The Contributions of Arab Civilization to Mathematics and Science
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Texts in Transit in the Medieval Mediterranean
Texts in Transit in the medieval mediterranean Edited by Y. Tzvi Langermann and Robert G. Morrison Texts in Transit in the Medieval Mediterranean Texts in Transit in the Medieval Mediterranean Edited by Y. Tzvi Langermann and Robert G. Morrison Th e Pennsylvania State University Press University Park, Pennsylvania This book has been funded in part by the Minerva Center for the Humanities at Tel Aviv University and the Bowdoin College Faculty Development Committee. Library of Congress Cataloging- in- Publication Data Names: Langermann, Y. Tzvi, editor. | Morrison, Robert G., 1969– , editor. Title: Texts in transit in the medieval Mediterranean / edited by Y. Tzvi Langermann and Robert G. Morrison. Description: University Park, Pennsylvania : The Pennsylvania State University Press, [2016] | Includes bibliographical references and index. Summary: “A collection of essays using historical and philological approaches to study the transit of texts in the Mediterranean basin in the medieval period. Examines the nature of texts themselves and how they travel, and reveals the details behind the transit of texts across cultures, languages, and epochs”— Provided by Publisher. Identifiers: lccn 2016012461 | isbn 9780271071091 (cloth : alk. paper) Subjects: lcsh: Transmission of texts— Mediterranean Region— History— To 1500. | Manuscripts, Medieval— Mediterranean Region. | Civilization, Medieval. Classification: lcc z106.5.m43 t49 2016 | ddc 091 / .0937—dc23 lc record available at https:// lccn .loc .gov /2016012461 Copyright © 2016 The Pennsylvania State University All rights reserved Printed in the United States of America Published by The Pennsylvania State University Press, University Park, PA 16802–1003 The Pennsylvania State University Press is a member of the Association of American University Presses. -
AL-KINDI 'Philosopher of the Arabs' Abū Yūsuf Yaʿqūb Ibn Isḥāq Al
AL-KINDI ‘Philosopher of the Arabs’ – from the keyboard of Ghurayb Abū Yūsuf Ya ʿqūb ibn Is ḥāq Al-Kindī , an Arab aristocrat from the tribe of Kindah, was born in Basrah ca. 800 CE and passed away in Baghdad around 870 (or ca. 196–256 AH ). This remarkable polymath promoted the collection of ancient scientific knowledge and its translation into Arabic. Al-Kindi worked most of his life in the capital Baghdad, where he benefitted from the patronage of the powerful ʿAbb āssid caliphs al- Ma’mūn (rg. 813–833), al-Muʿta ṣim (rg. 833–842), and al-Wāthiq (rg. 842–847) who were keenly interested in harmonizing the legacy of Hellenic sciences with Islamic revelation. Caliph al-Ma’mūn had expanded the palace library into the major intellectual institution BAYT al-ḤIKMAH (‘Wisdom House ’) where Arabic translations from Pahlavi, Syriac, Greek and Sanskrit were made by teams of scholars. Al-Kindi worked among them, and he became the tutor of Prince A ḥmad, son of the caliph al-Mu ʿtasim to whom al-Kindi dedicated his famous work On First Philosophy . Al-Kindi was a pioneer in chemistry, physics, psycho–somatic therapeutics, geometry, optics, music theory, as well as philosophy of science. His significant mathematical writings greatly facilitated the diffusion of the Indian numerals into S.W. Asia & N. Africa (today called ‘Arabic numerals’ ). A distinctive feature of his work was the conscious application of mathematics and quantification, and his invention of specific laboratory apparatus to implement experiments. Al-Kindi invented a mathematical scale to quantify the strength of a drug; as well as a system linked to phases of the Moon permitting a doctor to determine in advance the most critical days of a patient’s illness; while he provided the first scientific diagnosis and treatment for epilepsy, and developed psycho-cognitive techniques to combat depression. -
On the Use of Coptic Numerals in Egypt in the 16 Th Century
ON THE USE OF COPTIC NUMERALS IN EGYPT IN THE 16 TH CENTURY Mutsuo KAWATOKO* I. Introduction According to the researches, it is assumed that the culture of the early Islamic period in Egypt was very similar to the contemporary Coptic (Qibti)/ Byzantine (Rumi) culture. This is most evident in their language, especially in writing. It was mainly Greek and Coptic which adopted the letters deriving from Greek and Demotic. Thus, it was normal in those days for the official documents to be written in Greek, and, the others written in Coptic.(1) Gold, silver and copper coins were also minted imitating Byzantine Solidus (gold coin) and Follis (copper coin) and Sassanian Drahm (silver coin), and they were sometimes decorated with the representation of the religious legends, such as "Allahu", engraved in a blank space. In spite of such situation, around A. H. 79 (698), Caliph 'Abd al-Malik b. Marwan implemented the coinage reformation to promote Arabisation of coins, and in A. H. 87 (706), 'Abd Allahi b. 'Abd al-Malik, the governor- general of Egypt, pursued Arabisation of official documentation under a decree by Caliph Walid b. 'Abd al-Malik.(2) As a result, the Arabic letters came into the immediate use for the coin inscriptions and gradually for the official documents. However, when the figures were involved, the Greek or the Coptic numerals were used together with the Arabic letters.(3) The Abjad Arabic numerals were also created by assigning the numerical values to the Arabic alphabetic (abjad) letters just like the Greek numerals, but they did not spread very much.(4) It was in the latter half of the 8th century that the Indian numerals, generally regarded as the forerunners of the Arabic numerals, were introduced to the Islamic world. -
Optics, Basra, Cairo, Spectacles
International Journal of Optics and Applications 2014, 4(4): 110-113 DOI: 10.5923/j.optics.20140404.02 Alhazen, the Founder of Physiological Optics and Spectacles Nāsir pūyān (Nasser Pouyan) Tehran, 16616-18893, Iran Abstract Alhazen (c. 965 – c. 1039), Arabian mathematician and physicist with an unknown actual life who laid the foundation of physiological optics and came within an ace of discovery of the use of eyeglasses. He wrote extensively on algebra, geometry, and astronomy. Just the Beginnings of the 13th century, in Europe eyeglasses were used as an aid to vision, but Alhazen’s book “Kitab al – Manazir” (Book of Optics) included theories on refraction, reflection and the study of lenses and gave the first account of vision. It had great influence during the Middle Ages. In it, he explained that twilight was the result of the refraction of the sun’s rays in the earth’s atmosphere. The first Latin translation of Alhazen’s mathematical works was written in 1210 by a clergyman from Sussex, in England, Robert Grosseteste (1175 – 1253). His treatise on astrology was printed in Latin at Basle in 1572. Alhazen who was from Basra died in Cairo at the age of 73 (c. 1039). Keywords Optics, Basra, Cairo, Spectacles Ibn al-Haytham (c. 965 – c. 1038), known in the West who had pretended insane, once more was released from the Alhazen, and Avenna than1, who is considered as the father prison and received his belongings, and never applied for any of modern optics. He was from Basra [1] (in Iraq) and position. received his education in this city and Baghdad, but nothing is known about his actual life and teachers. -
Alhacen's Theory of Visual Perception: a Critical Edition, With
Alhacen’s Theory of Visual Perception: A Critical Edition, with Eng- lish Translation and Commentary, of the First Three Books of Alha- cen’s De Aspectibus, the Medieval Latin Version of Ibn al-Haytham’s Kit¯abal-Man¯az.ir by A. Mark Smith Transactions of the American Philosophical Society 91.4–5. Philadel- phia: American Philosophical Society, 2001. Pp. clxxxi+819. ISBN 0– 87169–914–1. Paper $32.00 Reviewed by Glen M. Cooper Brigham Young University [email protected] Before launching into a review of this fine edition, a brief discussion of the name ‘Alhacen’ is in order. Most scholars are used to seeing the Latin form of the name of the Arab scientist, Ab¯u cAl¯ıal-Has.an ibn al-Has.an ibn al-Haytham, or Ibn al-Haytham, as ‘Alhazen’. But, as Professor Smith argues, Alhacen is an attested form in the Latin, and is closer to al-Has.an, one of his names (as long as the ‘c’ is given a ‘soft’ ‘s’ sound). In fact, according to Smith, the form ‘Alhazen’ does not appear later, and seems to originate with Risner [1572] in his edition of the Optica. Though as an Arabist I would prefer to refer to Alhacen as Ibn al-Haytham, for the sake of consistency and in harmony with Smith’s edition, I shall refer to him as Alhacen throughout. Professor Smith has been active in the field of the history of optics since at least the 1980s. He has published several excellent articles and editions and is certainly well-qualified to produce the present edition. -
An Analysis of the Contributions of the Medieval Muslim Scholars to Medical Science
Manarat International University Studies, 5(1), 2015 ISLAM AND MODERN SCIENCE: AN ANALYSIS OF THE CONTRIBUTIONS OF THE MEDIEVAL MUSLIM SCHOLARS TO MEDICAL SCIENCE Dr. Muhammad Obaidullah ABSTRACT The primary objective of this paper is to depict the real-time contributions made by the Muslim scientists and researchers in the area of medical science during the medieval period. Many inscribed write-ups, books and Encyclopedias have been written and published on the various areas of medical science by the eminent Muslim scholars during the medieval period. It is acknowledged by the prominent scientists, historians and philosophers that the contributions of Muslim researchers prevalently shaped the science and philosophy into the form that we see it today. However, there is a tendency in the western society to ignore the contribution of Muslim scientists in the historical development of medical science. Western writers have given little prominence to Islamic Scientific and intellectual contributions to this field. But the fact is that the Muslims carried the torch of science in an age when no other civilization was capable of doing so. The current study would also shed light on the underlying reasons as to why Muslims today are not able to contribute to the development of sciences including the medical science like their golden age. This will conclude by furnishing some suggestions to improve the current devastating state of Muslims in the development of sciences. The methodologies applied in this study are descriptive and analytic. Keywords: Science, Medical Science, Scientist, West, Islam & Muslim, 1. INTRODUCTION From the very beginning Islam encouraged the pursuit of science and favored progress. -
Arithmetical Proofs in Arabic Algebra Jeffery A
This article is published in: Ezzaim Laabid, ed., Actes du 12è Colloque Maghrébin sur l'Histoire des Mathématiques Arabes: Marrakech, 26-27-28 mai 2016. Marrakech: École Normale Supérieure 2018, pp 215-238. Arithmetical proofs in Arabic algebra Jeffery A. Oaks1 1. Introduction Much attention has been paid by historians of Arabic mathematics to the proofs by geometry of the rules for solving quadratic equations. The earliest Arabic books on algebra give geometric proofs, and many later algebraists introduced innovations and variations on them. The most cited authors in this story are al-Khwārizmī, Ibn Turk, Abū Kāmil, Thābit ibn Qurra, al-Karajī, al- Samawʾal, al-Khayyām, and Sharaf al-Dīn al-Ṭūsī.2 What we lack in the literature are discussions, or even an acknowledgement, of the shift in some authors beginning in the eleventh century to give these rules some kind of foundation in arithmetic. Al-Karajī is the earliest known algebraist to move away from geometric proof, and later we see arithmetical arguments justifying the rules for solving equations in Ibn al-Yāsamīn, Ibn al-Bannāʾ, Ibn al-Hāʾim, and al-Fārisī. In this article I review the arithmetical proofs of these five authors. There were certainly other algebraists who took a numerical approach to proving the rules of algebra, and hopefully this article will motivate others to add to the discussion. To remind readers, the powers of the unknown in Arabic algebra were given individual names. The first degree unknown, akin to our �, was called a shayʾ (thing) or jidhr (root), the second degree unknown (like our �") was called a māl (sum of money),3 and the third degree unknown (like our �#) was named a kaʿb (cube). -
Arabic Numeral
CHAPTER 4 Number Representation and Calculation Copyright © 2015, 2011, 2007 Pearson Education, Inc. Section 4.4, Slide 1 4.4 Looking Back at Early Numeration Systems Copyright © 2015, 2011, 2007 Pearson Education, Inc. Section 4.4, Slide 2 Objectives 1. Understand and use the Egyptian system. 2. Understand and use the Roman system. 3. Understand and use the traditional Chinese system. 4. Understand and use the Ionic Greek system. Copyright © 2015, 2011, 2007 Pearson Education, Inc. Section 4.4, Slide 3 The Egyptian Numeration System The Egyptians used the oldest numeration system called hieroglyphic notation. Copyright © 2015, 2011, 2007 Pearson Education, Inc. Section 4.4, Slide 4 Example: Using the Egyptian Numeration System Write the following numeral as a Hindu-Arabic numeral: Solution: Using the table, find the value of each of the Egyptian numerals. Then add them. 1,000,000 + 10,000 + 10,000 + 10 + 10 + 10 + 1 + 1 + 1 + 1 = 1,020,034 Copyright © 2015, 2011, 2007 Pearson Education, Inc. Section 4.4, Slide 5 Example: Using the Egyptian Numeration System Write 1752 as an Egyptian numeral. Solution: First break down the Hindu-Arabic numeral into quantities that match the Egyptian numerals: 1752 = 1000 + 700 + 50 + 2 = 1000 + 100 + 100 + 100 + 100 + 100 + 100 + 100 + 10 + 10 + 10 + 10 + 10 + 1 + 1 Now use the table to find the Egyptian symbol that matches each quantity. Thus, 1752 can be expressed as Copyright © 2015, 2011, 2007 Pearson Education, Inc. Section 4.4, Slide 6 The Roman Numeration System Roman I V X L C D M Numeral Hindu- 1 5 10 50 100 500 1000 Arabic Numeral The Roman numerals were used until the eighteenth century and are still commonly used today for outlining, on clocks, and in numbering some pages in books. -
Lecture: Islamic Optics and Italian Renaissance Representation: Naturalism and Human Nature 1
Lecture: Islamic optics and Italian Renaissance representation: Naturalism and Human Nature 1. Ibn al-Haytham (Alhazen) and his importance a. Alhazen was the greatest and most influential contributor to Western Europe science of optics.ed1 b. Ibn al-Haytham used experimental evidence to develop a remarkably accurate theory of vision.2 He introduced the scientific method. 2. Kitab al-Manazir or Book of Optics a. Alhazen’s Kitab al-Manazir or the Book of Optics, was published sometime between 1028 [418 A.H.] and 1018 [429 A.H.] and was incorporated throughout the core of post-medieval Western culture.3 b. It was introduced to the West about 1200 and became the prime source for thirteenth century optical investigators.7345 c. The book initiated a chain of development of the modern understanding of optics as well as understandings of two dimensional pictorial representations of three dimensional space.6 d. The translation of the Book of Optics was absorbed by medieval optical scientists, Roger Bacon, Erazmus Witelo, and John Pecham, whose subsequent work had enormous influence on the progression of optical understandings throughout the centuries that immediately followed.7 e. Ghiberti contributed to Alberti’s discussion about a decade later and relied heavily optical theories of Pecham and Witelo, which relied heavily on Alhazen.8 f. The Book of Optic and the Italian Renaissance i. It was translated into Italian in the fourteenth century and a version was extracted and copied by Ghiberti in his Commentari. 73910 ii. There is a parallelism between Alberti and Alhazen in that both understood spatial perceptions as both optical as well as cognitive. -
Origin of the Numerals Al-Biruni's Testimony
Origin of the numerals Al-Biruni’s testimony Ahmed Boucenna Laboratoire DAC, Department of Physics, Faculty of Sciences, Ferhat Abbas University 19000 Stif, Algeria [email protected] [email protected] Abstract The origin of the numerals that we inherited from the arabo-Islamic civilization remained one enigma. The hypothesis of the Indian origin remained, with controversies, without serious rival. It was the dominant hypothesis since more of one century. Its partisans found to it and constructed a lot of arguments. The testimonies of the medieval authors have been interpreted to its advantage. The opposite opinions have been dismissed and ignored. An amalgam between the history of our modern numerals and the Indian mathematics history is made. Rational contradictions often passed under silence. A meticulous observation of the numerals permits to affirm that our numerals are in fact more or less modified Arabic letters. The "Ghubari" shape of the numerals shows that the symbol of a numeral corresponds to the Arabic letter whose numerical value is equal to this numeral. The numerals don't have a simple resemblance with some Arabic letters, but every number looks like the Arabic letter whose numerical value is equal to this numeral. The elements of the ''Abjadi'' calculation gives us a theoretical support, independent of the letters and numerals, witch explains our observation. Besides a re-lecture of the testimonies of the medieval authors, particularly the testimony of Al-Biruni, that is probably at the origin of all others testimonies speaking of the Indian origin of the numerals, is in agreement with the fact that our numerals are Arabic letters. -
Islamic Mathematics
Islamic Mathematics Elizabeth Rogers MATH 390: Islamic Mathematics Supervised by Professor George Francis University of Illinois at Urbana-Champaign August 2008 1 0.1 Abstract This project will provide a summary of the transmission of Greek mathe- matics through the Islamic world, the resulting development of algebra by Muhammad ibn Musa al-Khwarizmi, and the applications of Islamic algebra in modern mathematics through the formulation of the Fundamental Theo- rem of Algebra. In addition to this, I will attempt to address several cultural issues surrounding the development of algebra by Persian mathematicians and the transmission of Greek mathematics through Islamic mathematicians. These cultural issues include the following questions: Why was the geometry of Euclid transmitted verbatim while algebra was created and innovated by Muslim mathematicians? Why didn't the Persian mathematicians expand or invent new theorems or proofs, though they preserved the definition-theorem-proof model for ge- ometry? In addition, why did the definition-theorem-proof model not carry over from Greek mathematics (such as geometry) to algebra? Why were most of the leading mathematicians, in this time period, Mus- lim? In addition, why were there no Jewish mathematicians until recently? Why were there no Orthodox or Arab Christian mathematicians? 0.2 Arabic Names and Transliteration Arabic names are probably unfamiliar to many readers, so a note on how to read Arabic names may be helpful. A child of a Muslim family usually receives a first name ('ism), followed by the phrase \son of ··· "(ibn ··· ). For example, Th¯abitibn Qurra is Th¯abit,son of Qurra. Genealogies can be combined; for example, Ibr¯ah¯ımibn Sin¯anibn Th¯abitibn Qurra means that Ibr¯ah¯ımis the son of Sin¯an,grandson of Th¯abit,and great-grandson of Qurra. -
Science in the Medieval Islamic World Was the Science Developed And
Science in the medieval Islamic world was the science developed and practised during the Islamic Golden Age under the Umayyads of Córdoba, the Abbadids of Seville, the Samanids, the Ziyarids, the Buyids in Persia, the Abbasid Caliphate and beyond, spanning the period roughly between 786 and 1258. Islamic scientific achievements encompassed a wide range of subject areas, especially astronomy, mathematics, and medicine. Medieval Islamic science had practical purposes as well as the goal of understanding. For example, astronomy was useful for determining the Qibla, the direction in which to pray, botany had practical application in agriculture, as in the works of Ibn Bassal and Ibn al-'Awwam, and geography enabled Abu Zayd al- Balkhi to make accurate maps. Islamic mathematicians such as Al- Khwarizmi, Avicenna and Jamshīd al-Kāshī made advances in algebra, trigonometry, geometry and Arabic numerals. Islamic doctors described diseases like smallpox and measles, and challenged classical Greek medical theory. Al-Biruni, Avicenna and others described the preparation of hundreds of drugs made from medicinal plants and chemical compounds. Islamic physicists such as Ibn Al-Haytham, Al-Bīrūnī and others studied optics and mechanics as well as astronomy, criticised Aristotle's view of motion. The significance of medieval Islamic science has been debated by historians. The traditionalist view holds that it lacked innovation, and was mainly important for handing on ancient knowledge to medieval Europe. The revisionist view holds that it constituted a scientific revolution. Whatever the case, science flourished across a wide area around the Mediterranean and further afield, for several centuries, in a wide range of institutions.