Planet Signatures in the Chemical Composition of Sun-Like Stars
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Kepler-452B Is Not a New Earth a Twin of the Sun-Jupiter System
cover EN:l'astrofilo 28/08/15 10:12 Page 1 THE FREE MULTIMEDIA MAGAZINE THAT KEEPS YOU UPDATED ON WHAT IS HAPPENING IN SPACE Bi-monthly magazine of scientific and technical information ✶ September-October 2015 issue astonishing PLUTO Kepler-452b is not a new Earth A twinofthe Sun-Jupiter system www.astropublishing.com ✶ ita.astropublishing.com ✶ [email protected] colophon EN:l'astrofilo 28/08/15 10:17 Page 3 SUMMARY BI-MONTHLY MAGAZINE OF SCIENTIFIC AND TECHNICAL INFORMATION Astonishing Pluto FREELY AVAILABLE THROUGH A faultless mission, that of New Horizons: after a journey of nine and a half years it finally made its THE INTERNET rendezvous with Pluto one minute earlier than predicted and performed its task in the best of ways, 4 revealing a world remarkably more lively and varied than we could have imagined. In these pages... September-October 2015 Kepler-452b is not a new Earth Discovering a planet very similar to ours, at just the right distance from a star identical to the Sun, would be an important step forward in the search for extraterrestrial life. The rush to reach this goal 18 could, however, make us overly optimistic and lead us to define the same as Earth a planet that in... First detection of lithium from an exploding star The light chemical element lithium is one of the few elements that is predicted to have been created by the Big Bang, 13.8 billion years ago. But understanding the amounts of lithium observed in stars around 26 us today in the Universe has given astronomers headaches. -
Abstracts Connecting to the Boston University Network
20th Cambridge Workshop: Cool Stars, Stellar Systems, and the Sun July 29 - Aug 3, 2018 Boston / Cambridge, USA Abstracts Connecting to the Boston University Network 1. Select network ”BU Guest (unencrypted)” 2. Once connected, open a web browser and try to navigate to a website. You should be redirected to https://safeconnect.bu.edu:9443 for registration. If the page does not automatically redirect, go to bu.edu to be brought to the login page. 3. Enter the login information: Guest Username: CoolStars20 Password: CoolStars20 Click to accept the conditions then log in. ii Foreword Our story starts on January 31, 1980 when a small group of about 50 astronomers came to- gether, organized by Andrea Dupree, to discuss the results from the new high-energy satel- lites IUE and Einstein. Called “Cool Stars, Stellar Systems, and the Sun,” the meeting empha- sized the solar stellar connection and focused discussion on “several topics … in which the similarity is manifest: the structures of chromospheres and coronae, stellar activity, and the phenomena of mass loss,” according to the preface of the resulting, “Special Report of the Smithsonian Astrophysical Observatory.” We could easily have chosen the same topics for this meeting. Over the summer of 1980, the group met again in Bonas, France and then back in Cambridge in 1981. Nearly 40 years on, I am comfortable saying these workshops have evolved to be the premier conference series for cool star research. Cool Stars has been held largely biennially, alternating between North America and Europe. Over that time, the field of stellar astro- physics has been upended several times, first by results from Hubble, then ROSAT, then Keck and other large aperture ground-based adaptive optics telescopes. -
Radial Velocity Precision of ESPRESSO Through the Analysis of the Solar Twin HIP 11915
Draft version August 10, 2021 Typeset using LATEX modern style in AASTeX63 Radial velocity precision of ESPRESSO through the analysis of the solar twin HIP 11915 Yuri Netto,1 Diego Lorenzo-Oliveira,1 Jorge Melendez,´ 1 Jhon Yana Galarza,1 Raphaelle¨ D. Haywood,2 Lorenzo Spina,3 and Leonardo A. dos Santos4 1Universidade de S~aoPaulo, Instituto de Astronomia, Geof´ısica e Ci^enciasAtmosf´ericas (IAG), Departamento de Astronomia, Rua do Mat~ao1226, Cidade Universit´aria,05508-900, SP, Brazil 2Astrophysics Group, University of Exeter, Exeter EX4 4QL, UK 3INAF Osservatorio Astronomico di Padova, vicolo dell'Osservatorio 5, 35122, Padova, Italy 4Observatoire Astronomique de l'Universit´ede Gen`eve,Chemin Pegasi 51, 1290 Versoix, Switzerland (Received xxxx; Revised yyyy; Accepted zzzz) ABSTRACT Different stellar phenomena affect radial velocities (RVs), causing variations large enough to make it difficult to identify planet signals from the stellar variability. RV variations caused by stellar oscillations and granulation can be reduced through some methods, but the impact of rotationally modulated magnetic activity on RV, due to stellar active regions is harder to correct. New instrumentation promises an improve- ment in precision of one order of magnitude, from about 1 m/s, to about 10 cm/s. In this context, we report our first results from 24 spectroscopic ESPRESSO/VLT observations of the solar twin star HIP 11915, spread over 60 nights. We used a Gaussian Process approach and found for HIP 11915 a RV residual RMS scatter of about 20 cm s−1, representing an upper limit for the performance of ESPRESSO. Keywords: techniques: radial velocities - methods: data analysis - stars: individual: HIP 11915 arXiv:2108.04061v1 [astro-ph.SR] 9 Aug 2021 1. -
Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55 -
Determination of Stellar Parameters for M-Dwarf Stars: the NIR Approach
Determination of stellar parameters for M-dwarf stars: the NIR approach by Daniel Thaagaard Andreasen A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Departamento de Fisica e Astronomia University of Porto c Copyright 2017 by Daniel Thaagaard Andreasen Dedication To Linnea, Henriette, Rico, and Else For always supporting me ii Acknowledgements When doing a PhD it is important to remember it is more a team effort than the work of an individual. This is something I learned quickly during the last four years. Therefore there are several people I would like to thank. First and most importantly are my two supervisors, Sérgio and Nuno. They were after me in the beginning of my studies because I was too shy to ask for help; something that I quickly learned I needed to do. They always had their door open for me and all my small questions. It goes without saying that I am thankful for all their guidance during my studies. However, what I am most thankful for is the freedom I have had to explorer paths and ideas on my own, and with them safely on the sideline. This sometimes led to failures and dead ends, but it make me grow as a researcher both by learning from my mistake, but also by prioritising my time. When I thank Sérgio and Nuno, my official supervisors, I also have to thank Elisa. She has been my third unofficial supervisor almost from the first day. Although she did not have any experience with NIR spectroscopy, she was never afraid of giving her opinion and trying to help. -
Arxiv:1011.1177V1
Astronomy & Astrophysics manuscript no. 15346 c ESO 2018 October 25, 2018 Modeling of the Vela complex including the Vela supernova remnant, the binary system γ2 Velorum, and the Gum nebula I. Sushch1,2, B. Hnatyk3, and A. Neronov4 1 Humboldt Universit¨at zu Berlin, Institut f¨ur Physik, Berlin, Germany 2 National Taras Shevchenko University of Kyiv, Department of Physics, Kyiv, Ukraine 3 National Taras Shevchenko University of Kyiv, Astronomical Observatory, Kyiv, Ukraine 4 ISDC, Versoix, Switzerland Received 07 July 2010; accepted 18 October 2010 ABSTRACT We study the geometry and dynamics of the Vela complex including the Vela supernova remnant (SNR), the binary system γ2 Velorum and the Gum nebula. We show that the Vela SNR belongs to a subclass of non-Sedov adiabatic remnants in a cloudy interstellar medium (ISM), the dynamics of which is determined by the heating and evaporation of ISM clouds. We explain observable charac- teristics of the Vela SNR with a SN explosion with energy 1.4 × 1050 ergs near the step-like boundary of the ISM with low intercloud densities (∼ 10−3 cm−3) and with a volume-averaged density of clouds evaporated by shock in the north-east (NE) part about four times higher than the one in the south-west (SW) part. The observed asymmetry between the NE and SW parts of the Vela SNR could be explained by the presence of a stellar wind bubble (SWB) blown by the nearest-to-the Earth Wolf-Rayet (WR) star in the γ2 Velorum system. We show that the size and kinematics of γ2 Velorum SWB agree with predictions of numerical calculations for 2 the evolution of the SWB of Mini = 35M⊙ star. -
Abundâncias Qu´Imicas De Estrelas An˜As G E K E Modelos
Universidade de S~aoPaulo Instituto de Astronomia, Geof´ısicae Ci^enciasAtmosf´ericas Departamento de Astronomia Mar´ılia Gabriela Cardoso Corr^eaCarlos Abund^anciasqu´ımicasde estrelas an~asG e K e modelos de evolu¸c~aoestelar para [Fe/H] = −1:8 e [Fe/H] = −1:0 com enriquecimento-α S~aoPaulo 2020 Mar´ılia Gabriela Cardoso Corr^eaCarlos Abund^anciasqu´ımicasde estrelas an~asG e K e modelos de evolu¸c~aoestelar para [Fe/H] = −1:8 e [Fe/H] = −1:0 com enriquecimento-α Tese apresentada ao Departamento de Astro- nomia do Instituto de Astronomia, Geof´ısicae Ci^enciasAtmosf´ericasda Universidade de S~ao Paulo como requisito parcial para a obten¸c~ao do t´ıtulode Doutor em Ci^encias. Area´ de Concentra¸c~ao:Astronomia Orientador: Prof. Dr. Jorge Mel´endezMo- reno Vers~aoCorrigida. O original encontra-se dis- pon´ıvel na Unidade. S~aoPaulo 2020 Aos meus pais Silvia e Edmar Agradecimentos A` minha fam´ıliaque, com paci^encia,me ajudou muito durante o doutorado. Aos meus pais, Edmar e Silvia, pelo suporte emocional e financeiro em ´epoca t~aodif´ıcilde investimen- tos em ci^enciasno Brasil. Aos meus irm~aos,Amanda, Fernanda e Pedro, pelos momentos de descontra¸c~ao.Aos meus sobrinhos, Rafaela e Arthur, pelo carinho e brincadeiras. Ao meu orientador, Jorge Mel´endez,pelos ensinamentos, ajuda e paci^encia;sem o qual n~aoteria chegado at´eaqui. A` Professora Amanda Karakas, da Monash University, pela hospitalidade e todo o ensinamento adquirido durante meu aprendizado na Austr´alia. Aos meus amigos e colegas que tornaram essa jornada mais leve e descontra´ıda. -
Exoplanet.Eu Catalog Page 1 Star Distance Star Name Star Mass
exoplanet.eu_catalog star_distance star_name star_mass Planet name mass 1.3 Proxima Centauri 0.120 Proxima Cen b 0.004 1.3 alpha Cen B 0.934 alf Cen B b 0.004 2.3 WISE 0855-0714 WISE 0855-0714 6.000 2.6 Lalande 21185 0.460 Lalande 21185 b 0.012 3.2 eps Eridani 0.830 eps Eridani b 3.090 3.4 Ross 128 0.168 Ross 128 b 0.004 3.6 GJ 15 A 0.375 GJ 15 A b 0.017 3.6 YZ Cet 0.130 YZ Cet d 0.004 3.6 YZ Cet 0.130 YZ Cet c 0.003 3.6 YZ Cet 0.130 YZ Cet b 0.002 3.6 eps Ind A 0.762 eps Ind A b 2.710 3.7 tau Cet 0.783 tau Cet e 0.012 3.7 tau Cet 0.783 tau Cet f 0.012 3.7 tau Cet 0.783 tau Cet h 0.006 3.7 tau Cet 0.783 tau Cet g 0.006 3.8 GJ 273 0.290 GJ 273 b 0.009 3.8 GJ 273 0.290 GJ 273 c 0.004 3.9 Kapteyn's 0.281 Kapteyn's c 0.022 3.9 Kapteyn's 0.281 Kapteyn's b 0.015 4.3 Wolf 1061 0.250 Wolf 1061 d 0.024 4.3 Wolf 1061 0.250 Wolf 1061 c 0.011 4.3 Wolf 1061 0.250 Wolf 1061 b 0.006 4.5 GJ 687 0.413 GJ 687 b 0.058 4.5 GJ 674 0.350 GJ 674 b 0.040 4.7 GJ 876 0.334 GJ 876 b 1.938 4.7 GJ 876 0.334 GJ 876 c 0.856 4.7 GJ 876 0.334 GJ 876 e 0.045 4.7 GJ 876 0.334 GJ 876 d 0.022 4.9 GJ 832 0.450 GJ 832 b 0.689 4.9 GJ 832 0.450 GJ 832 c 0.016 5.9 GJ 570 ABC 0.802 GJ 570 D 42.500 6.0 SIMP0136+0933 SIMP0136+0933 12.700 6.1 HD 20794 0.813 HD 20794 e 0.015 6.1 HD 20794 0.813 HD 20794 d 0.011 6.1 HD 20794 0.813 HD 20794 b 0.009 6.2 GJ 581 0.310 GJ 581 b 0.050 6.2 GJ 581 0.310 GJ 581 c 0.017 6.2 GJ 581 0.310 GJ 581 e 0.006 6.5 GJ 625 0.300 GJ 625 b 0.010 6.6 HD 219134 HD 219134 h 0.280 6.6 HD 219134 HD 219134 e 0.200 6.6 HD 219134 HD 219134 d 0.067 6.6 HD 219134 HD -
¿Es Júpiter Un Planeta Raro?
TRABAJO DE FIN DE MÁSTER ¿Es Júpiter un planeta raro? Manuel Mallorquín Díaz Tutor: Víctor J. Sánchez Béjar Universidad de La Laguna Máster en Astrofísica Julio 2019 Abstract The discovery of exoplanets has grown exponentially in recent years, with about 4,000 exopla- nets being confirmed up to date. The appearance of new detection techniques together with the improvement of the astronomical instrumentation has allowed this advance. Observing the phy- sical properties of exoplanets, we realize that they are not homogeneously distributed in the mass-period diagrams but they form groups or families of planets according to their properties (Hot Jupiters, super-Earths, etc.). The aim of this work is to try to explain the low density of exoplanets in the mass-period diagram, where the jovian planets are located. The scarcity of discoveries of objects with characteristics similar to Jupiter can be due to different factors, inclu- ding the lack of precision in the detection techniques used or the low frequency of these planets. From previous studies in the literature, we can determine that around ∼ 3 − 6 % of solar-type stars contain jovian planets. From these statistical data, we are able to conclude that they does not seem to be very common planets, even when the definition of a jovian or Jupiter-like planet changes depending on which bibliography is consulted. In order to answer these questions, we will first begin with a brief historical introduction to exoplanets, providing some general information about the current state of the field, such as planets discovered up to date and the principal characteristics of their properties. -
Doctor of Philosophy
Study of Sun-like G Stars and Their Exoplanets Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Mr. SHASHANKA R. GURUMATH May, 2019 ABSTRACT By employing exoplanetary physical and orbital characteristics, aim of this study is to understand the genesis, dynamics, chemical abundance and magnetic field structure of Sun-like G stars and relationship with their planets. With reasonable constraints on selection of exoplanetary physical characteristics, and by making corrections for stellar rate of mass loss, a power law relationship between initial stellar mass and their exo- planetary mass is obtained that suggests massive stars harbor massive planets. Such a power law relationship is exploited to estimate the initial mass (1.060±0.006) M of the Sun for possible solution of “Faint young Sun paradox” which indeed indicates slightly higher mass compared to present mass. Another unsolved puzzle of solar system is angular momentum problem, viz., compare to Sun most of the angular momentum is concentrated in the solar system planets. By analyzing the exoplanetary data, this study shows that orbital angular momentum of Solar system planets is higher compared to orbital angular momentum of exoplanets. This study also supports the results of Nice and Grand Tack models that propose the idea of outward migration of Jovian planets during early history of Solar system formation. Furthermore, we have examined the influence of stellar metallicity on the host stars mass and exoplanetary physical and orbital characteristics that shows a non-linear relationship. Another important result is most of the planets in single planetary stellar systems are captured from the space and/or inward migration of planets might have played a dominant role in the final architecture of single planetary stellar systems. -
A Simple Method of Determining Archaeoastronomical Alignments in the Field
A Simple Method of Determining Archaeoastronomical Alignments in the Field TIMOTHY P. SEYMOUR STEPHEN J. EDBERG As an aid in achieving this goal, we have EDITOR'S NOTE: While it is not nor developed the following simplified algebraic mally our policy to publish papers of a purely expressions, derived from spherical trigo methodological nature, the following paper is nometry, which can be used to determine useful to archaeologists with an interest in whether or not a celestial object (such as the archaeoastronotny and can be employed in sun, moon, or particular star) of possible sig making observations of the type described in nificance will rise or set at a point on the the preceding paper. horizon indicated by an apparent alignment. The only field equipment required consists of ECAUSE of the recent interest on the a surveyor's transit, a book of trigonometric B part of archaeologists in the possible tables or hand calculator with trigonometric astronomical significance of various archaeo functions, and an inexpensive star atlas. In logical features, field archaeologists are addition, a great deal of preliminary analysis beginning to look for possible archaeoastro can be accomplished prior to going into the nomical alignments with ever-increasing field with nothing more complex than a topo vigilance. This awareness has resulted in a graphic map and a protractor. number of notable discoveries in the past Two equations are used in the calculations; several years and promises many more as one is a simplified version of the other. Which research continues. However, archaeologists equation is more appropriate will depend upon in the field face a number of problems in their the topographic conditions prevailing at the efforts to identify and describe such sites, not site. -