Field Bioassays of Synthetic Pheromones and Host Monoterpenes for Conophthorus Coniperda (Coleoptera: Scolytidae)

Total Page:16

File Type:pdf, Size:1020Kb

Field Bioassays of Synthetic Pheromones and Host Monoterpenes for Conophthorus Coniperda (Coleoptera: Scolytidae) PHYSIOLXICAL AND CHEMICAL ECOLOGY Field Bioassays of Synthetic Pheromones and Host Monoterpenes for Conophthorus coniperda (Coleoptera: Scolytidae) PETER DE GROOT,’ GART L. DEBARR,3 AND GORAN BIRGERSSON’,* Environ. Entomol. Z(2): 38-W (1998) ABSTRACT Four major monoterpenes, (i-)-cu-pinene, 1 (S)-( -)-/3-pinene, (R)-( t )-limonene, and myrcene are found in the cones of eastern white pines, Pinusstrobus L. Mixtures ofthese, as well as. u-pinene or P-pinene alone. increased catches of male white pine cone beetles, Conophthorus coniperda (Schwartz). in traps baited xvith the female sex pheromone, ( z)-trans-pityol. The mono- terpenes by themsekes as mistures or individually (a-pinene, /3-pinene) were not attractants for males or females. Traps baited with I r )-tram-pityol and wpinene caught as many, or significantly more beetles than those baited with pity01 and a four monoterpene mixture (1:l:l:l) used in seed orch‘ards in North Carolina, Ohio. and Virginia. Three beetle-produced compounds, conophthorin, tram-pinocarveol. and myrtenol did not enhance catches of males or females in ( z)-trans-pityol- baited traps. Racemic E-(k)- conophthorin. E-( -)- conophthorin, and E-( +)- conophthorin sig- nificantly reduced catches of males in traps baited with ( -c)-tran.s-pityol alone. Female C. coniperda were not attracted to any ofthe host- or beetle-produced compounds tested. The study demonstrated that traps \vith baits releasing (z)-t,ans-pityol at about lmgiwk with ( z)-a-pinene (98%pure) are potentially valuable tools for C conipwda pest management. Baited traps can be used to monitor C. cmipwdn populations or possibl>. to reduce seed losses in a beetle trap-out control strategy. N3 IVORDS Cor1oyl1fho17r.~ oniprr-da. pheromone. monoterpenes EASTERX WHY PISE. Pinu.sstr-obc~~ L.. is high]! desirable construct galleries. Evidence for a female-produced as lumber. To produce genetically improved planting pheromone for Conophthorus resinosae Hopkins and C. stock. forestr!- organizations ha\-e established seed or- coni~crda was presented by de Groot et al. (1991). In chards. The most destructke cone pest in these or- laborator!. bioassays with walking beetles. male C. chards is the \r,hite pine cone beetle. CU~X~~/~~~~O~~~S car~il~-rla showed strong responses to volatiles from coni~~~rcfa (Hedlin et al. 19SO: DeBarr et al. 19% de cones infested with female beetles or pairs of beetles. Groot 19%. 1990: Turgeon and de Groot 19921. \vhich while females reacted strongly to volatiles from pairs occurs throughout the range of eastern \\.hite pine of beetles in cones and to cones with male beetles. In (Wood 19S2) Current control options for C. cc~r~ilx~do the related species. Colzoplllhoruspo,lderosac~ Hopkins. in seed orchards are se\-erel!- limited. The En\-iron- males responded to odors from female-infested cones mental Protection Agene!. (EP.4) registration for car- ofponderosapine. Pinusponderosa Laws. in laboratoq bofuran, the onI!. insecticide \vith demonstrated effi- bioassavs, while females reacted to odors from male cat!. for C. cortipcrda control (DeBarr et al. 19S2). \vas beetlesin cones (Kinzer et al. 1972. Kinzer and Ree\.es recently canceled. Adult beetles ovellvintering in old 1976). cones on the forest floor can be killed b!. prescribed Pheromones from male and female C. conipcrda and fire. but this technique requires adequate fuel ;md C. rrsiwstre and volatiles from their host cones ha\-e ideal burning conditions to be successful (\f‘ade et al. been identified (Birgersson et al. 1995; Pierce et al. 1989). Development of effective semiochemical- 1995). The principal compound produced by female based pest manqement techniques to monitor and C. coni~~~Ia is ( + ) -trans-pityol, (2R,5S) -2- ( l- h!.- control C. corti/)c,r-t/o in seed orchards is highI!, desir- dros!.-l-methyletllyl)-5-methyltetrahydrofuran (Bir- able. gersson et al. 1995). The major compound produced In early spriq. female C. ccltti/Jc,r-t/o fl!, to the crowns b!. C. cmipcwla males is the spiroacetal, (XYS)-Y- oftrees to initiate cone attacks. The females nrejoined methyl-1.6-dioxaspiro [ 4.51 -decane hereafter called by nxtles (God\r.in ;lild Ode11 1965) once the! begin to conophthorin (de Croot 1992). Conophthorin is also produced by the females. Both pityol and conoph- thorin have 2 geometric and two optical isomers. Both sexes also produce lesser ~11~~0~11~tS Of t,~/JJW~iI~O- car\-eol. (-)-myrtenol, trams-verbenol and perilla ‘II- cohol (unpublished data). The major host \.olntiles released by beetle-infested I’. sfrol~rrs cones included the Inolmterpene Il!,dl-ocarl,ons, a-pinene. P-pinene. ni!.rcrne. linlonc~ne ;u~d ;L monoterpene ester. born! I April 19% DE Gnoor ET AL.: FIELD BIO.A~S.AU OF SYSTHETIC PHEROMONES 383 acetate. For other scolytids, particularly bark beetles. of conophthorin are reported in Pierce et al. (1995). host monoterpenes such as a-pinene and myrcene are The trams-pinocarveol was a gift from W. Francke and kno\vn to enhance the capture of beetles in traps ~X.S prepared from P-pinene (Aldrich, Milwaukee, baited \vith pheromones (Borden 1953. Borden et al. WI) according to Joshi et al. (1968). Myrtenol, bornyl 1987. Byers et al. 19%). acetate and the monoterpene hydrocarbons. (?)-a- We report the results of field experiments designed pinene (98% pure). (lS)-( -)-P-pinene (99%), (R)- to examine the response of C. coni~er~ln to traps baited (?)-limonene (97% pure). and myrcene (technical with \.arious combinations of the beetle-produced grade) were purchased from Aldrich. and n-octane compounds (i)-E-conophthorin, (+)-E-conoph- (>99% pure) was purchased from Sigma, St. Louis, thorin. ( - ) -E-conophthorin. ( i ) -cis-pityol, ( 2) - MO. tmns-pit!,ol. truns-pinocarveol, and myrtenol: the In experiment 1, cone oil was extracted from eastern host-produced compound borynl acetate; extracted white pine cones with pentane. The extract was fil- white pine cone oils. and the synthetic monoterpenes, tered through a column of silica gel to exclude resin cu-pinene. fl-pinene. myrcene. and limonene. acids. using pentane as the mobile phnse. The purified pine oil fraction was concentrated prior to use. In experiment 2. cone oil was obtained by steam distil- Materials and Xlethods lation (Pierce et al. 1995). Treatments. Nine experiments were conducted to Chemical Release Devices. Releasers for volatiles in test the effects of various compounds. alone or in esperiments 4 and 5 consisted of 5-cm lengths of combination. on the attractiveness of pityol in traps. 1.6-mm i.d. nonstick tubing, with cotton wicks, in- Experiment 1 compared beetle catches for (2)-E- serted through a hole cut in the screw-top of 2-ml glass conophthorin. ()_)-tmns-pityol (hereafter referred to vials (Birgersson et al. 1995). A spring clip was used to as conophthorin and pityol, respectively) and white attach the vial to one of the plastic rods between pine cone oils alone or in combination. The (+ ), (-) funnels 6 and 7 on each trap. Each vial contained isomers of -E-conophthorin and ( f )-E-conophthorin. volatiles formulated in a final volume of 2 ml of n- combined with pityol were examined in experiment 2. octane. with a release rate of 0.3 ml/24 h at 25°C. in the and in experiment 3. three ratios of trmwcis pityol laboratory. All baits for experiments 4 and 5 contained were compared. Experiment 4 was a subtractive bio- synthetic pheromones or host monoterpenes formu- assay where trap catches were compared for single lated in n-octane, and released at rates from lo-1,000 component deletions from treatments containing cone-equivalents, or beetle-equivalents per hour, (+)-truns-pityol, truns-pinocarveol, myrtenol, bornyl where 1 cone-equivalent or beetle-equivalent is the acetate and a mixture of (?)-a-pinene. (lS)-( -)-p- quantity of volatiles collected during aerations of one pinene. (R) - ( 2 ) -limonene, and myrcene (tech.) in a cone or beetle-infested cone for one h (unpublished 1:l:l:l mis. Different release rates of pity01 and host data). For experiment 4, the baits contained 66.7 pg monoterpenes were studied in experiment 5. In ex- (+)-trun.s-pity01 diluted in n-octane to achieve a re- periment 6. pityol and single deletions of monoter- lease rate of 10 female-equivalents/h. Treatments with penes from a mixture of o-pinene, P-pinene, limonene, monoterpenes contained cu-pinene, /3-pinene, myr- and myrcene were compared. Experiments 7,8, and 9 cene and limonene (1:l:l:l) or various combinations compared catches for pity01 alone or pity01 combined of three of the four monoterpenes (1:l:l). For each with cr-pinene or P-pinene. Experiments contained bait, 10 k liter of monoterpenes were diluted in n- the same unbaited traps as their controls, except ex- octane to achieve a release rate of 1.4 mg/d. For periments 4 and 5 where vials containing only n-oc- experiment 5, (2) -tram+pity01 was released at 10 fe- tane were used. male-equivalents/h (0.01 mg/d), 100 female-equiva- Study sites. The experiments were conducted from lents/h (0.1 mg/d) and 1,000 female-equivalents/h April to June 1990-1993, in the Beech Creek Seed (1.0 mgid). For experiment 6, baits released (k)- Orchard. 10 km south of Murphy, NC (experiments 1, trun.s-pity01 at 100 female-equivalents/h (0.1 mgi d) 4), and in ON, Canada, at the Orono Seed Orchard, and monoterpenes at 14.3 mg/d. The monoterpenes Orono (experiments 7-9)) and Pancake Bay Provincial were released at 1.4, 14.3, and 142.8 mgid. Park, 80 km north of Sault Ste. Marie (experiments 2, For all other experiments, capillary tubes 1.04mm 3, 6).
Recommended publications
  • Response of Tuta Absoluta Meyrick (Lepidoptera: Gelechiidae) to Different Pheromone
    1 Response of Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) to different pheromone 2 emission levels in greenhouse tomato crops 3 4 Sandra Vacas, Jesús López, Jaime Primo and Vicente Navarro-Llopis 5 6 Centro de Ecología Química Agrícola – Instituto Agroforestal del Mediterráneo (CEQA-IAM), 7 Universidad Politécnica de Valencia. Camino de Vera s/n, edificio 6C, 5ª planta. 46022 Valencia (Spain). 8 9 10 11 1 12 ABSTRACT 13 The response of Tuta absoluta (Lepidoptera: Gelechiidae) to different emission rates of its 14 pheromone, (3E,8Z,11Z)-tetradecatrienyl acetate, was evaluated in two greenhouse trials with 15 traps baited with mesoporous dispensers. For this purpose, weekly moth trap catches were 16 correlated with increasing pheromone emission levels by multiple regression analysis. 17 Pheromone release profiles of the dispensers were obtained by residual pheromone extraction and 18 gas chromatography quantification. In the first trial carried out in summer 2010, effect of 19 pheromone emission was significant as catches increased linearly with pheromone release rates 20 up to the highest studied level of 46.8 μg/d. A new trial was carried out in spring 2011 to evaluate 21 the effect of the emission factor when pheromone release rates were higher. Results demonstrated 22 that trap catches and pheromone emission fitted to a quadratic model, with maximum catches 23 obtained with a release level of 150.3 μg/d of (3E,8Z,11Z)-tetradecatrienyl acetate. This emission 24 value should provide enhanced attraction of T. absoluta and improve mass trapping, attract-and- 25 kill or monitoring techniques under greenhouse conditions in the Mediterranean area.
    [Show full text]
  • California Forest Insect and Disease Training Manual
    California Forest Insect and Disease Training Manual This document was created by US Forest Service, Region 5, Forest Health Protection and the California Department of Forestry and Fire Protection, Forest Pest Management forest health specialists. The following publications and references were used for guidance and supplemental text: Forest Insect and Disease Identification and Management (training manual). North Dakota Forest Service, US Forest Service, Region 1, Forest Health Protection, Montana Department of Natural Resources and Conservation and Idaho Department of Lands. Forest Insects and Diseases, Natural Resources Institute. US Forest Service, Region 6, Forest Health Protection. Forest Insect and Disease Leaflets. USDA Forest Service Furniss, R.L., and Carolin, V.M. 1977. Western forest insects. USDA Forest Service Miscellaneous Publication 1339. 654 p. Goheen, E.M. and E.A. Willhite. 2006. Field Guide to Common Disease and Insect Pests of Oregon and Washington Conifers. R6-NR-FID-PR-01-06. Portland, OR. USDA Forest Service, Pacific Northwest Region. 327 p. M.L. Fairweather, McMillin, J., Rogers, T., Conklin, D. and B Fitzgibbon. 2006. Field Guide to Insects and Diseases of Arizona and New Mexico. USDA Forest Service. MB-R3-16-3. Pest Alerts. USDA Forest Service. Scharpf, R. F., tech coord. 1993. Diseases of Pacific Coast Conifers. USDA For. Serv. Ag. Hndbk. 521. 199 p.32, 58. Tree Notes Series. California Department of Forestry and Fire Protection. Wood, D.L., T.W. Koerber, R.F. Scharpf and A.J. Storer, Pests of the Native California Conifers, California Natural History Series, University of California Press, 2003. Cover Photo: Don Owen. 1978. Yosemite Valley.
    [Show full text]
  • A Review of Pest Surveillance Techniques for Detecting Quarantine
    A review of pest surveillance techniques for detecting quarantine pests in Europe Sylvie Augustin, Neil Boonham, William Jan de Kogel, Pierre Donner, Massimo Faccoli, David Lees, Lorenzo Marini, Nicola Mori, Edoardo Petrucco Toffolo, Serge Quilici, et al. To cite this version: Sylvie Augustin, Neil Boonham, William Jan de Kogel, Pierre Donner, Massimo Faccoli, et al.. A review of pest surveillance techniques for detecting quarantine pests in Europe. Bulletin OEPP, 2012, 42 (3), pp.515-551. 10.1111/epp.2600. hal-02648312 HAL Id: hal-02648312 https://hal.inrae.fr/hal-02648312 Submitted on 29 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Bulletin OEPP/EPPO Bulletin (2012) 42 (3), 515–551 ISSN 0250-8052. DOI: 10.1111/epp.2600 A review of pest surveillance techniques for detecting quarantine pests in Europe* Sylvie Augustin1, Neil Boonham2, Willem J. De Kogel3, Pierre Donner4, Massimo Faccoli5, David C. Lees1, Lorenzo Marini5, Nicola Mori5, Edoardo Petrucco Toffolo5, Serge Quilici4, Alain Roques1, Annie Yart1 and Andrea Battisti5 1INRA, UR0633
    [Show full text]
  • Aggregation Pheromone of the Almond Bark Beetle Scolytus Amygdali (Coleoptera: Scolytidae) S
    Use of pheromones and other semiochemicals in integrated production IOBC wprs Bulletin Vol. 25(•) 2002 pp. •-• Aggregation pheromone of the almond bark beetle Scolytus amygdali (Coleoptera: Scolytidae) S. Ben-Yehuda, T. Tolasch,1 W. Francke,2 R. Gries,2 G. Gries,2 D. Dunkelblum and Z. Mendel Department of Entomology, ARO, The Volcani Center, Bet Dagan, 50250, Israel 1 Institute of Organic Chemistry, University of Hamburg, D-20146, Germany 2 Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada Abstract: The almond bark beetle (ABB), Scolytus amygdali (Coleoptera: Scolytidae), is a pest of stone fruits in the Mediterranean region and southern Europe. Adults feeding on buds cause most of the damage. Applications of non-selective insecticides, burning of dead trees and pruning slash are environmentally unsafe and are often ineffective for ABB control. Preliminary experiments with ABB colonizing branches indicated the existence of an aggregation pheromone, and prompted us to identify it. Volatiles emitted by female ABB boring into plum branches were collected on Porapak Q and eluted with hexane. GC-EAD analyses of volatile extracts, using female antennae as an electroan- tennographic detector, revealed four EAD-active candidate pheromone components, as follows: (3S,4S)-4-methyl-3-heptanol (SS-I), most abundant and EAD-active component; (3S,4S)-4-methyl-3- hexanol (SS-II); (5S,7S)-7-methyl-1,6-dioxaspiro[4,5]decane (III); and 7-methyl-1,6-dioxaspiro [4,5]dec-8-ene [IV], the first unsaturated spiroaketal found in insects. In field experiments (1994- 1998) using funnel traps baited with polyethylene pheromone dispensers, SS-I unlike SS-II was at- tractive by itself, while SS-I plus SS-II at a ratio of 2:1 was optimally attractive.
    [Show full text]
  • A Field Guide to Diseases and Insect Pests of Northern and Central
    2013 Reprint with Minor Revisions A FIELD GUIDE TO DISEASES & INSECT PESTS OF NORTHERN & CENTRAL ROCKY MOUNTAIN CONIFERS HAGLE GIBSON TUNNOCK United States Forest Service Department of Northern and Agriculture Intermountain Regions United States Department of Agriculture Forest Service State and Private Forestry Northern Region P.O. Box 7669 Missoula, Montana 59807 Intermountain Region 324 25th Street Ogden, UT 84401 http://www.fs.usda.gov/main/r4/forest-grasslandhealth Report No. R1-03-08 Cite as: Hagle, S.K.; Gibson, K.E.; and Tunnock, S. 2003. Field guide to diseases and insect pests of northern and central Rocky Mountain conifers. Report No. R1-03-08. (Reprinted in 2013 with minor revisions; B.A. Ferguson, Montana DNRC, ed.) U.S. Department of Agriculture, Forest Service, State and Private Forestry, Northern and Intermountain Regions; Missoula, Montana, and Ogden, Utah. 197 p. Formated for online use by Brennan Ferguson, Montana DNRC. Cover Photographs Conk of the velvet-top fungus, cause of Schweinitzii root and butt rot. (Photographer, Susan K. Hagle) Larvae of Douglas-fir bark beetles in the cambium of the host. (Photographer, Kenneth E. Gibson) FIELD GUIDE TO DISEASES AND INSECT PESTS OF NORTHERN AND CENTRAL ROCKY MOUNTAIN CONIFERS Susan K. Hagle, Plant Pathologist (retired 2011) Kenneth E. Gibson, Entomologist (retired 2010) Scott Tunnock, Entomologist (retired 1987, deceased) 2003 This book (2003) is a revised and expanded edition of the Field Guide to Diseases and Insect Pests of Idaho and Montana Forests by Hagle, Tunnock, Gibson, and Gilligan; first published in 1987 and reprinted in its original form in 1990 as publication number R1-89-54.
    [Show full text]
  • THE IDENTIFICATION of LARVAE of SOME SPECIES of BARK BEETLES BREEDING in CONIFEROUS TREES in EASTERN CANADA a THESIS Submitted T
    THE IDENTIFICATION OF LARVAE OF SOME SPECIES OF BARK BEETLES BREEDING IN CONIFEROUS TREES IN EASTERN CANADA A THESIS Submitted to the Faculty of Graduate Studies and Research of McGill University By J.B.Thomas In Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy October, 1954 TABLE OF CON'I»JTS I. Introduction . 1 II. Review of Literature ...................................... 3 III. Materials and Methods ..................................... 6 IV. Species of Bark Beetles Examined •••••••••••.•••••••••.•••• 9 V. Description of the External Anatomy of gylurgops pinifex (Fitch) as Typical of Scolytid Structure •••••••••••••••••• 12 A. General ............................................. 12 B. Head ................................................ 13 C. Mouthparts .......................................... 17 1. Labrum and Epipharyngeal Lining ................ 17 2. Mandible ....................................... le 3. Maxilla ........................................ 19 4. I...a.bium •••.•••.•••.•••••••••••••••••.•••••.••••• 20 Hypopharynx ••••• ............................... 21 D. Thorax and Abdomen .••..•.•.•.•........•...••.••..... 21 Dorsum ......................................... 22 Pleuron ........................................ 31 3. SterntlID •••.••••••••.••••••••••••.•••••••••••••• 33 VI. Comparative Anatomy of Species Studied . 36 A. General Discussion of Setal Nomenclature . 36 B. Integument Including Setal Pattern . 46 C. Head Capsule Including Setal Pattern ................ 53 D. Labrum ••••••••••.•••••••••••••••••••••••••••••••••••
    [Show full text]
  • Uso De Semioquímicos En El Control De Plagas. Estudios Básicos Y De Aplicación”
    UNIVERSIDAD POLITÉCNICA DE VALENCIA Departamento de Química CENTRO DE ECOLOGÍA QUÍMICA AGRÍCOLA (CEQA) INSTITUTO AGROFORESTAL DEL MEDITERRÁNEO (IAM) TESIS DOCTORAL: “Uso de semioquímicos en el control de plagas. Estudios básicos y de aplicación” Presentada por: Sandra Vacas González Directores: Vicente Navarro Llopis Jaime Primo Millo Valencia, Septiembre de 2011 Agradecimientos Son muchas las personas que han participado en esta tesis doctoral, y en mi vida, durante su realización, pero quisiera agradecer especialmente, a mis directores de tesis, el Profesor Jaime Primo y el Dr. Vicente Navarro, por todo su apoyo y por darme la oportunidad de aprender y trabajar a su lado. A todos mis compañeros de laboratorio, pasados y presentes, María, mi prima Nunu, Ilde, Juan, Pilar, Bea, Mapi, Javi, Ismael, Mónica, Ricardo, Nacho, Pau, Josep, Aurora, Ana, Inma, Jesús, Anna… no podría haber mejor grupo con quien compartir cada momento. Y especialmente a Cristina Alfaro, gracias por todo (¡qué gran equipo formamos!). A todas las personas que han facilitado la realización y han colaborado en los ensayos de campo, técnicos, propietarios, cooperativas, empresarios… porque sin ellos difícilmente podría todo esto llevarse a cabo, y especialmente a todo el equipo de Ecologia y Protección Agrícola y a los servicios de Sanidad Vegetal. También quiero expresar mi agradecimiento al Dr. Eric B. Jang, y todo su equipo en el laboratorio del USDA en Hilo, por su hospitalidad y darme la oportunidad de conocer su trabajo y hacerme sentir parte de su grupo. Gracias a mi familia y a mis amigos, que me han apoyado y me han hecho la persona que soy.
    [Show full text]
  • Science Plan for the Santa Rosa and San Jacinto Mountains National Monument
    National Conservation Lands Science Plan for the Santa Rosa and San Jacinto Mountains National Monument April 2016 U.S. Department of the Interior U.S. Department of Agriculture Bureau of Land Management Forest Service NLCS Science Plan U.S. Department of the Interior Bureau of Land Management California State Office California Desert District Palm Springs-South Coast Field Office Santa Rosa and San Jacinto Mountains National Monument U.S. Department of Agriculture Forest Service Pacific Southwest Region (Region 5) San Bernardino National Forest San Jacinto Ranger District Santa Rosa and San Jacinto Mountains National Monument For purposes of this science plan, administrative direction established by the Bureau of Land Management as it relates to fostering science for the National Landscape Conservation System/National Conservation Lands is considered applicable to National Forest System lands within the Santa Rosa and San Jacinto Mountains National Monument to the extent it is consistent with U.S. Department of Agriculture and Forest Service policies, land use plans, and other applicable management direction. Page | 2 NLCS Science Plan National Conservation Lands Science Plan for the Santa Rosa and San Jacinto Mountains National Monument April 2016 prepared by University of California Riverside Center for Conservation Biology with funding from Bureau of Land Management National Conservation Lands Research Support Program Page | 3 NLCS Science Plan Barrel cactus and palm oases along the Art Smith Trail Page | 4 NLCS Science Plan National
    [Show full text]
  • Factors Affecting Capture of the White Pine Cone Beetle, Conopltthorus Con&E
    JAE 122 (1998) ‘ * J. Appl. Ent. 122,281-286 (1998) NJ 1998, Blackwell Wissenschafts-Verlag, Berlin ISSN 093 l-2048 Factors affecting capture of the white pine cone beetle, Conopltthorus con&e& (Schwa@ (Col., Scolytidae) in pheromone traps P. de Groat’ and G. L. DeBarr’ ‘Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Box 490, Sault Ste. Marie, Ontario, Canada; ‘USDA Forest Service, Southern Research Station, Forestry Sciences Laboratory, Athens, GA, USA Abstract: The white pine cone beetle, Conophthorus coniperda, is a serious pest of seed orchards. The sex pheromone (+)-trans-pityol, (2R,SS)-2-(l-hydroxy- 1 -methylethyl)-S-methyltetrahydrofuran, shows considerable promise to manage the cone beetle populations in seed orchards. Our work confirms that pity01 is an,effective attractant to capture male C. coniperdu. Traps need to be placed in the tree crown, preferably in the cone-bearing region, to trap out more insects. Japanese beetle traps were superior to the Lindgren funnel traps in capturing insects and trap colour had no significant effect. Commercially available bubble caps for dispensing pheromone were as effective as the experimental ‘vial and wick’ and the glass capillary tube units. Pity01 released at about 0.1 mg . day-’ (100 female equivalents) was effective, and higher (more expensive) rates did not significantly improve trap catch. 1 Introduction 2 Materials and methods The white pine cone beetle, Conophthorus coniperda 2.1 Study sites (Schwarz), is found throughout the range of eastern Field-trapping experiments were conducted from 199 1 to 1995 white pine, Pinus strobus L. (WOOD, 1982) and is a in five locations in North America: two white pine seed serious pest in seed orchards (DEBARR et al., 1982; DE orchards near Murphy (United States Forest Service, Beech GROOT, 1990).
    [Show full text]
  • An Analysis of the Larval Instars of the Walnut Twig Beetle, Pityophthorus Juglandis Blackman (Coleoptera: Scolytidae), in North
    An analysis of the larval instars of the walnut twig beetle, Pityophthorus juglandis Blackman (Coleoptera: Scolytidae), in northern California black walnut, Juglans hindsii, and a new host record for Hylocurus hirtellus Author(s): Paul L. Dallara, Mary L. Flint, and Steven J. Seybold Source: Pan-Pacific Entomologist, 88(2):248-266. 2012. Published By: Pacific Coast Entomological Society DOI: http://dx.doi.org/10.3956/2012-16.1 URL: http://www.bioone.org/doi/full/10.3956/2012-16.1 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. THE PAN-PACIFIC ENTOMOLOGIST 88(2):248–266, (2012) An analysis of the larval instars of the walnut twig beetle, Pityophthorus juglandis Blackman (Coleoptera: Scolytidae), in northern California black walnut, Juglans hindsii, and a new host record for Hylocurus hirtellus 1 1 2 PAUL L. DALLARA ,MARY L.
    [Show full text]
  • WHITE PINE CONE BEETLE (Conophthorus Ponderosae)
    Cone and Seed Insect Pest Leaflet No. 11 British Columbia Ministry of Forests and Range, Tree Improvement Branch, Saanichton, BC WHITE PINE CONE BEETLE (Conophthorus ponderosae) Conophthorus ponderosae adult on white pine cone (D. Manastyrski) TAXONOMY: Order: Coleoptera (beetles) Family: Curculionidae: Scolytinae (bark beetles) HOSTS: Various pine species. In British Columbia, particularly western white pine (Pinus monticola), but also ponderosa pine (P. ponderosae) and, less commonly, lodgepole pine (P. contorta). DISTRIBUTION: Western North America from southern Yukon Territory, through British Columbia and the western United States to the Sierra Madre Range in Mexico. DAMAGE: Conophthorus ponderosae can be a serious pest of western white pine cones. Adult female beetles tunnel into the base of second year cones, severing the conductive tissue, and killing the cones. Pitch tubes and boring dust are often evident at the attack site on cone bases. Beetle larvae tunnel within the killed cones and destroy all developing seeds. Attacked cones may remain on the tree but usually fall to the ground in early summer. Pitch tubes of Conophthorus ponderosae at base of cones in western white pine (S. Kegley) 2 Cone and Seed Insect Pest Leaflet No.11 White Pine Cone Beetle (Conophthorus ponderosae) Conophthorus ponderosae damaged and undamaged cones (S. Kegley) IMPORTANCE: Up to 90% of a cone crop can be destroyed; seed mortality is 100% within each infested cone. Female cone beetles generally lay their full egg complement in one cone only. This insect has not yet become an issue in British Columbia seed orchards but it causes considerable damage in natural stands (e.g., in the naturally blister-rust-resistant western white pine stands on Texada Island).
    [Show full text]
  • Anatomical Study of the Coffee Berry Borer (Hypothenemus Hampei)
    www.nature.com/scientificreports There are amendments to this paper OPEN Anatomical study of the cofee berry borer (Hypothenemus hampei) using micro-computed tomography Ignacio Alba-Alejandre1, Javier Alba-Tercedor1* & Fernando E. Vega2* Traditionally, the study of anatomy in insects has been based on dissection techniques. Micro- computed tomography (micro-CT) is an X-ray based technique that allows visualization of the internal anatomy of insects in situ and does not require dissections. We report on the use of micro-CT scans to study, in detail, the internal structures and organs of the cofee berry borer (Hypothenemus hampei), the most damaging insect pest of cofee worldwide. Detailed images and videos allowed us to make the frst description of the aedeagus and the frst report of diferences between the sexes based on internal anatomy (fight musculature, midgut shape, hindgut convolutions, brain shape and size) and external morphology (lateral outline of the pronotum and number of abdominal tergites). This study is the frst complete micro-CT reconstruction of the anatomy of an insect and is also the smallest insect to have been evaluated in this way. High quality rendered images, and additional supplementary videos and 3D models are suitable for use with mobile devices and are useful tools for future research and as teaching aids. Ever since the introduction of cofee from Africa to various continents, it has become an important commodity not only to producing countries, but also to billions of consumers that take delight on its favour, aroma, and stimulatory efects1. Amongst the many agronomic problems faced by cofee producers, insect pests and plant pathogens are of paramount importance2.
    [Show full text]