Normal-Phase HPLC-ELSD to Compare Lipid Profiles of Different
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Meta Gene 2 (2014) 746–760
Meta Gene 2 (2014) 746–760 Contents lists available at ScienceDirect Meta Gene Characterization of the bovine gene LIPE and possible influence on fatty acid composition of meat Daniel Estanislao Goszczynski a,c, Juliana Papaleo Mazzucco b, María Verónica Ripoli a, Edgardo Leopoldo Villarreal b, Andrés Rogberg-Muñoz a, Carlos Alberto Mezzadra b, Lilia Magdalena Melucci b,⁎, Guillermo Giovambattista a,⁎⁎ a IGEVET, CCT LA PLATA CONICET, FCV, UNLP, La Plata B1900AVW, CC 296, Argentina b Unidad Integrada INTA Balcarce — FCA, UNMdP, Argentina c Fellow of the Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina article info abstract Article history: LIPE is an intracellular neutral lipase, which is capable of hydrolyzing a va- Received 10 June 2014 riety of esters and plays a key role in the mobilization of fatty acids from Revised 26 August 2014 diacylglycerols. The objectives of this study were to characterize the Accepted 3 September 2014 genetic polymorphism of bovine LIPE gene and to evaluate the possible Available online 16 October 2014 association between three SNPs in the coding regions of this gene with the fatty acid composition of meat in a cattle population. Forty-three unre- Keywords: lated animals from different cattle breeds were re-sequenced and 21 SNPs LIPE fi Polymorphism were detected over approximately 2600 bp, ve of these SNPs were novel. Bovine Three SNPs were selected, on the basis of evolutionary conservation, to Lipid content perform validation and association studies in a crossbred cattle popula- tion. Our results may suggest a possible association of SNP1 with contents of oleic acid and total monounsaturated fatty acids (p b 0.01), and SNP2 and SNP3 with Heneicosylic acid content (p b 0.01), may be helpful to improve the quality of meat and improve health. -
(12) United States Patent (10) Patent No.: US 9,375.433 B2 Dilly Et Al
US009375433B2 (12) United States Patent (10) Patent No.: US 9,375.433 B2 Dilly et al. (45) Date of Patent: *Jun. 28, 2016 (54) MODULATORS OF ANDROGENSYNTHESIS (52) U.S. Cl. CPC ............. A6 IK3I/519 (2013.01); A61 K3I/201 (71) Applicant: Tangent Reprofiling Limited, London (2013.01); A61 K3I/202 (2013.01); A61 K (GB) 31/454 (2013.01); A61K 45/06 (2013.01) (72) Inventors: Suzanne Dilly, Oxfordshire (GB); (58) Field of Classification Search Gregory Stoloff, London (GB); Paul USPC .................................. 514/258,378,379, 560 Taylor, London (GB) See application file for complete search history. (73) Assignee: Tangent Reprofiling Limited, London (56) References Cited (GB) U.S. PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this 5,364,866 A * 1 1/1994 Strupczewski.......... CO7C 45/45 patent is extended or adjusted under 35 514,254.04 U.S.C. 154(b) by 0 days. 5,494.908 A * 2/1996 O’Malley ............. CO7D 261/20 514,228.2 This patent is Subject to a terminal dis 5,776,963 A * 7/1998 Strupczewski.......... CO7C 45/45 claimer. 514,217 6,977.271 B1* 12/2005 Ip ........................... A61K 31, 20 (21) Appl. No.: 14/708,052 514,560 OTHER PUBLICATIONS (22) Filed: May 8, 2015 Calabresi and Chabner (Goodman & Gilman's The Pharmacological (65) Prior Publication Data Basis of Therapeutics, 10th ed., 2001).* US 2015/O238491 A1 Aug. 27, 2015 (Cecil's Textbook of Medicine pp. 1060-1074 published 2000).* Stedman's Medical Dictionary (21st Edition, Published 2000).* Okamoto et al (Journal of Pain and Symptom Management vol. -
WO 2017/074902 Al 4 May 20 17 (04.05.2017) W P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/074902 Al 4 May 20 17 (04.05.2017) W P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 8/37 (2006.01) A61Q 19/00 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, A61K 31/215 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, PCT/US2016/058591 MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (22) International Filing Date: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 25 October 2016 (25.10.201 6) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (25) Filing Language: English ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 62/247,803 29 October 20 15 (29. 10.20 15) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: GLAXOSMITHKLINE CONSUMER TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, HEALTHCARE HOLDINGS (US) LLC [US/US]; 271 1 DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Centerville Road, Suite 400, Wilmington, DE 19808 (US). -
Biochemistry Prologue to Lipids
Paper : 05 Metabolism of Lipids Module: 01 Prologue to Lipids Principal Investigator Dr. Sunil Kumar Khare, Professor, Department of Chemistry, IIT-Delhi Paper Coordinator and Dr. Suaib Luqman, Scientist (CSIR-CIMAP) Content Writer & Assistant Professor (AcSIR) CSIRDr. Vijaya-CIMAP, Khader Lucknow Dr. MC Varadaraj Content Reviewer Prof. Prashant Mishra, Professor, Department of Biochemical Engineering and Biotechnology, IIT-Delhi 1 METABOLISM OF LIPIDS Biochemistry Prologue to Lipids DESCRIPTION OF MODULE Subject Name Biochemistry Paper Name 05 Metabolism of Lipids Module Name/Title 01 Prologue to Lipids 2 METABOLISM OF LIPIDS Biochemistry Prologue to Lipids 1. Objectives To understand what is lipid Why they are important How they occur in nature 2. Concept Map LIPIDS Fatty Acids Glycerol 3. Description 3.1 Prologue to Lipids In 1943, the term lipid was first used by BLOOR, a German biochemist. Lipids are heterogeneous group of compounds present in plants and animal tissues related either actually or potentially to the fatty acids. They are amphipathic molecules, hydrophobic in nature originated utterly or in part by thioesters (carbanion-based condensations of fatty acids and/or polyketides etc) or by isoprene units (carbocation-based condensations of prenols, sterols, etc). Lipids have the universal property of being: i. Quite insoluble in water (polar solvent) ii. Soluble in benzene, chloroform, ether (non-polar solvent) 3 METABOLISM OF LIPIDS Biochemistry Prologue to Lipids Thus, lipids include oils, fats, waxes, steroids, vitamins (A, D, E and K) and related compounds, such as phospholipids, triglycerides, diglycerides, monoglycerides and others, which are allied more by their physical properties than by their chemical assests. -
Graham Centre Monograph No. 4
Long-chain omega-3 polyunsaturated fatty acids in ruminant nutrition: benefits to animals and humans Edward H. Clayton Livestock Research Officer – Ruminant Nutrition NSW Department of Primary Industries, Wagga Wagga Agricultural Institute Pine Gully Rd, Wagga Wagga NSW 2650 Graham Centre Monograph No. 4 Edited by: Toni Nugent and Catriona Nicholls August 2014 © State of New South Wales through Department of Trade and Investment, Regional Infrastructure and Services 2014 This publication is copyright. You may download, display, print and reproduce this material in an unaltered form only (retaining this notice) for your personal use or for non-commercial use within your organisation. To copy, adapt, publish, distribute or commercialise any of this publication you will need to seek permission from the NSW Department of Primary Industries. Disclaimer: The information contained in this publication is based on knowledge and understanding at the time of writing (August 2014). However, because of advances in knowledge, users are reminded of the need to ensure that information upon which they rely is up to date and to check currency of the information with the appropriate officer of the NSW Department of Primary Industries or the user’s independent advisor. All sources of information in the current publication are acknowledged in the text. No further reproduction should be made without first obtaining prior written approval of the copyright owner. For updates to this publication, check www.grahamcentre.net/ Published by the NSW Department of Primary Industries. First published August 2014 ISBN 978 1 74256 678 8 Cover design by: Sharon Kiss Cover photo by: Toni Nugent, Graham Centre for Agricultural Innovation Author’s Contact: Dr Edward Clayton, Livestock Research Officer, NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Pine Gully Rd, Wagga Wagga NSW 2650 Email: [email protected] Citation: Clayton EH (2014). -
Obese Mice with Dyslipidemia Exhibit Meibomian Gland Hypertrophy and Alterations in Meibum Composition and Aqueous Tear Production
International Journal of Molecular Sciences Article Obese Mice with Dyslipidemia Exhibit Meibomian Gland Hypertrophy and Alterations in Meibum Composition and Aqueous Tear Production Eugene A. Osae 1,* , Tiffany Bullock 2, Madhavi Chintapalati 2, Susanne Brodesser 3 , Samuel Hanlon 1, Rachel Redfern 1, Philipp Steven 4 , C. Wayne Smith 2, Rolando E. Rumbaut 2,5 and Alan R. Burns 1 1 College of Optometry, University of Houston, Houston, TX 77204, USA; [email protected] (S.H.); [email protected] (R.R.); [email protected] (A.R.B.) 2 Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA; [email protected] (T.B.); [email protected] (M.C.); [email protected] (C.W.S.); [email protected] (R.E.R.) 3 CECAD Research Center, Lipidomics/Metabolomics Facility, University of Cologne, 50931 Cologne, Germany; [email protected] 4 Department of Ophthalmology, Division for Dry-Eye and Ocular GvHD, Medical Faculty, University of Cologne, 50937 Cologne, Germany; [email protected] 5 Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030, USA * Correspondence: [email protected]; Tel.: +1-346-317-6273 Received: 14 October 2020; Accepted: 16 November 2020; Published: 20 November 2020 Abstract: Background: Dyslipidemia may be linked to meibomian gland dysfunction (MGD) and altered meibum lipid composition. The purpose was to determine if plasma and meibum cholesteryl esters (CE), triglycerides (TG), ceramides (Cer) and sphingomyelins (SM) change in a mouse model of diet-induced obesity where mice develop dyslipidemia. Methods: Male C57/BL6 mice (8/group, age = 6 wks) were fed a normal (ND; 15% kcal fat) or an obesogenic high-fat diet (HFD; 42% kcal fat) for 10 wks. -
Physicochemical Properties and Fatty Acids Composition of Sudanese Moringa Oleifera Seed Oil
Idris AA et al. JOTCSA. 2020; 7(3): 911-920. RESEARCH ARTICLE Physicochemical Properties and Fatty Acids Composition of Sudanese Moringa oleifera Seed Oil Abeer A. Idris1 , Azhari H. Nour1* , Omer A. Omer Ishag1 , Mahmoud M. Ali1 , Ibrahim Y. Erwa1 , Abdurahman H. Nour2 1 International University of Africa (IUA), Department of Applied and Industrial Chemistry, Faculty of Pure and Applied Sciences, 12223, Khartoum, Sudan. 2 Universiti Malaysia Pahang (UMP), Faculty of Chemical and Process Engineering Technology, College of Engineering Technology,26300, Gambang, Malaysia. Abstract: Moringa oleifera is a robust and fast-growing tree considered as one of the most beneficial trees worldwide since almost all parts of it are used as food, medicine, and for industrial purposes. This study aimed to investigate the physicochemical properties and fatty acid composition of M. oleifera seed oil. The oil was extracted by Soxhlet using n-hexane; the physicochemical properties of the seed oil were assessed by standard and established methods, as well, the fatty acid composition of the seed oil was determined by GC-MS. The golden yellow oil with characteristic odor obtained from the seeds had the following physicochemical properties: yield, 42.87%; freezing point, 0 °C; melting point, 21 °C; boiling point, 225 °C; refractive index (25 °C), 1.447; iodine value, 96.6 g/100g of oil; peroxide value, 7.6 meq.O2/kg of oil; free fatty acids, 0.07%; acid value, 1.4 mg of KOH/g of oil; saponification value, 185.2 mg KOH/g of oil; unsaponifiable matter, 3.2; moisture and volatile value, 4.91 (wt.%); density, 0.900 g/cm3; viscosity, 60.99 mm2/s; specific gravity, 0.907. -
Identification of DIR1-Dependant Cellular Responses Required for Guard Cell Systemic
bioRxiv preprint doi: https://doi.org/10.1101/2021.06.02.446770; this version posted June 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Identification of DIR1-dependant cellular responses required for guard cell systemic 2 acquired resistance1 3 Lisa Davida,b, Jianing Kanga,b,c, Josh Nicklayd, Craig Dufrensee, and Sixue Chena,b,f,g,2,3 4 5 aDepartment of Biology, University of Florida, Gainesville, FL 32611, USA 6 bUniversity of Florida Genetics Institute (UFGI), Gainesville, FL 32610, USA 7 cCollege of Life Science, Northeast Agricultural University, Harbin 150030, China. 8 dThermo Fisher Scientific, Somerset, NJ 08873, USA 9 eThermo Training Institute, Thermo Fisher Scientific, West Palm Beach, FL 33407, USA 10 fPlant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, 11 USA 12 gProteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research 13 (ICBR), University of Florida, Gainesville, FL 32610, USA 14 15 ORCID IDs: 0000-0003-2529-1863 (L.D.); 0000-0002-0425-8792 (J.K.); 0000-0002-7341-1260 16 (J.N.); 0000-0003-0785-7798 (C.D.); 0000-0002-6690-7612 (S.C.) 17 18 Short title 19 DIR1 in guard cell systemic acquired resistance. 20 One-sentence summary 21 DIR1 affects many biological processes in stomatal guard cells during systemic acquired 22 resistance (SAR), as revealed by multi-omics, and it may function through transporting two 18C 23 fatty acids during SAR. -
Fatty Acids, Trivial and Systematic Names
FATTY ACIDS, TRIVIAL AND SYSTEMATIC NAMES Trivial Name Systematic Name Abbreviation Formic Acid Methanoic Acid Acetic Acid Ethanoic Acid Propionic Acid Propanoic Acid Butyric Acid Butanoic Acid 4:0 Valerianic Acid Pentanoic Acid 5:0 Caproic Acid Hexanoic Acid 6:0 Enanthic Acid Heptanoic Acid 7:0 Caprylic Acid Octanoic Acid 8:0 Pelargonic Acid Nonanoic Acid 9:0 Capric Acid Decanoic Acid 10:0 Obtusilic Acid 4-Decenoic Acid 10:1(n-6) Caproleic Acid 9-Decenoic Acid 10:1(n-1) Undecylic Acid Undecanoic Acid 11:0 Lauric Acid Dodecanoic Acid 12:0 Linderic Acid 4-Dodecenoic Acid 12:1(n-8) Denticetic Acid 5-Dodecenoic Acid 12:1(n-7) Lauroleic Acid 9-Dodecenoic Acid 12:1(n-3) Tridecylic Acid Tridecanoic Acid 13:0 Myristic Acid Tetradecanoic Acid 14:0 Tsuzuic Acid 4-Tetradecenoic Acid 14:1(n-10) Physeteric Acid 5-Tetradecenoic Acid 14:1(n-9) Myristoleic Acid 9-Tetradecenoic Acid 14:1(n-5) Pentadecylic Acid Pentadecanoic Acid 15:0 Palmitic Acid Hexadecanoic Acid 16:0 Gaidic acid 2-Hexadecenoic Acid 16:1(n-14) Sapienic Acid 6-Hexadecenoic Acid 16:1(n-10) Hypogeic Acid trans-7-Hexadecenoic Acid t16:1(n-9) cis-Hypogeic Acid 7-Hexadecenoic Acid 16:1(n-9) Palmitoleic Acid 9-Hexadecenoic Acid 16:1(n-7) Palmitelaidic Acid trans-9-Hexadecenoic Acid t16:1(n-7) Palmitvaccenic Acid 11-Hexadecenoic Acid 16:1(n-5) Margaric Acid Heptadecanoic Acid 17:0 Civetic Acid 8-Heptadecenoic Acid 17:1 Stearic Acid Octadecanoic Acid 18:0 Petroselinic Acid 6-Octadecenoic Acid 18:1(n-12) Oleic Acid 9-Octadecenoic Acid 18:1(n-9) Elaidic Acid trans-9-Octadecenoic acid t18:1(n-9) -
TARGETED METABOLOMICS and LIPIDOMICS This Notebook Is an Excerpt from the Larger Waters’ Application Notebook on Metabolomics and Lipidomics #720005245EN
[ APPLICATION NOTEBOOK ] TARGETED METABOLOMICS AND LIPIDOMICS This notebook is an excerpt from the larger Waters’ Application Notebook on Metabolomics and Lipidomics #720005245EN TABLE OF CONTENTS 3 Introduction 4 A Validated Assay for the Quantification of Amino Acids in Mammalian Urine 12 Targeted Metabolomics Using the UPLC/MS-based AbsoluteIDQ p180 Kit 20 Targeted Lipidomics of Oxylipins (oxygenated fatty acids) 31 Profiling and Quantitation of Metabolomic “Signatures” for Breast Cancer Cell Progression 40 A Definitive Lipidomics Workflow for Human Plasma Utilizing Off-line Enrichment and Class Specific Separation of Phospholipids 46 Rapid and Simultaneous Analysis of Plasma Catecholamines and Metanephrines Using Mixed-Mode SPE and Hydrophilic Interaction Chromatography (HILIC) for Clinical Research 53 The Application of UPLC/MSE for the Analysis of Bile Acids in Biological Fluids 59 Targeted Lipidomics Using the ionKey/MS System 63 Multiplexed Analysis of Steroid Hormones Using ionKey/MS 67 Fast and Simple Free Fatty Acids Analysis Using UPC2/MS 80 Bile Acid Profiling Using UltraPerformance Convergence Chromatography (UPC2) Coupled to ESI-MS/MS 82 Method Development for the Analysis of Endogenous Steroids using Convergence Chromatography with Mass Spectrometric Detection 92 Enantiomeric and Diastereomeric Separations of Fragrance and Essential Oil Components Using the ACQUITY UPC2 System with ACQUITY UPC2 Trefoil Columns 2 [ METABOLOMICS AND LIPIDOMICS APPLICATIONS ] TARGETED METABOLOMICS AND LIPIDOMICS Targeted metabolomics and lipidomics are hypothesis-driven approaches that focus on analyzing a selected group of metabolites or lipids. Such approaches are generally used either for validation of initial discoveries or routine analysis for clinical research. The specific metabolites/lipids that will undergo analysis are selected according to the questions asked, and ad hoc analytical methods are developed for their quantification. -
( 12 ) United States Patent
US010155042B2 (12 ) United States Patent ( 10 ) Patent No. : US 10 , 155 , 042 B2 Bannister et al. (45 ) Date of Patent: * Dec. 18 , 2018 ( 54 ) COMPOSITIONS AND METHODS FOR A61K 31/ 60 (2006 . 01) TREATING CHRONIC INFLAMMATION A61K 47 / 10 ( 2017 .01 ) AND INFLAMMATORY DISEASES A61K 31 / 202 (2006 . 01 ) A61K 31 / 337 (2006 .01 ) ( 71 ) Applicant: Infirst Healthcare Limited , London A61K 31 / 704 ( 2006 . 01 ) (GB ) A61K 31/ 25 (2006 . 01) 2 ) U . S . CI. ( 72 ) Inventors : Robin M . Bannister , Essex (GB ) ; John CPC .. .. .. .. A61K 47 / 14 ( 2013 .01 ) ; A61K 9 / 08 Brew , Hertfordshire (GB ) ; Wilson ( 2013 .01 ) ; A61K 9 /2013 (2013 . 01 ) ; A61K Caparros - Wanderely , Buckinghamshire 31/ 192 ( 2013 .01 ) ; A61K 31 /60 ( 2013 .01 ) ; (GB ) ; Suzanne J . Dilly , Oxfordshire A61K 47 / 10 ( 2013 .01 ) ; A61K 47 /44 ( 2013 .01 ) ; (GB ) ; Olga Pleguezeulos Mateo , A61K 31 / 19 ( 2013 . 01 ) ; A61K 31 / 202 Bicester (GB ) ; Gregory A . Stoloff , (2013 .01 ) ; A61K 31/ 25 ( 2013 .01 ) ; AIK London (GB ) 31 / 337 ( 2013. 01 ) ; A6IK 31/ 704 ( 2013 .01 ) ( 73 ) Assignee : Infirst Healthcare Limited , London (58 ) Field of Classification Search (GB ) CPC . .. .. A61K 31 /192 ; A61K 31/ 19 USPC .. .. .. 514 / 570 , 571, 557 ( * ) Notice : Subject to any disclaimer, the term of this See application file for complete search history . patent is extended or adjusted under 35 U . S . C . 154 (b ) by 0 days . References Cited This patent is subject to a terminal dis (56 ) claimer . U . S . PATENT DOCUMENTS 3 , 228 ,831 A 1 / 1966 Nicholson et al. (21 ) Appl . No. : 15 / 614 ,592 3 , 800 ,038 A 3 / 1974 Rudel 4 ,571 ,400 A 2 / 1986 Arnold (22 ) Filed : Jun . -
(12) United States Patent (10) Patent No.: US 9,655,847 B1 Halwani Et Al
US0096.55847B1 (12) United States Patent (10) Patent No.: US 9,655,847 B1 Halwani et al. (45) Date of Patent: May 23, 2017 (54) THERAPEUTIC LIPOSOME AND METHOD (56) References Cited OF TREATING ASUBJECT HAVING CANCER U.S. PATENT DOCUMENTS 5,731,346 A * 3/1998 Egberg................... A61K 31, 20 (71) Applicants:National Guard Health Affairs, 514,458 Riyadh (SA); King Saud bin 2002/0146448 A1* 10, 2002 KOZbor .................. A61K 9,127 Abdulaziz University for Health 424/450 2007/0116753 A1* 5/2007 Hong ................... A61K9/0019 Sciences, Riyadh (SA); King Abdullah 424/450 International Medical Research 2011/0274746 A1* 11/2011 Schmidt ................. A61K 9,127 Center, Riyadh (SA) 424/450 2012/0076795 A1 3/2012 Debs (72) Inventors: Majed Abdulaziz Saleh Halwani, 2012/0288558 A1* 11/2012 Gabizon .............. A61K 31,337 Riyadh (SA); Moayad Abdulaziz 424/450 Alhariri, Riyadh (SA) (Continued) (73) Assignees: National Guard Health Affairs, FOREIGN PATENT DOCUMENTS Riyadh (SA); King Saud bin EP O 198765 A2 10, 1986 Abdulaziz University for Health EP O 198765 A3 10, 1986 Sciences, Riyadh (SA); King Abdullah WO WO 2011 (143271 A2 11/2011 International Medical Research Center, Riyadh (SA) OTHER PUBLICATIONS (*) Notice: Subject to any disclaimer, the term of this PG Rose. “Pegylated Liposomal Doxorubicin: Optimizing the Dos patent is extended or adjusted under 35 ing Schedule in Ovarian Cancer.” The Oncologist, vol. 10, 2005, pp. U.S.C. 154(b) by 0 days. 205-214. (Continued) (21) Appl. No.: 15/212,389 Primary Examiner — Isaac Shomer (22) Filed: Jul. 18, 2016 (74) Attorney, Agent, or Firm — Oblon, McClelland, Maier & Neustadt, L.L.P.