(12) United States Patent (10) Patent No.: US 9,655,847 B1 Halwani Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 9,655,847 B1 Halwani Et Al US0096.55847B1 (12) United States Patent (10) Patent No.: US 9,655,847 B1 Halwani et al. (45) Date of Patent: May 23, 2017 (54) THERAPEUTIC LIPOSOME AND METHOD (56) References Cited OF TREATING ASUBJECT HAVING CANCER U.S. PATENT DOCUMENTS 5,731,346 A * 3/1998 Egberg................... A61K 31, 20 (71) Applicants:National Guard Health Affairs, 514,458 Riyadh (SA); King Saud bin 2002/0146448 A1* 10, 2002 KOZbor .................. A61K 9,127 Abdulaziz University for Health 424/450 2007/0116753 A1* 5/2007 Hong ................... A61K9/0019 Sciences, Riyadh (SA); King Abdullah 424/450 International Medical Research 2011/0274746 A1* 11/2011 Schmidt ................. A61K 9,127 Center, Riyadh (SA) 424/450 2012/0076795 A1 3/2012 Debs (72) Inventors: Majed Abdulaziz Saleh Halwani, 2012/0288558 A1* 11/2012 Gabizon .............. A61K 31,337 Riyadh (SA); Moayad Abdulaziz 424/450 Alhariri, Riyadh (SA) (Continued) (73) Assignees: National Guard Health Affairs, FOREIGN PATENT DOCUMENTS Riyadh (SA); King Saud bin EP O 198765 A2 10, 1986 Abdulaziz University for Health EP O 198765 A3 10, 1986 Sciences, Riyadh (SA); King Abdullah WO WO 2011 (143271 A2 11/2011 International Medical Research Center, Riyadh (SA) OTHER PUBLICATIONS (*) Notice: Subject to any disclaimer, the term of this PG Rose. “Pegylated Liposomal Doxorubicin: Optimizing the Dos patent is extended or adjusted under 35 ing Schedule in Ovarian Cancer.” The Oncologist, vol. 10, 2005, pp. U.S.C. 154(b) by 0 days. 205-214. (Continued) (21) Appl. No.: 15/212,389 Primary Examiner — Isaac Shomer (22) Filed: Jul. 18, 2016 (74) Attorney, Agent, or Firm — Oblon, McClelland, Maier & Neustadt, L.L.P. (51) Int. C. (57) ABSTRACT A 6LX 9/27 (2006.01) A6 IK3I/704 (2006.01) A therapeutic liposome including a bilayer comprising at (52) U.S. C. least one poly-unsaturated fatty acid (omega-3 fatty acid, CPC ............ A61K 9/127 (2013.01); A61 K3I/704 omega-6 fatty acid, and omega-9 fatty acid), a beta-glucan, (2013.01); Y10S 977/906 (2013.01); Y10S a cholesterol, and a doxorubicin. The liposome has a diam 977/907 (2013.01) eter of 100 nm to 1.5um. The beta-glucan and the doxoru (58) Field of Classification Search bicin are encapsulated in the liposome and the cholesterol is None integral to the bilayer of the liposome. See application file for complete search history. 13 Claims, 5 Drawing Sheets sa 838 -3. 8. 3 38: 3:3: 8: ex:ix: S. 8:3&sts: sr. ... : US 9,655,847 B1 Page 2 (56) References Cited U.S. PATENT DOCUMENTS 2013/0022663 A1 1/2013 Buckman OTHER PUBLICATIONS Janssen Inc. “Product Monograph CaelyX(R).” Janssen Inc., Revised Oct. 10, 2013, pp. 1-55.* DAkramiene, A Kondrotas, J Didziapetriene, E Kevelaitis. “Effects of b-glucans on the immune system.' Medicina (Kaunas), vol. 43(8), 2007, pp. 597-606.* Majed Halwani, et al., "Liposomal f-Glucan: Preparation, Charac terization and Anticancer Activities'. Journal of Nanomedicine & Nanotechnology, vol. 6, Issue 5. Oct. 2015. 7 pages. Godfrey Chi-Fung Chan., et al., “The effects of B-glucan on human immune and cancer cells'. Journal of Hematology & Oncology 2:25, pp. 1-11, (2009). * cited by examiner U.S. Patent May 23, 2017 Sheet 1 of 5 US 9,655,847 B1 U.S. Patent May 23, 2017 Sheet 2 of 5 US 9,655,847 B1 YYYYYYYYYYYYYY 2: YYYYY 2222222, s s Y2Ya. * . SS 8 & s & 3.: s & i. : & U.S. Patent May 23, 2017 Sheet 3 of 5 US 9,655,847 B1 Z Z s YY ce g E. -t s: (%) ill||Ely & s U.S. Patent May 23, 2017 Sheet 4 of 5 US 9,655,847 B1 c o e x ve 8. r g o &&. g: * s: W E. s (%) Alcel," a U.S. Patent May 23, 2017 Sheet S of 5 US 9,655,847 B1 -------------------------------------------------------------- s 8 f: s s x x %) kalice Alao US 9,655,847 B1 1. 2 THERAPEUTIC LIPOSOME AND METHOD Such, glucans have shown beneficial effects in the treatment OF TREATING ASUBJECT HAVING of infectious and autoimmune diseases, and in clinical CANCER management of cancer. Glucans target various cell types in the immune system, BACKGROUND OF THE INVENTION and more particularly macrophages. Previous research has shown that glucans display protective properties against Technical Field experimentally induced infections in mammalian model The present invention relates to a liposome for treating systems. Specifically, glucans exert their function on mac cancer by including doxorubicin, a polyunsaturated fatty rophages, monocytes, lymphocytes, and other immune cells 10 in the mammalian system that plays a significant role in acid, and beta glucan in combination. elicitation of the immune response. Description of the Related Art For example, administration of glucans has been shown to The “background description provided herein is for the significantly enhance the immune system in animals to a purpose of generally presenting the context of the disclo wide variety of experimentally induced bacterial, viral, sure. Work of the presently named inventors, to the extent it 15 fungal and parasitic infections. Glucans also show strong is described in this background section, as well as aspects of anti-tumor activity. Glucan carries out its biological function the description which may not otherwise qualify as prior art by binding to specific receptor molecules located on the at the time of filing, are neither expressly or impliedly Surface of macrophages. In in vitro studies, exposure of admitted as prior art against the present invention. these cells to beta-glucans stimulates the immune system. Doxorubicin (DOX) has been found to have a broad One representative glucan with Such immune-enhancing spectrum of application in cancer, which includes numerous characteristics is branched beta (1,3)-glucan. Solid tumors such as breast cancer, sarcomas and bladder Beta-glucans are naturally occurring polymers of Saccha cancers. See Weinstein D M, Mihm MJ, Bauer J.A. “Cardiac rides (polysaccharides) and are constituents of the cell wall peroxynitrite formation and left ventricular dysfunction fol of certain pathogenic bacteria, algae, fungi, and cereals (e.g. lowing doxorubicin treatment in mice. J Pharmacol Exp 25 oats, barley, rye, wheat). The healing and immunostimulat Ther 2000; 294: 396–401, incorporated herein by reference ing properties of mushrooms have been known for thou in its entirety. Despite its common use, the clinical utility of sands of years in the Eastern countries. These mushrooms DOX is compromised by dose-limiting cardiotoxicity due to contain biologically active polysaccharides that mostly its effects on mitochondria. The heart contains a large belong to group of beta-glucans. Beta-glucans can increase 30 host immune defense by enhancing macrophages and natural amount of energy producing mitochondria to function as a killer cell function. The induction of cellular responses by pump which requires a great amount of energy that circu beta-glucans is likely to involve their specific interaction lates blood throughout the body. See Angsutararux P. Luan with several cell Surface receptors, such as complement pitpong S. Issaragrisil S. "Chemotherapy-Induced Cardio receptor 3 (CR3: CD11b/CD18), lactosylceramide, selected toxicity: Overview of the Roles of Oxidative Stress.” Oxid 35 Scavenger receptors, and dectin-1 (betaGR). As an immu Med Cell Longev 2015; 2015: 795602, incorporated herein nostimulating agent, which acts through the activation of by reference in its entirety. A mitochondrion is the site of macrophages and NK cell cytotoxicity, beta-glucan can most reactive oxygen species (ROS) which are produced as inhibit tumor growth in promotion stage also. The interac a result of electrons escaping from electron transport chain tion between glucan and its receptor produce further stimu and captured by oxygen, rendering it as a main source of 40 latory effects such as enhanced phagocytosis, increased cell superoxide production. See Andreyev AY, Kushnareva Y E. size, enhanced cell proliferation, enhanced adherence and Murphy A N et al. “Mitochondrial ROS Metabolism: 10 chemotactic activity and production of a wide range of Years Later.” Biochemistry (Most) 2015; 80: 517-31, incor cytokines and leukotrienes. porated herein by reference in its entirety. However, DOX Cytokines are critical to a myriad of fundamental homeo can drive these ROS production to much higher levels. See 45 static and pathophysiological processes such as fever, Varin R, Mulder P. Richard V et al. “Exercise improves wound healing, inflammation, tissue repair and fibrosis. flow-mediated vasodilatation of skeletal muscle arteries in They play important roles in regulating cell function Such as rats with chronic heart failure. Role of nitric oxide, pros proliferation, migration, and matrix synthesis. It is the tanoids, and oxidant stress.” Circulation 1999; 99: 2951-7. balance or the net effect of the complex interplay between Recent research Suggests that nitric oxide (NO) may play 50 these mediators, which appears to play a major role in diverse roles in cardiac function and disease. High level of regulating the initiation, progression and resolution of NO production is associated with multiple forms of cardiac wounds. Wound healing involves a complex process includ disease, including dilated cardiomyopathy and congestive ing induction of acute inflammation by the initial injury, heart failure. See Fadillioglu E, Yilmaz HR, Erdogan Het followed by parenchymal and mesenchymal cell prolifera al. The activities of tissue Xanthine oxidase and adenosine 55 tion, migration, and activation with production and deposi deaminase and the levels of hydroxyproline and nitric oxide tion of extracellular matrix. in rat hearts subjected to doxorubicin: protective effect of A study reported that B-glucan has immunomodulation erdosteine. Toxicology 2003; 191: 153-8, incorporated effect on innate and adaptive immunity. See Thompson I J. herein by reference in its entirety. A mechanism to reduce Oyston PC, Williamson D. E. "Potential of the beta-glucans cardiotoxicity from DOX is of interest to the medical 60 to enhance innate resistance to biological agents.” Expert community.
Recommended publications
  • Effect of Parity on Fatty Acids of Saudi Camels Milk and Colostrum
    International Journal of Research in Agricultural Sciences Volume 4, Issue 6, ISSN (Online): 2348 – 3997 Effect of Parity on Fatty Acids of Saudi Camels Milk and Colostrum Magdy Abdelsalam1,2*, Mohamed Ali1 and Khalid Al-Sobayil1 1Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University, Al-Qassim 51452, Saudi Arabia. 2Department of Animal Production, Faculty of Agriculture, Alexandria University, El-Shatby, Alexandria 21545, Egypt. Date of publication (dd/mm/yyyy): 29/11/2017 Abstract – Fourteen Saudi she-camels were machine milked locations and different feeding regimes, but there is a scare twice daily and fatty acids of colostrum (1-7 days post partum) on the effect of parity of lactating camels on the fatty acids. and milk (10-150 days post partum) were analyzed. Short Therefore, the objective of this experiment was to study the chain fatty acids were found in small percentage in colostrums changes in the fatty acids profile of colostrums and milk of and milk at different parities without insignificant differences she-camel during the first three parities. and the C4:0 and C6:0 don't appear in the analysis. Colostrums has higher unsaturated fatty acids percentage than that of saturated fatty acids while the opposite was found II. MATERIALS AND METHODS in milk of camels. Myiristic acid (C14:0), palmitic (C16:0), stearic (C18:0) and oleic (C18:1) showed the highest A. Animals and Management percentage in either colostrums or milk of she-camels. Parity The present study was carried out on fourteen Saudi she had significant effect on atherogenicity index (AI) which is camels raised at the experimental Farm, College of considered an important factor associated the healthy quality of camel milk.
    [Show full text]
  • Retention Indices for Frequently Reported Compounds of Plant Essential Oils
    Retention Indices for Frequently Reported Compounds of Plant Essential Oils V. I. Babushok,a) P. J. Linstrom, and I. G. Zenkevichb) National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA (Received 1 August 2011; accepted 27 September 2011; published online 29 November 2011) Gas chromatographic retention indices were evaluated for 505 frequently reported plant essential oil components using a large retention index database. Retention data are presented for three types of commonly used stationary phases: dimethyl silicone (nonpolar), dimethyl sili- cone with 5% phenyl groups (slightly polar), and polyethylene glycol (polar) stationary phases. The evaluations are based on the treatment of multiple measurements with the number of data records ranging from about 5 to 800 per compound. Data analysis was limited to temperature programmed conditions. The data reported include the average and median values of retention index with standard deviations and confidence intervals. VC 2011 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. [doi:10.1063/1.3653552] Key words: essential oils; gas chromatography; Kova´ts indices; linear indices; retention indices; identification; flavor; olfaction. CONTENTS 1. Introduction The practical applications of plant essential oils are very 1. Introduction................................ 1 diverse. They are used for the production of food, drugs, per- fumes, aromatherapy, and many other applications.1–4 The 2. Retention Indices ........................... 2 need for identification of essential oil components ranges 3. Retention Data Presentation and Discussion . 2 from product quality control to basic research. The identifi- 4. Summary.................................. 45 cation of unknown compounds remains a complex problem, in spite of great progress made in analytical techniques over 5.
    [Show full text]
  • Meta Gene 2 (2014) 746–760
    Meta Gene 2 (2014) 746–760 Contents lists available at ScienceDirect Meta Gene Characterization of the bovine gene LIPE and possible influence on fatty acid composition of meat Daniel Estanislao Goszczynski a,c, Juliana Papaleo Mazzucco b, María Verónica Ripoli a, Edgardo Leopoldo Villarreal b, Andrés Rogberg-Muñoz a, Carlos Alberto Mezzadra b, Lilia Magdalena Melucci b,⁎, Guillermo Giovambattista a,⁎⁎ a IGEVET, CCT LA PLATA CONICET, FCV, UNLP, La Plata B1900AVW, CC 296, Argentina b Unidad Integrada INTA Balcarce — FCA, UNMdP, Argentina c Fellow of the Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina article info abstract Article history: LIPE is an intracellular neutral lipase, which is capable of hydrolyzing a va- Received 10 June 2014 riety of esters and plays a key role in the mobilization of fatty acids from Revised 26 August 2014 diacylglycerols. The objectives of this study were to characterize the Accepted 3 September 2014 genetic polymorphism of bovine LIPE gene and to evaluate the possible Available online 16 October 2014 association between three SNPs in the coding regions of this gene with the fatty acid composition of meat in a cattle population. Forty-three unre- Keywords: lated animals from different cattle breeds were re-sequenced and 21 SNPs LIPE fi Polymorphism were detected over approximately 2600 bp, ve of these SNPs were novel. Bovine Three SNPs were selected, on the basis of evolutionary conservation, to Lipid content perform validation and association studies in a crossbred cattle popula- tion. Our results may suggest a possible association of SNP1 with contents of oleic acid and total monounsaturated fatty acids (p b 0.01), and SNP2 and SNP3 with Heneicosylic acid content (p b 0.01), may be helpful to improve the quality of meat and improve health.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,375.433 B2 Dilly Et Al
    US009375433B2 (12) United States Patent (10) Patent No.: US 9,375.433 B2 Dilly et al. (45) Date of Patent: *Jun. 28, 2016 (54) MODULATORS OF ANDROGENSYNTHESIS (52) U.S. Cl. CPC ............. A6 IK3I/519 (2013.01); A61 K3I/201 (71) Applicant: Tangent Reprofiling Limited, London (2013.01); A61 K3I/202 (2013.01); A61 K (GB) 31/454 (2013.01); A61K 45/06 (2013.01) (72) Inventors: Suzanne Dilly, Oxfordshire (GB); (58) Field of Classification Search Gregory Stoloff, London (GB); Paul USPC .................................. 514/258,378,379, 560 Taylor, London (GB) See application file for complete search history. (73) Assignee: Tangent Reprofiling Limited, London (56) References Cited (GB) U.S. PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this 5,364,866 A * 1 1/1994 Strupczewski.......... CO7C 45/45 patent is extended or adjusted under 35 514,254.04 U.S.C. 154(b) by 0 days. 5,494.908 A * 2/1996 O’Malley ............. CO7D 261/20 514,228.2 This patent is Subject to a terminal dis 5,776,963 A * 7/1998 Strupczewski.......... CO7C 45/45 claimer. 514,217 6,977.271 B1* 12/2005 Ip ........................... A61K 31, 20 (21) Appl. No.: 14/708,052 514,560 OTHER PUBLICATIONS (22) Filed: May 8, 2015 Calabresi and Chabner (Goodman & Gilman's The Pharmacological (65) Prior Publication Data Basis of Therapeutics, 10th ed., 2001).* US 2015/O238491 A1 Aug. 27, 2015 (Cecil's Textbook of Medicine pp. 1060-1074 published 2000).* Stedman's Medical Dictionary (21st Edition, Published 2000).* Okamoto et al (Journal of Pain and Symptom Management vol.
    [Show full text]
  • WO 2017/074902 Al 4 May 20 17 (04.05.2017) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/074902 Al 4 May 20 17 (04.05.2017) W P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 8/37 (2006.01) A61Q 19/00 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, A61K 31/215 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, PCT/US2016/058591 MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (22) International Filing Date: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 25 October 2016 (25.10.201 6) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (25) Filing Language: English ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 62/247,803 29 October 20 15 (29. 10.20 15) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: GLAXOSMITHKLINE CONSUMER TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, HEALTHCARE HOLDINGS (US) LLC [US/US]; 271 1 DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Centerville Road, Suite 400, Wilmington, DE 19808 (US).
    [Show full text]
  • Modeling the Effect of Heat Treatment on Fatty Acid Composition in Home-Made Olive Oil Preparations
    Open Life Sciences 2020; 15: 606–618 Research Article Dani Dordevic, Ivan Kushkevych*, Simona Jancikova, Sanja Cavar Zeljkovic, Michal Zdarsky, Lucia Hodulova Modeling the effect of heat treatment on fatty acid composition in home-made olive oil preparations https://doi.org/10.1515/biol-2020-0064 refined olive oil in PUFAs, though a heating temperature received May 09, 2020; accepted May 25, 2020 of 220°C resulted in similar decrease in MUFAs and fi Abstract: The aim of this study was to simulate olive oil PUFAs, in both extra virgin and re ned olive oil samples. ff fi use and to monitor changes in the profile of fatty acids in The study showed di erences in fatty acid pro les that home-made preparations using olive oil, which involve can occur during the culinary heating of olive oil. repeated heat treatment cycles. The material used in the Furthermore, the study indicated that culinary heating experiment consisted of extra virgin and refined olive oil of extra virgin olive oil produced results similar to those fi samples. Fatty acid profiles of olive oil samples were of the re ned olive oil heating at a lower temperature monitored after each heating cycle (10 min). The out- below 180°C. comes showed that cycles of heat treatment cause Keywords: virgin olive oil, refined olive oil, saturated significant (p < 0.05) differences in the fatty acid profile fatty acids, monounsaturated fatty acids, polyunsatu- of olive oil. A similar trend of differences (p < 0.05) was rated fatty acids, cross-correlation analysis found between fatty acid profiles in extra virgin and refined olive oils.
    [Show full text]
  • Essential Oils and Oil from Seeds of Syagrus Coronata
    Vol. 10(23), pp. 310-317, 17 June, 2016 DOI: 10.5897/JMPR2016.6098 Article Number: 89CD55858997 ISSN 1996-0875 Journal of Medicinal Plants Research Copyright © 2016 Author(s) retain the copyright of this article http://www.academicjournals.org/JMPR Full Length Research Paper Syagrus coronata seed oils have antimicrobial action against multidrug-resistant Staphylococcus aureus Cibele Maria Alves da Silva Bessa1, Rodrigo Santana do Nascimento1, Renata Carla Corrêa Alves1*, José Matias Anselmo2, Ana Paula Sant'Anna da Silva1, Alexandre Gomes da Silva1, Vera Lúcia de Menezes Lima1, Josean Fechine Tavares3, Luís Cláudio Nascimento da Silva1,2, Márcia Vanusa da Silva1 and Maria Tereza dos Santos Correia1 1Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Av. Professor Moraes Rego, Cidade Universitária, 1235, 50670-901, Recife, Pernambuco, Brazil. 2Faculdade Pernambucana de Saúde, Av. Jean Emile Favre, 420, Imbiribeira, 51200-060, Recife, Pernambuco, Brazil. 3Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, Campus I, Castelo Branco, 58051-970, Joao Pessoa, Paraíba, Brazil. Received 15 March, 2016; Accepted 20 May, 2016 Syagrus coronata (Mart.) Becc. (Arecaceae) is a native Brazilian palm (ouricuri) and despite the use of its derived products by traditional communities, few scientific reports have been published regarding its biomedical activity. This study investigates the chemical composition and anti-Staphylococcus aureus effects of both manufactured oil (SCO) and essential oil (SCEO) from S. coronata seeds. SCO was provided by rural inhabitants, while SCEO was obtained by hydrodistillation. Chemical characterization was performed by gas chromatography-mass spectrometry (GC/MS). In vitro antimicrobial activity was determined against 17 S. aureus strains, including multidrug-resistant strains.
    [Show full text]
  • Improvement of Lipid Production from an Oil-Producing Filamentous Fungus, Penicillium Brevicompactum NRC 829, Through Central Composite Statistical Design
    Ann Microbiol (2017) 67:601–613 DOI 10.1007/s13213-017-1287-x ORIGINAL ARTICLE Improvement of lipid production from an oil-producing filamentous fungus, Penicillium brevicompactum NRC 829, through central composite statistical design Thanaa H. Ali1 & Mamdouh S. El-Gamal2 & Dina H. El-Ghonemy1 & Ghada E. Awad3 & Amir E. Tantawy1 Received: 12 March 2017 /Accepted: 13 July 2017 /Published online: 7 August 2017 # Springer-Verlag GmbH Germany and the University of Milan 2017 Abstract In the present study, 13 filamentous fungi were commercial development for the production of LA by fer- screened for their lipid production and an oleaginous fun- mentation using cheap raw material. gus, Penicillium brevicompactum NRC 829, was found to be the highest lipid producer. Screening of various agro- Keywords Linoleic acid . Penicillium brevicompactum NRC industrial residues was performed and sunflower oil cake 829 . Response surface methodology . Unsaturated fatty acids proved to be the best substrate for lipid production. A central composite design was employed to investigate the optimum concentrations of the most significant medi- Introduction um components required to improve the lipid production by P. brevicompactum. The results clearly revealed that Polyunsaturated fatty acids (PUFAs) are long-chain fatty − the maximal lipid production of 8.014 ± 0.06 gL 1 acids containing two or more double bonds in their acyl (representing 57.6% lipid/dry biomass) was achieved by chains. Biosynthesis of PUFAs involves both methyl- the fungus when grown for 6 days at 30 °C under static directed and carboxyl-directed desaturases. The primary condition in a medium containing sunflower oil cake, product of fatty acid biosynthesis in oilseed crops is the NaNO3 and KCl at final concentrations of 8, 0.75 and 18-carbon monounsaturated oleic acid (C18:1–9).
    [Show full text]
  • National Food Safety Standard Determination of Fatty Acids in Foods
    National Standard of the People’s Republic of China GB 5413.27 – 2010 National food safety standard Determination of fatty acids in foods for infants and young children, milk and milk products Issued on: 2010-03-26 Implemented on: 2010-06-01 Issued by the Ministry of Health of People’s Republic of China GB 5413.27–2010 Preface This standard replaces GB/T 21676 - 2008 Determination of Fatty Acids in Formula Foods and Milk Powder for Infants and Young Children, GB/T 5413.27 – 1997 Determination of DHA and EPA in Formula Foods and Milk Powder for Infants and Young Children and GB/T 5413.4 - 1997 Determination of Linoleic Acid in Formula Foods and Milk Powder for Infants and Young Children. Comparing with the original standards, the following main changes have been made to the Standard: the first method is Acetyl Chloride - Methanol Esterification; Integrate GB/T 21676 - 2008, GB/T 5413.27 – 1997 and GB/T 5413.4 – 1997 to the second method of this standard, Ammonia Water - Ethanol Extraction Method. Appendix A of this standard is informative. The versions replaced by this standard are: - GB/T 5413.4 – 1997, GB/T 5413.27 - 1997; - GB/T 21676 - 2008. 1 GB 5413.27–2010 National food safety standard Determination of fatty acids in foods for infants and young children, milk and milk products 1 Scope This standard provides the determination of fatty acids in infant foods and dairy. This standard applies to determination of fatty acids in infant foods and dairy; the second method doesn’t apply to determination of embedded fatty acid.
    [Show full text]
  • Component, Fatty Acid and Mineral Composition of Rice Bran Oil Extracted by Multistage with Hexane and Ethanol
    INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 6, ISSUE 11, NOVEMBER 2017 ISSN 2277-8616 Component, Fatty Acid And Mineral Composition Of Rice Bran Oil Extracted By Multistage With Hexane And Ethanol Fajriyati Mas’ud, Meta Mahendradatta, Amran Laga, Zainal Zainal Abstract: Rice bran oil (RBO) has been extracted from Celebes rice bran by multistage extraction with hexane solvent followed by ethanol to see the component, profile of fatty acids and mineral contained in both of them. As a comparison, RBO directly extracted with ethanol was also presented. Extraction process was performed using reflux method at 55oC, for 5 hours with bran and solvent ratio of 1:7. Analysis of components and fatty acids of RBO was conducted with GC-MS QP 2010 Shimadzu. Oleic, linoleic and palmitic were found dominant in first stage extraction by hexane with concentration of 3716.56, 1630.78 and 1021.89 mg/L, respectively. Palmitic (6.34 mg/L), lauric (4.78 mg/L), and linoleic (3.52 mg/L) were dominant in the second stage extraction by ethanol. Linoleic (28.85 mg/L), stearic (2.88 mg/L) and myristic (2.02 mg/L) were found in extracted directly by ethanol. RBO extracted with hexane had 18.6% of saturated fatty acid and 81.4% of unsaturated fatty acids, with ratio of saturated fatty acids : monounsaturated fatty acids: polyunsaturated fatty acids of approximately 1: 2.3 : 1.3. It contained about 56.7% of monounsaturated, 24.7% of polyunsaturated, and 18.6% of saturated fatty acids. In the present paper, we provide also an analysis of mineral composition of RBO by X-ray Spectrometer and melting point of RBO by Differential Scanning Calorimeter (DSC) instrument.
    [Show full text]
  • Biochemistry Prologue to Lipids
    Paper : 05 Metabolism of Lipids Module: 01 Prologue to Lipids Principal Investigator Dr. Sunil Kumar Khare, Professor, Department of Chemistry, IIT-Delhi Paper Coordinator and Dr. Suaib Luqman, Scientist (CSIR-CIMAP) Content Writer & Assistant Professor (AcSIR) CSIRDr. Vijaya-CIMAP, Khader Lucknow Dr. MC Varadaraj Content Reviewer Prof. Prashant Mishra, Professor, Department of Biochemical Engineering and Biotechnology, IIT-Delhi 1 METABOLISM OF LIPIDS Biochemistry Prologue to Lipids DESCRIPTION OF MODULE Subject Name Biochemistry Paper Name 05 Metabolism of Lipids Module Name/Title 01 Prologue to Lipids 2 METABOLISM OF LIPIDS Biochemistry Prologue to Lipids 1. Objectives To understand what is lipid Why they are important How they occur in nature 2. Concept Map LIPIDS Fatty Acids Glycerol 3. Description 3.1 Prologue to Lipids In 1943, the term lipid was first used by BLOOR, a German biochemist. Lipids are heterogeneous group of compounds present in plants and animal tissues related either actually or potentially to the fatty acids. They are amphipathic molecules, hydrophobic in nature originated utterly or in part by thioesters (carbanion-based condensations of fatty acids and/or polyketides etc) or by isoprene units (carbocation-based condensations of prenols, sterols, etc). Lipids have the universal property of being: i. Quite insoluble in water (polar solvent) ii. Soluble in benzene, chloroform, ether (non-polar solvent) 3 METABOLISM OF LIPIDS Biochemistry Prologue to Lipids Thus, lipids include oils, fats, waxes, steroids, vitamins (A, D, E and K) and related compounds, such as phospholipids, triglycerides, diglycerides, monoglycerides and others, which are allied more by their physical properties than by their chemical assests.
    [Show full text]
  • Graham Centre Monograph No. 4
    Long-chain omega-3 polyunsaturated fatty acids in ruminant nutrition: benefits to animals and humans Edward H. Clayton Livestock Research Officer – Ruminant Nutrition NSW Department of Primary Industries, Wagga Wagga Agricultural Institute Pine Gully Rd, Wagga Wagga NSW 2650 Graham Centre Monograph No. 4 Edited by: Toni Nugent and Catriona Nicholls August 2014 © State of New South Wales through Department of Trade and Investment, Regional Infrastructure and Services 2014 This publication is copyright. You may download, display, print and reproduce this material in an unaltered form only (retaining this notice) for your personal use or for non-commercial use within your organisation. To copy, adapt, publish, distribute or commercialise any of this publication you will need to seek permission from the NSW Department of Primary Industries. Disclaimer: The information contained in this publication is based on knowledge and understanding at the time of writing (August 2014). However, because of advances in knowledge, users are reminded of the need to ensure that information upon which they rely is up to date and to check currency of the information with the appropriate officer of the NSW Department of Primary Industries or the user’s independent advisor. All sources of information in the current publication are acknowledged in the text. No further reproduction should be made without first obtaining prior written approval of the copyright owner. For updates to this publication, check www.grahamcentre.net/ Published by the NSW Department of Primary Industries. First published August 2014 ISBN 978 1 74256 678 8 Cover design by: Sharon Kiss Cover photo by: Toni Nugent, Graham Centre for Agricultural Innovation Author’s Contact: Dr Edward Clayton, Livestock Research Officer, NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Pine Gully Rd, Wagga Wagga NSW 2650 Email: [email protected] Citation: Clayton EH (2014).
    [Show full text]