Synthetic Fibres

Total Page:16

File Type:pdf, Size:1020Kb

Synthetic Fibres 12.7 Synthetic fibres 12.7.1 Introduction polymeric materials is specified using the count; in other words the mass of the thread relative to a given Obtaining more valuable products from cheap length of it. The mass in grammes of 9,000 m (1,000 materials has always been one of mankind’s goals. yards) of thread is known as the denier count or Enormous interest was therefore aroused when Hilaire denier; another way of describing the thickness of a Bernigaud de Chardonnet presented the first samples continuous thread is to specify the tex, in other words of his rayon at the International Exhibition in Paris in the weight in grammes of 1,000 m of yarn (or the 1889; as shiny and silky as natural silk, this was the decitex, dtex, referring to 10,000 m of yarn). In first artificial fibre ever made by man. addition to the fracture load and (percentage) Although as early as 1913, 1931 and 1932 deformation at break, other important mechanical processes to obtain filaments from poly(vinyl properties of fibres are their tenacity, or better, the chloride) and threads from poly(vinyl alcohol) and maximum energy that they can absorb without polystyrene were patented in Germany, the era of breaking, and resilience, or the maximum energy that synthetic fibres began in 1935 at the laboratories of they can absorb without suffering permanent the DuPont Experimental Station, Pure Science deformation. Section, Wilmington, Delaware, (USA). Here, Gerard The development of synthetic fibres progressed Berchet, one of Wallace Hume Carothers’ assistants, side by side with that of organic chemistry, and obtained just over 10 g of polyhexamethylene especially petrochemistry, which, with some extremely adipamide, subsequently commercialized in 1938 with rare exceptions, provides the base compounds for the the name nylon, the first totally synthetic industrial synthesis of monomers. In 1936, ICI (Imperial fibre. Chemical Industries) patented the manufacture of In theory, all organic polymeric materials fibres from polyethylene in Great Britain; in 1937 the consisting of linear macromolecules with a sufficiently first polyurethane bristles were made; in 1938 Paul high molecular weight can be turned into fibres, in Schlack of IG Farbenindustrie (Germany) synthesized other words long filaments whose axial ratio tends to poly(e-caprolactam), whose fibres were infinity. However, only a small number of these commercialized in 1943 with the name Perlon; in provide filaments with physical and mechanical 1941, John Rex Whinfield and James Tennant Dickson properties allowing for practical applications. The of the Calico Printers Association of Manchester arrangements in which the fibres are found, (Great Britain), synthesized polyethylene independently of their origin, are the single fibre, a terephthalate, whose fibres were commercialized with group of several single fibres to form a thread, and the the names Terylene (ICI, Great Britain), Dacron interlacing of numerous threads to form textiles. A (DuPont, USA), Terital (Montecatini, Italy); in 1942 it characteristic property of any fibre, in addition to its was discovered that N-dimethylformamide was a chemical, physical and mechanical properties, is its solvent of polyacrylonitrile, thus making it possible to size perpendicular to its axis or to that of a group of obtain fibres commercialized by E.I. DuPont de fibres forming a thread. In practice, the radial Nemours (USA) with the name Orlon; in 1960 the dimension, and thus the thickness, of all continuous same company commercialized the new elastomeric fibres including silk and those made of synthetic polyurethane fibre with the trade name Lycra. Also in VOLUME II / REFINING AND PETROCHEMICALS 917 POLYMERIC MATERIALS 1960, Polymer of Terni (Montecatini group) perfected not unlikely that third generation fibres, given their the fibres obtained from isotactic polypropylene better mechanical performance, will replace metals in (Meraklon); in 1971 Kevlar (E. I. DuPont de Nemours, many of their applications in the not too distant future. USA) entered the market, the first of the polyaramids, Synthetic fibres can be classified according to the obtained with the interfacial condensation of polar functional group repeated in their chain (for terephthalic acid and p-phenylenediamine, giving those made by polycondensation) or on the basis of the fibres with exceptional mechanical and thermal structural unit for those made by addition properties. polymerization. They are listed below in chronological Today, synthetic fibres are not merely an order of synthesis: alternative to natural and artificial fibres, but form • Polyamide fibres, obtained by condensation classes of high performance materials which play an polymerization and characterized by the regular extremely important role in the field of high recurrence along the macromolecular chain of the technology. The 5 denier of the first nylon filaments amide group ϪNHCOϪ. These include aliphatic have fallen to today’s 0.5 for polyamide or polyester polyamides such as 66 (Nylon 66), 6 (Nylon 6, monofilaments; fabrics made from these are superior Perlon) 11 (Nylon 11, Rilsan) and others of minor in appearance, softness and sheen to those in natural interest, and aromatic polyamides (polyaramids). silk (2 denier). These fibres are known as high added • Polyester fibres, obtained by condensation value fibres, as are those used to make special purpose polymerization and characterized by the regular fabrics (thermochromic fabrics which change colour recurrence along the macromolecular chain of the depending on temperature, photochromic fabrics ester group ϪCOOϪ. In addition to polyethylene which change colour depending on light, iridescent terephthalate (Terylene or Dacron), they include fabrics which change colour depending on how they the fibres obtained from wholly aromatic are hit by light, etc.). Also worth remembering are the polyesters. high technology fibres deriving from the application • Polyvinyl fibres, obtained by addition of the latest developments in the science and polymerization and characterized by a structural technology of fibre manufacturing (biodegradable unit deriving from vinylic or vinylidenic fibres for sutures; fibres which absorb and accumulate monomers; of these fibres the most important are solar energy such as Solar-a of 1988, made by the those made from acrylonitrile (Orlon), from vinyl Japanese firm Unitika, and similar products made by chloride (Leavin, Thermovil, Movil, etc.) and from Descente of Japan, widely used for sports wear; fibres tetrafluoroethane. for haemodialysis, fibres for the oxygenation of blood • Polyolefin fibres, obtained by addition in the artificial respiration machines known as polymerization, such as polyethylenes from mechanical lungs; fibres used for fabrics to make ethylene and polypropylenes (Meraklon) from space suits for extra-vehicular activities, fibres which propylene. absorb humidity and sweat for sports wear, fibres with • Polyurethane fibres, formally obtained by low friction with air, etc.) and finally superfibres, in condensation polymerization and characterized by other words fibres with exceptional mechanical the regular recurrence along the macromolecular properties (elasticity coefficient over 55 GPa and chain of the urethane group ϪOCONHϪ (Lycra). tenacity above 2.5 GPa), such as those made of high • Carbon fibres, included in this classification as tenacity polyethylene, para-aramids, and derivatives of polyacrylonitrile. polyacrylonitrile carbon. Natural fibres (and their derivatives) can be considered first generation fibres. Synthetic fibres 12.7.2 Polyamide fibres (aliphatic polyamides, polyesters, polyacrylonitrile, etc.), which appeared between the 1930s and 1960s, Polyamide fibres are generally known as nylon, the are second generation fibres, created to replace first trade name of the first wholly synthetic textile fibre of generation fibres. Today’s high performance fibres industrial importance. They are obtained with the (polyethylene, polyaramide, polyarylate, carbon fibres, condensation polymerization of aliphatic or aromatic etc.), which do not represent an alternative to natural diamines and aliphatic or aromatic organic diacids, or fibres as did those of the second generation, can be with the ring-opening polymerization of w-aminoacids classified as third generation fibres. These are used (Nylon 11 and Nylon 6). Polyamides are when fibres with low density, excellent mechanical conventionally named according to the number of performance and heat resistance are required (in carbon atoms in the diamine and the diacid, or the sectors such as sport, transportation, space technology w-aminoacid alone, and appear as corneous solids, etc.) or to reinforce other materials (composites). It is non-transparent, with a melting temperature over 918 ENCYCLOPAEDIA OF HYDROCARBONS SYNTHETIC FIBRES 200°C. Their density ranges between 1.00 and 1.20 a polyamide. In the salt, the two monomers are found g/cm3. They are all insoluble in water, and can be in the exact ratio of 1 to 1, an essential condition to dissolved cold in anhydrous acids (formic, sulphuric, obtain high degrees of polymerization. Since the glacial acetic acid) and phenols (phenol, p-cresol) at polymers made using this method sometimes had a 80°C and above. They can be hydrolysed by hot degree of polymerization too high for them to be spun, mineral acids in an aqueous solution. The high at the beginning of 1935 it was discovered that small stability of aliphatic polyamide fibres,
Recommended publications
  • Does the Planned Obsolescence Influence Consumer Purchase Decison? the Effects of Cognitive Biases: Bandwagon
    FUNDAÇÃO GETULIO VARGAS ESCOLA DE ADMINISTRAÇÃO DO ESTADO DE SÃO PAULO VIVIANE MONTEIRO DOES THE PLANNED OBSOLESCENCE INFLUENCE CONSUMER PURCHASE DECISON? THE EFFECTS OF COGNITIVE BIASES: BANDWAGON EFFECT, OPTIMISM BIAS AND PRESENT BIAS ON CONSUMER BEHAVIOR. SÃO PAULO 2018 VIVIANE MONTEIRO DOES THE PLANNED OBSOLESCENCE INFLUENCE CONSUMER PURCHASE DECISIONS? THE EFFECTS OF COGNITIVE BIASES: BANDWAGON EFFECT, OPTIMISM BIAS AND PRESENT BIAS ON CONSUMER BEHAVIOR Applied Work presented to Escola de Administraçaõ do Estado de São Paulo, Fundação Getúlio Vargas as a requirement to obtaining the Master Degree in Management. Research Field: Finance and Controlling Advisor: Samy Dana SÃO PAULO 2018 Monteiro, Viviane. Does the planned obsolescence influence consumer purchase decisions? The effects of cognitive biases: bandwagons effect, optimism bias on consumer behavior / Viviane Monteiro. - 2018. 94 f. Orientador: Samy Dana Dissertação (MPGC) - Escola de Administração de Empresas de São Paulo. 1. Bens de consumo duráveis. 2. Ciclo de vida do produto. 3. Comportamento do consumidor. 4. Consumidores – Atitudes. 5. Processo decisório – Aspectos psicológicos. I. Dana, Samy. II. Dissertação (MPGC) - Escola de Administração de Empresas de São Paulo. III. Título. CDU 658.89 Ficha catalográfica elaborada por: Isabele Oliveira dos Santos Garcia CRB SP-010191/O Biblioteca Karl A. Boedecker da Fundação Getulio Vargas - SP VIVIANE MONTEIRO DOES THE PLANNED OBSOLESCENCE INFLUENCE CONSUMERS PURCHASE DECISIONS? THE EFFECTS OF COGNITIVE BIASES: BANDWAGON EFFECT, OPTIMISM BIAS AND PRESENT BIAS ON CONSUMER BEHAVIOR. Applied Work presented to Escola de Administração do Estado de São Paulo, of the Getulio Vargas Foundation, as a requirement for obtaining a Master's Degree in Management. Research Field: Finance and Controlling Date of evaluation: 08/06/2018 Examination board: Prof.
    [Show full text]
  • Spider Silk, Etc
    Φασματοσκοπικός Χαρακτηρισμός Μακρομορίων Με Σκέδαση Ακτίνων Laser Απόστολος Κ. Ρίζος Καθηγητής Τμήματος Χημείας Πανεπιστημίου Κρήτης e-mail: [email protected], [email protected] Web: http://www.chemistry.uoc.gr/biopolymers/ax.htm Syllabus Introduction – Polymers as Materials - Natural Polymers - Synthetic Polymers Types of Polymerization – Addition Polymerization (free radical or unpaired electron) – Condensation Polymerization Chemical Composition – Homopolymers • all the repeating units along the chain are the same – Copolymers • two or more different monomer units – Random-Alternating-Block-Graft Stereochemistry – Geometrical isomers-Configuration - atactic, isotactic, syndiotactic Topology – Chains - Branches - star, comb, random, Network Molecular Weight – Chain Dimensions - Measurement – Light Scattering Polymer Structure-Property Behavior – Chain Entanglement – Intermolecular forces – Time scale of motion – The Glass Transition – Relaxation in Polymers References So what are polymers? Tiny molecules strung in long repeating chains form polymers. Why should you care? – Well for one thing, your body is made of them. – DNA, the genetic blueprint that defines people and other living things, is a polymer. – So are the proteins and starches in the foods we eat, the wheels on our skateboards and in-line skates, and the tires on our bikes and cars. – Understanding their chemistry can help us use them wisely. – Once we’re familiar with the varieties of polymers that people make, such as plastics, we can recycle many of them and use
    [Show full text]
  • Basic of Textiles
    BASIC OF TEXTILES BFA(F) 202 CC 5 Directorate of Distance Education SWAMI VIVEKANAND SUBHARTI UNIVERSITY MEERUT 250005 UTTAR PRADESH SIM MOUDLE DEVELOPED BY: Reviewed by the study Material Assessment Committed Comprising: 1. Dr. N.K.Ahuja, Vice Chancellor Copyright © Publishers Grid No part of this publication which is material protected by this copyright notice may be reproduce or transmitted or utilized or store in any form or by any means now know or here in after invented, electronic, digital or mechanical. Including, photocopying, scanning, recording or by any informa- tion storage or retrieval system, without prior permission from the publisher. Information contained in this book has been published by Publishers Grid and Publishers. and has been obtained by its author from sources believed to be reliable and are correct to the best of their knowledge. However, the publisher and author shall in no event be liable for any errors, omission or damages arising out of this information and specially disclaim and implied warranties or merchantability or fitness for any particular use. Published by: Publishers Grid 4857/24, Ansari Road, Darya ganj, New Delhi-110002. Tel: 9899459633, 7982859204 E-mail: [email protected], [email protected] Printed by: A3 Digital Press Edition : 2021 CONTENTS 1. Fiber Study 5-64 2. Fiber and its Classification 65-175 3. Yarn and its Types 176-213 4. Fabric Manufacturing Techniques 214-260 5. Knitted 261-302 UNIT Fiber Study 1 NOTES FIBER STUDY STRUCTURE 1.1 Learning Objective 1.2 Introduction 1.3 Monomer, Polymer, Degree of polymerization 1.4 Student Activity 1.5 Properties of Fiber: Primary & Secondary 1.6 Summary 1.7 Glossary 1.8 Review Questions 1.1 LEARNING OBJECTIVE After studying this unit you should be able to: ● Describe the Natural Fiber.
    [Show full text]
  • The Dupont Company the Forgotten Producers of Plutonium
    The DuPont Company The Forgotten Producers of Plutonium Assembled by the “DuPont Story” Committee of the B Reactor Museum Association Ben Johnson, Richard Romanelli, Bert Pierard 2015 Revision 3 – March 2017 FOREWORD Like the world’s tidal waters, the study of our national story sometimes leads us into historical eddies, rich in human interest content, that have been bypassed by the waves of words of the larger accounting of events. Such is the case of the historical accounts of the Manhattan Project which tend to emphasize the triumphs of physicists, while engineering accomplishments, which were particularly important at the Hanford Site, have been brushed over and receive less recognition. The scientific possibility of devising a weapon based on using the energy within the nucleus of the atom was known by physicists in both the United States and Germany before World War II began. After the start of hostilities, these physicists were directed by their respective governments to begin development of atomic bombs. The success of the American program, compared with the German program, was due largely to the extensive involvement in the U.S. Manhattan Project of large and experienced engineering firms whose staff worked with the physicists. The result was the successful production of weapons materials, in an amazingly short time considering the complexity of the program, which helped end World War II. One view which effectively explains these two markedly different historical assessments of accomplishments, at least for Hanford, is noted in the literature with this quote. - "To my way of thinking it was one of the greatest interdisciplinary efforts ever mounted.
    [Show full text]
  • An Improved Method for the Analysis of Fiber Evidence Using Polarized Light Microscopy
    City University of New York (CUNY) CUNY Academic Works Student Theses John Jay College of Criminal Justice Spring 6-2018 An Improved Method for the Analysis of Fiber Evidence Using Polarized Light Microscopy Samuel F. Kaplan CUNY John Jay College, [email protected] How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/jj_etds/55 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] An Improved Method for the Analysis of Fiber Evidence Using Polarized Light Microscopy A Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Master of Science in Forensic Science John Jay College of Criminal Justice City University of New York Samuel Forrest Kaplan May 2018 i An Improved Method for the Analysis of Fiber Evidence Using Polarized Light Microscopy Samuel Forrest Kaplan This Thesis has been presented to and accepted by the Office of Graduate Studies, John Jay College of Criminal Justice in Partial Fulfillment of the Requirements for the Degree of Master of Science in Forensic Science. Thesis Committee Thesis Advisor: John Reffner, Ph.D. Second Reader: Nicholas D.K. Petraco, Ph.D. External Reader: Craig Huemmer, M.S. ii Acknowledgements I would like to express my gratitude and respect to my thesis advisor, Dr. John Reffner, for all the guidance, support, and insight he has provided me throughout my career in graduate school. I am very grateful for the opportunity to work in Dr.
    [Show full text]
  • Polyester the Workhorse of Polymers: a Review from Synthesis to Recycling
    Available online at www.scholarsresearchlibrary.com Scholars Research Library Archives of Applied Science Research, 2019, 11(2): 1-19 (http://www.scholarsresearchlibrary.com) ISSN:0975-508X Polyester the Workhorse of Polymers: A Review from Synthesis to Recycling Amit A Barot1*, Tirth M Panchal2, Ankit Patel3, Chirag M Patel4 ,Vijay Kumar Sinha4 1Byblos Roads Marking and Traffic Signs LLC, Dubai, United Arab Emirates 2C1 Water Industries LLC, Dubai, United Arab Emirates 3Polycoats Products Dallas, USA 4Industrial Chemistry Department, VP and RPTP Science College, VV Nagar, Gujarat, India *Corresponding Author: Amit A Barot, Byblos Roads Marking and Traffic Signs LLC, Dubai, United Arab Emirates, Tel: + +919662976366; E-mail: [email protected] ABSTRACT In this age of polymer, polyester still conquered the leading position amongst the other manmade polymers. Polyester has become the focus of interdisciplinary research and received considerable attention due to their unique chemical and physical properties as well as their potential applications. Also, we accomplished from the recent researches that polyester is involved either in one or the other form in many works. Thus we show our deliberation to make a platform for those researchers who show interest in work on polyesters, where they find enough basics related to polyesters and its current scenario. In this framework, this review provides the extractive information’s about the polyesters, which covers from to its development, chemistry, application fields up to the methods of recycling used in present scenario. Keywords: Polyesters, Chemistry, Applications, Recycling, Present scenario. INTRODUCTION Human history is tied to the way of using the existed or created materials for the development of living standards.
    [Show full text]
  • ABSTRACT FEI, XIUZHU. Decolorization of Dyed Polyester
    ABSTRACT FEI, XIUZHU. Decolorization of Dyed Polyester Fabrics using Sodium Formaldehyde Sulfoxylate. (Under the direction of Dr. David Hinks and Dr. Harold S. Freeman). Polyethylene terephthalate (PET) fiber is now the largest single fiber type within global textile production, taking over from cotton. In view of environmental stewardship, an effective approach to recycling colored PET fabrics has drawn wide attention. A key step in the recycling process is dye removal. Disperse dyes are used to dye PET fibers and designed to be durable inside the fiber. In addition, disperse dyes are hydrophobic and will not be substantially extracted with water as the only solvent. In this work, the organic solvent, acetone, was used in combination with water to remove disperse dyes from the PET, and sodium formaldehyde sulfoxylate (SFS) was employed to decolorize the dye. This agent was found effective for decolorizing Disperse Yellow 42, Yellow 86, Blue 56 and Blue 60 in acetone/water solutions and the process was extended to decolorization of dyed PET. An optimized combination of treatment time (30 min), water to acetone ratio (1:2), SFS concentration (10g/L), temperature (100 ˚C), and liquor ratio (1:50) was found to give sufficient color removal for a broad range of disperse dyes. Reuse of the water/acetone medium for five times was achieved for decolorization of Disperse Yellow 42 but could not be achieved for Disperse Blue 56. Fabric strength assessments were also investigated. It was found that SFS decolorization has no adverse influence on PET strength, as judged by viscosity measurements. © Copyright 2015 Xiuzhu Fei All Rights Reserved Decolorization of Dyed Polyester Fabrics using Sodium Formaldehyde Sulfoxylate by Xiuzhu Fei A thesis submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the degree of Master of Science Textile Chemistry Raleigh, North Carolina 2015 APPROVED BY: _______________________________ _______________________________ Dr.
    [Show full text]
  • Fiber Selection for Reinforced Additive Manufacturing
    polymers Review Fiber Selection for Reinforced Additive Manufacturing Ivan Philip Beckman *, Christine Lozano, Elton Freeman and Guillermo Riveros Information Technology Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS 39180, USA; [email protected] (C.L.); [email protected] (E.F.); [email protected] (G.R.) * Correspondence: [email protected]; Tel.: +1-16-01-397-0391 Abstract: The purpose of this review is to survey, categorize, and compare the mechanical and thermal characteristics of fibers in order to assist designers with the selection of fibers for inclusion as reinforcing materials in the additive manufacturing process. The vast “family of fibers” is described with a Venn diagram to highlight natural, synthetic, organic, ceramic, and mineral categories. This review explores the history and practical uses of particular fiber types and explains fiber production methods in general terms. The focus is on short-cut fibers including staple fibers, chopped strands, and whiskers added to polymeric matrix resins to influence the bulk properties of the resulting printed materials. This review discusses common measurements for specific strength and tenacity in the textile and construction industries, including denier and tex, and discusses the proposed “yuri” measurement unit. Individual fibers are selected from subcategories and compared in terms of their mechanical and thermal properties, i.e., density, tensile strength, tensile stiffness, flexural rigidity, moisture regain, decomposition temperature, thermal expansion, and thermal conductivity. This review concludes with an example of the successful 3D printing of a large boat at the University of Maine and describes considerations for the selection of specific individual fibers used in the additive Citation: Beckman, I.P.; Lozano, C.; Freeman, E.; Riveros, G.
    [Show full text]
  • Perfume at the Forefront of Macrocyclic Compound Research: from Switzerland to Du Pont
    International Workshop on the History of Chemistry 2015 Tokyo Perfume at the forefront of macrocyclic compound research: from Switzerland to Du Pont Galina Shyndriayeva King’s College London, London, United Kingdom A set of corporate publicity photographs from 1937 depicts several stages in the making and testing of perfumes, including one tableau of a perfume laboratory with a man and a woman sniffing smelling strips, and another depicting the “director of the perfume laboratories”.1 These photographs were not taken for a perfume house or an essential oil supplier; neither do they depict the workings of a firm in Grasse or Paris. These are instead portraying one line of business of the venerable giant of the American chemical industry, E.I. du Pont de Nemours & Company. From the 1930s into the postwar period, Du Pont manufactured and sold synthetic scents and aroma chemicals. While these chemicals were never important either in terms of output or revenue, their production by Du Pont is significant. One of these scents, a synthetic musk, was a direct product of Du Pont’s famed Experimental Research Station, ‘Purity Hall’, an output of the research of Wallace Carothers and his group. In this paper I will argue that the study of perfume was a driver for research in organic chemistry in the twentieth century, particularly in investigations of macrocyclic compounds. This was possible because of the strong financial support given by the fragrance industry, which was willing to invest in expensive processes. After situating this claim in historiography, I will focus in particular on the scent of musk and its synthesis, tracing the research of Nobel Prize chemist Leopold Ruzicka as well as the continuation of his work by Wallace Carothers and his group.
    [Show full text]
  • E.I. Du Pont De Nemours & Company Minute Books 2530
    E.I. du Pont de Nemours & Company minute books 2530 This finding aid was produced using ArchivesSpace on September 14, 2021. English Describing Archives: A Content Standard Manuscripts and Archives PO Box 3630 Wilmington, Delaware 19807 [email protected] URL: http://www.hagley.org/library E.I. du Pont de Nemours & Company minute books 2530 Table of Contents Summary Information .................................................................................................................................... 3 Historical Note ............................................................................................................................................... 3 Scope and Content ......................................................................................................................................... 7 Administrative Information ............................................................................................................................ 8 Controlled Access Headings .......................................................................................................................... 8 Collection Inventory ....................................................................................................................................... 9 Parent Companies ........................................................................................................................................ 9 E.I. du Pont de Nemours & Company Stockholders and Directors Meeting Minutes ............................
    [Show full text]
  • Paul Flory and the Dawn of Polymers As a Science
    GENERAL ARTICLE Paul Flory and the Dawn of Polymers as a Science S Sivaram If Wallace Carothers was the designer, Flory was the archi- tect and builder of the edifice of polymer science. If Carothers was the composer, Flory was the man who wrote the notes for the music. Carothers and Flory represent the quintessential qualities that are needed to make great science – intuition and rationality, experiment and theory, flights of imagination and diligent reduction to practice, exuberance and rigour. S Sivaram Paul Flory was born on 19 June 1910 in Sterling, Illinois. He (www.swaminathansivaram.in) obtained his first degree in chemistry from Manchester College, is currently a Honorary Indiana, a liberal arts college. As in the case of Carothers, he Professor and INSA Senior too was deeply influenced by his teacher of chemistry, Professor Scientist at the Indian Institute of Science Education Carl Holl at Manchester College, and was encouraged by him to and Research, Pune. Prior to pursue a doctoral degree in chemistry. Flory pursued his doctoral this, he was a education under the supervision of Professor H L Johnston at the CSIR-Bhatnagar Fellow Ohio State University, Columbus, Ohio, and obtained his PhD in (2011–16) and Director of CSIR-NCL (2002–2010). 1934 on a study of the photochemistry of nitric oxide. Nothing Apart from pursuing in his early academic career gives a glimpse of what Flory would research in polymer become in his later life; and the indelible footprints he would chemistry, Sivaram is a keen leave on the history of chemistry. student of history of science and the origin and evolution Much of Flory’s early inspiration that led him on a road not so of thoughts that drive the well trodden, came from Carothers.
    [Show full text]
  • Emergence of Research and Innovation Activities in the Chemical Industry at the Beginning of the Twentieth Century: the Case of Ig Farben and Du Pont
    EMERGENCE OF RESEARCH AND INNOVATION ACTIVITIES IN THE CHEMICAL INDUSTRY AT THE BEGINNING OF THE TWENTIETH CENTURY: THE CASE OF IG FARBEN AND DU PONT A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF SOCIAL SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY MUHSİN DOĞAN IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE DEPARTMENT OF SCIENCE AND TECHNOLOGY POLICY STUDIES APRIL 2018 PLAGIARISM I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name: Muhsin Doğan Signature: iii ABSTRACT EMERGENCE OF RESEARCH AND INNOVATION ACTIVITIES IN THE CHEMICAL INDUSTRY AT THE BEGINNING OF THE TWENTIETH CENTURY: THE CASE OF IG FARBEN AND DU PONT Doğan, Muhsin Ph.D., Department of Science and Technology Policy Studies Supervisor: Assoc. Prof. Dr. İbrahim Semih Akçomak April 2018, 243 pages In the 19th Century, after constant investments by governments and private sector to Chemical industry, Germany and the USA rised in terms of technological leadership, technological infrastructure and human capital for a long period. In these countries, there had been their own unique National Systems of Innovation. Thanks to this process, two giant chemical firms – IG Farben in Germany and DuPont in the US have come to existence. Each of these firms had successful innovation paths throughout their history. Their innovation performance in synthetic chemicals clearly demonstrates the vital importance of a sound, solid National Innovation System.
    [Show full text]