocholines, triglycerides and cholesterol esters probably Eicosanoids driven by enhanced fatty acid oxidation in AML cells.
    [Show full text]
  • Fatty Acids, Trivial and Systematic Names
    FATTY ACIDS, TRIVIAL AND SYSTEMATIC NAMES Trivial Name Systematic Name Abbreviation Formic Acid Methanoic Acid Acetic Acid Ethanoic Acid Propionic Acid Propanoic Acid Butyric Acid Butanoic Acid 4:0 Valerianic Acid Pentanoic Acid 5:0 Caproic Acid Hexanoic Acid 6:0 Enanthic Acid Heptanoic Acid 7:0 Caprylic Acid Octanoic Acid 8:0 Pelargonic Acid Nonanoic Acid 9:0 Capric Acid Decanoic Acid 10:0 Obtusilic Acid 4-Decenoic Acid 10:1(n-6) Caproleic Acid 9-Decenoic Acid 10:1(n-1) Undecylic Acid Undecanoic Acid 11:0 Lauric Acid Dodecanoic Acid 12:0 Linderic Acid 4-Dodecenoic Acid 12:1(n-8) Denticetic Acid 5-Dodecenoic Acid 12:1(n-7) Lauroleic Acid 9-Dodecenoic Acid 12:1(n-3) Tridecylic Acid Tridecanoic Acid 13:0 Myristic Acid Tetradecanoic Acid 14:0 Tsuzuic Acid 4-Tetradecenoic Acid 14:1(n-10) Physeteric Acid 5-Tetradecenoic Acid 14:1(n-9) Myristoleic Acid 9-Tetradecenoic Acid 14:1(n-5) Pentadecylic Acid Pentadecanoic Acid 15:0 Palmitic Acid Hexadecanoic Acid 16:0 Gaidic acid 2-Hexadecenoic Acid 16:1(n-14) Sapienic Acid 6-Hexadecenoic Acid 16:1(n-10) Hypogeic Acid trans-7-Hexadecenoic Acid t16:1(n-9) cis-Hypogeic Acid 7-Hexadecenoic Acid 16:1(n-9) Palmitoleic Acid 9-Hexadecenoic Acid 16:1(n-7) Palmitelaidic Acid trans-9-Hexadecenoic Acid t16:1(n-7) Palmitvaccenic Acid 11-Hexadecenoic Acid 16:1(n-5) Margaric Acid Heptadecanoic Acid 17:0 Civetic Acid 8-Heptadecenoic Acid 17:1 Stearic Acid Octadecanoic Acid 18:0 Petroselinic Acid 6-Octadecenoic Acid 18:1(n-12) Oleic Acid 9-Octadecenoic Acid 18:1(n-9) Elaidic Acid trans-9-Octadecenoic acid t18:1(n-9)
    [Show full text]