<<

1391 2 1 1391 06/ 08/ : 1391 09/ 13/ :

( sativa L. )

1 * 1 1

: : 100 10 5 1 . Cannabis sativa L. a . . 5 b . α . 9- ) 5 1 . 100 10 1 1 5 ( ) ( 0.4 0.4 THC/CBD . . . 15 14.58 5 1 . .

( ( CBD ) α ( THC ) : : : 9 THC - Tetrahydrocannabinol CBD Cannabidiol IPP isopenthenylpyrophosphate

( ) ( : . ) . ) . . ( ) ( ) ( [email protected] : *

1391 2 1 52

. . .( McGarvey and Croteau, 1995 ) . 5 60 . ( isopenthenylpyrophosphate IPP ) .( .( Pate, 1994 ) . ( DMAPP ) cannabis ( MVA ) . (9- THC ) tetrahydrocannabinol (tetrahydrocannabinolic acid THCA ) THCA THC . Heme A . 0.3 0.2 ) THCA THC ( 2-Methyl-D-erythritol-4-phosphate MEP ) .( .( Hazekamp, 2009 ) ( IPP . ( ) .( Gao et a l., 2004 ) ( ) 1960 . ( Estevez et al ., 2001 ) ( ) (Jasminum grandiflorom ) . .(Wasternack and Parthier, 1997) 3 . 6 . . . (Balbi and Devoto, 2008) .( Pinarkara et al ., 2004; Hazekamp, 2009 ) . . 53 53

: (2004 ) Ament 100 10 5 1 0 def-1 . . 4 ) tween 20 . 4 ( . . . .( Ament et al ., 2004 ) . . . . . THC : CBD THC

48 CBD . Martin 100 . ( 2002 ) 1 15 . Ferrieri . . . . 5/0 ( 2005 ) . . CBD THC CBD THC :( HPLC ) Merck Hitachi HPLC . . . UV-Visible

. ( RP 18 ) C18 CBD THC : : 1 1 20 : 80 10 10 : 230 nm . . . 10 16 ) . CBD THC ( 8 CBD THC : 2/1 THC 200 100 50 (ppm) . .( Hoagland and Arnon, 1950 ) 10 . CBD

1391 2 1 54

: . HPLC . . CBD THC 1 *1 : α 1 0.1 . 20 . 100 : rpm 30 . . 15 14000 . ANOVA SPSS 250 5 30 100 . . Excel 30 10 . α : . HPLC α THC α : : CBD :( HPLC ) CBD THC Agilent HPLC . α . 100 . C18 1 . 295 nm ( excitation) 5 5 1 THC 28 325 nm (emission) THC . 7.5 5.7 .( Sattler et al ., 2003 ) α CBD 1.( ) . THC {(±)-α-tocopherol} α : CBD 10 5 (1 ppm) . sigma THC/CBD .( 1 ) 10 . 100 α 50 30 0.4 . 15 14.85 5 1 . HPLC . α : : α b a : 100 10 . ( 1987 ) Lichententhaler

55 55

CBD THC - 1 95 * . SE 4 . . CBD THC .

: . α α . 10 5.( ) 2.( ) : :

:

. 3.( ) . : . b . a . THC 5 4 4 ) 100 .( .( 4 )

1391 2 1 56

α 2 . 95 * . SE 4

. 3 95 * . SE 4

. Schie and ) . ( Haring, 2007 4,8,12-Trimethyl trideca- .( Ferrieri et al ., 2005 ) ... (TMTT ) 1,3,7-tetraene CBD .( Ament et al ., 2004 ) 57 57

. . ( ) ( ) b a 4 . 95 * . SE 4

100 10 α . 5 1 . . THC CBD THC α . THC . . 5 1 1 α CBD THC 5 10 . α . ( ROS ) THC 100 CBD .( Jaleel et al ., 2007 ) . α

1391 2 1 58

. . 5 . 95 * . SE 4

- .( Jaleel et al ., 2007 ) . . α - 40 . 20 20 . Mg +2 . . a b . 5 5 b . .( Kovac and Ravinkar, 1994 ) 100 100 10 . ROS α . . 5 1 cv. Snate ( ROS ) cv. Ulster α 100 10

59 59

α THC . .( Kovac and Ravnikar, 1994 ) . : THC THC . α CBD . . .

accumulation in Catharanthus roseus after : treatment with giberellic acid. Colloids and Surfaces B: Bionterfaces 60: 195-200. Ament, K., Kant, M. R., Sabelis, M. W., Haring, A. Kovac, M. and Ravinkar, M., (1994) The effect of H. and Schuurink. R.C. (2004) Jasmonic acid is jasmonic acid on the photodynthetic pigments a key regulator of spider mite-induced volatile of Potato grown in vitro . Science terpenoid and methyl salicylate emission. Plant 103: 11-17. Physiology 135: 2025-2037. Lichenthaler, H. K. (1987) Chlorophylls and caretenoids: Balbi, V. and Devoto, A. (2008) Jasmonate pigments of photosynthetic biomembranes. Methods signaling network in Arabidopsis Thaliana : in Enzymology 148: 350-382. crucial regulatory nodes and new physiological Martin, D., Tholl, D., Gershenzon, J. and Bohlman, scenarios. New Physiologist 177(2): 301-309. J. (2002) Methyl jasmonate induces traumatic Estevez, J. M., Cantero, A., Reichler, S. and Leon, resin ducts, terpenoid resin biosynthesis, and P. (2001) 1-Deoxy-D-xylulose-5-phosphate terpenoid accumulation in developing xylem of synthase, a limiting for plastidic Norway spurce stems. American Society of isoperenoid biosynthesis in plants. Biological Plant Biologists 129: 1003-1018. Chemistry 276: 22901-22909. McGarvey, D. J. and Croteau, R. (1995) Terpenoid Ferrier, R. A., Gray, D. W., Babst, B. A., Schueller, metabolism. Plant Cell 7: 1015-1026. M.J., Schlyer, D.J., Thorpe, M.R., Orians, C.M. Pate, D. W. (1994) Chemical ecology of cannabis. and Lerdau, M. (2005) Use of carbon-11 in Internatonal Hemp Association 2(29): 32-37. Populus shows that exogenous jasmonic acid Pinarkara, E., Kayis, A. S., Hakki, E. and Sag, A. increases biosynthesis of isoprene from recently fixed (2004) RAPD analysis of seizes marijuana carbon. Plant Cell and Environment 25: 591-602. (Cannabis sativa L.) in Turkey. Electronic Gao, X. P., Wang, X. F., Lu, Y. F., Hang, L. Y., Journal of Biotechnology 12: 1-13. Shen, Y. Y., Liang, Z. and Zhang, D. P. (2004) Sattler, S. E., Cahoon, E. B., Coughlan, S.J. and Jasmonjc acid is involved in the water-stress- penna, D. (2003) Characterization of tocopherol induced betaine accumulation in pear cyclase from higher plants and cyanobacteria. leaves.Plant Cell and Environment 27: 447-507. Evoluationary implication for tocopherol synthesis Hazekamp, A. (2004) Cannabis review. Depertment and function. American Society of Product 23: 88-89. of plant metabolomics Leiden University. Schie, C. C. N., and Hering, M. A. (2007) Tomato Leiden the Netherland. synthase is induced in trichomes by jasmonic Hogland, D. R. and Arnon, D. I. (1950) The water acid. Plant Molecular Biology 64: 251-263. culture method for growing plants without soil. Wasternack, C. and Partheir, B. (1997) Jasmonate- California Agriculture Experimental Station signalling plant gene expression. Trend in Plant Circular 347: 1-32. Science 2(8): 302-309. Jaleel, C. A., Gopi, R., Manivannan, P., Sankar, B., Kishorekumar, A. and Panneerselvam, R. (2007) Antioxidant potentials and ajmalicine

1391 2 1 60

The effects of jamonate on plastidal terpenoids on Cannabis sativa L. at vegetative stage

Fatemeh Salari *1 and Hakimeh Mansori 1 1Department of Biology, Faculty of Science Shahid Bahonar University of Kerman, Iran *Corresponding Author: [email protected]

Abstract :

In this study, we investigated the effects of jasmonate on plastidial terpenoids on Cannabis sativa at vegetative stage. We used jasmonate solutions with 0, 1, 5, 10 and 100 µM concentrations for treating plants. Plant treated with Jasmonate showed an increase in chlorophyll a content in comparison with the control plants. However, chlorophyll b content was increased only in 5 µM jasmonate treatment. Also, carotenoid content increased in all treated plants but there was no significant difference between various concentrations of jasmonate. The amount of α-tocopherol was enhanced in plants treated with 10 and 100 µM jasmonate. Treatment with 1 and 5 µM jasmonate caused a considerable increase in tetrahydrocannabinol. 5 µM jasmonate solution was more effective in this regards. Cannabidiol content was decreased in all plants treated with jasmonate. These results showed that jasmonate triggered the accumulation of primary and secondary isoprenoids in chloroplasts.

Keywords : Cannabidiol Jasmonate acid, Tetrahydrocannabinol, Terpenoids, α-Tocopherolm .