New Evidence for the Origins of Lime Plaster Technology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Specialists Q & a on the Use of Lime Plastering
posed to much less water making it less reactive but retaining its dry nature as a powdered product so it Q To avoid shrinkage, should hair be added to never matures to become a good binder in its own the lime mix? form. Hydrate is used as a plasticiser for cement Hair is added to help lime mortars bind or hold mixes. Hydraulic lime is a powder and also burnt A but the limestone is not pure calcium carbonate onto laths but can still shrink and crack if cured too Specialists Q & A on the and contains impurities such as clays and silicates quickly. Hair is always used on lath and plaster work which change the reactive nature of the lime and but is not necessary on brickwork. use of lime plastering allow it to set chemically when exposed to water. Q How do l make a lime wash? Q What type of lime should be used for lime A Lime wash is simply lime putty, water and a mineral pig- plastering? Q What are the advantages of using lime plas- ment, and for external use a water repellent such as linseed or tallow is added. ter? A Lime plaster can be made with lime putty or hydraulic lime but hydrate is too weak. Putty is best Q Can lime plaster be applied to plasterboard? A They allow buildings to breathe which is essential for ceilings and lath work as it has better flexural for older buildings that have been constructed with strength and sticks well to laths. Hydraulic lime is A The only benefit to applying a lime plaster to lime fine as a hard wall plaster where there is no move- plasterboard is the aesthetic look, however this mortars and soft bricks or stone. -
Materials & Process
Sculpture: Materials & Process Teaching Resource Developed by Molly Kysar 2001 Flora Street Dallas, TX 75201 Tel 214.242.5100 Fax 214.242.5155 NasherSculptureCenter.org INDEX INTRODUCTION 3 WORKS OF ART 4 BRONZE Material & Process 5-8 Auguste Rodin, Eve, 1881 9-10 George Segal, Rush Hour, 1983 11-13 PLASTER Material & Process 14-16 Henri Matisse, Madeleine I, 1901 17-18 Pablo Picasso, Head of a Woman (Fernande), 1909 19-20 STEEL Material & Process 21-22 Antony Gormley, Quantum Cloud XX (tornado), 2000 23-24 Mark di Suvero, Eviva Amore, 2001 24-25 GLOSSARY 26 RESOURCES 27 ALL IMAGES OF WORKS OF ART ARE PROTECTED UNDER COPYRIGHT. ANY USES OTHER THAN FOR EDUCATIONAL PURPOSES ARE STRICTLY FORBIDDEN. 2 Introduction This resource is designed to introduce students in 4th-12th grades to the materials and processes used in modern and traditional sculpture, specifically bronze, plaster, and steel. The featured sculptures, drawn from the collection of the Nasher Sculpture Center, range from 1881 to 2001 and represent only some of the many materials and processes used by artists whose works of art are in the collection. Images from this packet are also available in a PowerPoint presentation for use in the classroom, available at nashersculpturecenter.org. DISCUSS WITH YOUR STUDENTS Artists can use almost any material to create a work of art. When an artist is deciding which material to use, he or she may consider how that particular material will help express his or her ideas. Where have students seen bronze before? Olympic medals, statues… Plaster? Casts for broken bones, texture or decoration on walls.. -
Section 092400
SPEC MIX, Inc. – Guide Specification Note to User: This section contains macros to aid the editing process. By default Microsoft Word disables macros for virus security reasons. When you open a file that has macros, the yellow message bar appears with a shield icon and the enable content button. To enable these macros, click the Enable Content button. SECTION 09 24 00 PORTLAND CEMENT STUCCO (To View Hidden Text, Type CTRL-H) PART 1 – GENERAL 1.1 SECTION INCLUDES A. Portland Cement, Pre-blended Scratch and Brown Coat Stucco. B. Portland Cement, Pre-blended Fiber Base Coat Stucco. C. Portland Cement, Pre-blended Colored Finish Coat Stucco. 1.2 RELATED SECTIONS A. Section 03 30 00 - Cast-in-Place Concrete. B. Section 04 20 00 - Unit Masonry. C. Section 05 40 00 - Cold-Formed Metal Framing: Light gauge load-bearing metal framing. D. Section 06 10 00 - Rough Carpentry: Wood framing. E. Section 07 21 13 - Board Insulation. F. Section 07 92 00 - Joint Sealants. G. Section 09 22 16 - Non-Structural Metal Framing: Non-load-bearing metal framing systems. H. Section 09 22 36 - Metal Lath. I. Section 09 29 00 - Gypsum Board: Exterior gypsum sheathing. 1.3 REFERENCES A. American National Standards Institute (ANSI) / American Hardboard Association (AHA): 1. ANSI/AHA A 194 - Cellulosic Fiber Board. B. ASTM International (ASTM): 1. ASTM A 641/A 641M - Standard Specification for Zinc-Coated (Galvanized) Carbon Steel Wire. 2. ASTM A 653/A 653M - Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc- Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process. -
Traditional Architectural Renders on Earthen Surfaces
University of Pennsylvania ScholarlyCommons Theses (Historic Preservation) Graduate Program in Historic Preservation 1991 Traditional Architectural Renders on Earthen Surfaces Maria Isabel G. Beas University of Pennsylvania Follow this and additional works at: https://repository.upenn.edu/hp_theses Part of the Historic Preservation and Conservation Commons Beas, Maria Isabel G., "Traditional Architectural Renders on Earthen Surfaces" (1991). Theses (Historic Preservation). 395. https://repository.upenn.edu/hp_theses/395 Copyright note: Penn School of Design permits distribution and display of this student work by University of Pennsylvania Libraries. Suggested Citation: Beas, Maria Isabel G. (1991). Traditional Architectural Renders on Earthen Surfaces. (Masters Thesis). University of Pennsylvania, Philadelphia, PA. This paper is posted at ScholarlyCommons. https://repository.upenn.edu/hp_theses/395 For more information, please contact [email protected]. Traditional Architectural Renders on Earthen Surfaces Disciplines Historic Preservation and Conservation Comments Copyright note: Penn School of Design permits distribution and display of this student work by University of Pennsylvania Libraries. Suggested Citation: Beas, Maria Isabel G. (1991). Traditional Architectural Renders on Earthen Surfaces. (Masters Thesis). University of Pennsylvania, Philadelphia, PA. This thesis or dissertation is available at ScholarlyCommons: https://repository.upenn.edu/hp_theses/395 'T,' i'&Sim mi> 'm m. i =ir,!t-i^-!vs i )'» \ •.'.i:'-ii-2\c-. fell ;;!•!' UNIVERSITVy PENNSYLVANIA. UBKARIES TRADITIONAL ARCHITECTURAL RENDERS ON EARTHEN SURFACES Maria Isabel G. Beas A THESIS in The Graduate Program in Historic Presen/ation Presented to the faculties of the University of Pennsylvania in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE 1991 Frank G.lMatero, Associate Professor 'reservation, Advisor X Samuel Y. -
NHL Lime Plaster
NHL Lime Plaster St Astier Limes and Mortars telephone: 0800 783 9014 Lime Plaster using St Astier NHL Using St. Astier NHL plastering mortars instead of non hydraulic putty mortars reduces the working time by about 50%. NHL mortars offer similar vapour exchange qualities as putty mortars but are more robust, can be sprayed and used for decorative plasterwork without the addition of gypsum. Requiring less after care than putty, it can be applied in 2 coats on good level backgrounds. Mortar. Plastering in hydraulic lime mortar normally consists of two or three-coat work. Lime plaster made with feebly or moderately hydraulic lime and sand is the basis for this guide. This type of lime sets and hardens predominantly by an hydraulic set and re-absorption of Carbon Dioxide from the air. By its nature the drying and absorption process is slower than gypsum plasters, therefore lime plaster curing should not be hurried allowing approximately 3-5 days per coat depending on the hydraulic lime used. Background. When applying Lime Plaster on the hard, the background will normally be brick or stone. The surface should be clean, free from dust and any organic materials such as lichens etc. Test the surface of masonry backgrounds for dust by applying a piece of masking tape to the background and immediately remove, examine the sticky side for traces materials that may affect the bond between the plaster and the wall. Internal walls can be uneven and rough, often with areas that have been altered. Different background conditions are therefore common and this needs to be addressed before plastering. -
Gypsum Resources of Iowa by Robert M
Gypsum Resources of Iowa by Robert M. McKay In mining gypsum at Fort Dodge, overlying glacial deposits are removed and the deeply creviced surface of the gypsum is exposed. These crevices resulted from movement of water along intersecting fractures in the easily eroded gypsum. Photo by Tim Kemmis. One of the softest minerals known to exist is the basis for one of Iowa's most durable mineral resource industries. Gypsum is a gray to white-colored mineral that can be easily scratched with a fingernail, and is referred to chemically as a hydrous calcium sulfate. Some of its other, perhaps more familiar, names are based on its various forms of occurrence. For example, alabaster is a massive form; satin spar is a fibrous variety; and selenite is its crystalline form. Gypsum often occurs in varying proportions with anhydrite (calcium sulfate), a slightly harder and more dense mineral that lacks water in its chemical make-up. Both gypsum and anhydrite belong to an interesting group of minerals called evaporites, which are sedimentary deposits composed of salts precipitated from sea water. Evaporites form in shallow or near shore marine and lake environments where evaporation has - 1 - produced an unusually high concentration of dissolved salts, and where there is little or no circulation of fresh water. The precipitation of sediment from these hypersaline brines is associated with hot and relatively dry climatic conditions. Iowa's paleogeography at several times in the state's geologic past duplicated these environments of deposition and resulted in major accumulations of evaporite minerals. As a result, several geologic units in Iowa's underlying sedimentary rock sequence host economically significant deposits of gypsum. -
Natural Finishes Overview
Page 1 Natural Finishes Overview Natural plasters and finishes are a great alternative to the conventional finishing products that are available on the market. The ones that are just riddled with toxic chemicals! Most people don’t even realize the negative effects that these products have on their health. Indoor air pollution and toxic off gassing is a whole subject unto itself. But by using natural plasters and paints, you avoid the added toxicity of cement stucco, drywall, chemical paints, and the destructive industry that produces them all. Natural plasters and finishes can be applied to cob walls or even to drywall board! The majority of natural plasters and finishes are made from a combination of these simple ingredients: Clay, sand, straw, lime, kaolin clay, wheat paste, pigments, and water. Copyright 2015 - This Cob House LLC - All Rights Reserved Page 2 Plastering your cob home is like putting the icing on the cake. Once you have built your walls, built your roof, and installed the windows and doors then you can begin to plaster your building. The plaster will protect your walls from rain on the outside, and it will protect your cob walls from any crumbling off on the inside. A good foundation and a good roof overhang (a good hat and boots, as they say) will protect your cob home from most weather and rain. Some people decide not to plaster the exterior walls of their cob homes and they are fine in many cases, but you will still get deterioration. It is recommended to plaster your walls to protect them from driving rain and frost. -
Lime Plaster & Plaster Lath for Damp Buildings
Lime Plaster & Plaster Lath for Damp Buildings Lime Plaster & Plaster Lath for Damp Buildings Surveying for Damp Issues with Historic Buildings. Buildings fall into two categories for the purposes of surveying for damp: I. Modern buildings built with a damp proof course and barriers to rainwater penetration. II. Old buildings built prior to mid to late 19th century depending upon the region of the country. Old buildings relied on the walls breathing and shedding moisture before damp became a problem. Damp Proofing Old Buildings In old buildings, walls were built to such a thickness that normally damp would not penetrate to the inside. The joints were always of lime mortar or earth and were more porous than the building’s structural elements comprising brick, stone etc. Consequently the joints would drain and shed water by evaporation, therefore not allowing damage to these structural elements. The joints were the sacrificial element of the building. Because lime and earth mortars are so porous, timber in contact with these mortars is less prone to decay than when bedded in cement mortar. Historic houses, when built, were able to breathe and shed water. They were also heated by coal or log fires in an open fireplace which promoted rapid air changes by way of air being drawn out through the chimney. Windows and doors were not sealed as they are today allowing air movement into and out of the building. Internal finishes were lime washed which allowed surfaces to breathe and, although it would discolour when damp, it would not peal off the wall like wall paper nor blister like modern paint. -
Mortars in Old Structures
Thorborg von Konow von Thorborg Thorborg von Konow How do mortars in old masonry walls differ from those made today? Why do some Structures in Old Mortars mortars crumble and deteriorate faster than others? Based on a long history of Finnish research, this book addresses these questions and is the first Finnish publi- s cation to examine the properties of lime mortar in old structures. It is both a manual h and a guidebook for anyone attempting to select the best possible restoration r mortar - from conservators, restorers and mortar producers to modern-day masons and plasterers. The information in this book will also help property managers assess the maintenance needs of old buildings, analyse damage, and understand the reasons behind it. Designers, engineers, architects and planners will find the wealth of information in this book useful for drawing up specifications for reparation work. Lime Lime and hydraulic material Cement and lime 5 Dr Thorborg von Konow is known internationally for her work on mortar and 4 brick, which she pursued with passion until her death in 2010. Launching her own 3 company, Tureida, in 1994, she consulted widely in the field. For over thirty years she 2 researched the old structures of Suomenlinna. Number of mortar samples 1 0 Mortars The fortress has a long history as a restoration laboratory. A Unesco World Heritage Site, Suomenlinna is kept authentic through the use of traditional materials and 1750-1775 1780-1850 1850-1888 1890-1900 1915-1950 methods in its restorations. The Governing Body of Suomenlinna, working under the Ministry of Education and Culture, began consistent and comprehensive restoration in Old Structures of the fortress in 1973. -
Shale Gas Study
Foreign and Commonwealth Office Shale Gas Study Final Report April 2015 Amec Foster Wheeler Environment & Infrastructure UK Limited 2 © Amec Foster Wheeler Environment & Infrastructure UK Limited Report for Copyright and non-disclosure notice Tatiana Coutinho, Project Officer The contents and layout of this report are subject to copyright Setor de Embaixadas Sul owned by Amec Foster Wheeler (© Amec Foster Wheeler Foreign and Commonwealth Office Environment & Infrastructure UK Limited 2015). save to the Bririah Embassy extent that copyright has been legally assigned by us to Quadra 801, Conjunto K another party or is used by Amec Foster Wheeler under Brasilia, DF licence. To the extent that we own the copyright in this report, Brazil it may not be copied or used without our prior written agreement for any purpose other than the purpose indicated in this report. The methodology (if any) contained in this report is provided to you in confidence and must not be disclosed or Main contributors copied to third parties without the prior written agreement of Amec Foster Wheeler. Disclosure of that information may Pete Davis constitute an actionable breach of confidence or may Alex Melling otherwise prejudice our commercial interests. Any third party Daren Luscombe who obtains access to this report by any means will, in any Katherine Mason event, be subject to the Third Party Disclaimer set out below. Rob Deanwood Silvio Jablonski, ANP Third-party disclaimer Issued by Any disclosure of this report to a third party is subject to this disclaimer. The report was prepared by Amec Foster Wheeler at the instruction of, and for use by, our client named on the front of the report. -
Materials Conservation – Concrete and Plaster
Materials Conservation – Concrete and Plaster Carolyn L. Searls Senior Principal, Simpson Gumpertz & Heger Matthew Bronski Associate Principal, Simpson Gumpertz & Heger California Preservation Foundation Webinar 16 September 2014 www.sgh.com www.sgh.com 1 Learning Objectives • Understand the composition and properties of cementitious materials. • Recognize signs of concrete and plaster deterioration and their causes. • Learn reactive and proactive repair techniques for concrete and plaster. • Learn procedures for repairing uncoated, integrally colored plaster and concrete. 2 The Materials: Plaster, Concrete and Cast Stone • All are made up of binder + aggregates + water • Concrete = Cement (the binder), fine aggregate, coarse aggregate, admixtures and water • Cast Stone = Cement, fine aggregate, crushed rock, admixtures and water, precast in units • Plaster = Mortar applied to a substrate (masonry, concrete, or lath over sheathing or building paper) as a wall finish. Usually cement and/or lime (binder), fine aggregate, admixtures and water 3 Evaluation and Repair of Concrete and Plaster • Diagnose the problem – field investigation, lab testing, analysis and report. The treatment must be appropriate for the illness. • Design the repair – the right team • Select the correct materials • Construct field mock-ups • Select the right contractor • Provide quality control during repairs 4 Concrete • Roman concrete structures – lime putty + pozzolan (volcanic tuff rock at Pozzuoli) + aggregates = hydraulic concrete • Natural cement concrete – Erie -
Plaster Monuments Architecture and the Power Of
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. Introduction Monuments in Flux The absentminded visitor drifts by chance into the Hall of Architecture at the Carnegie Museum in Pittsburgh, where astonishment awaits. In part, the surprise is the sheer number of architectural fragments: Egyptian capitals, Assyrian pavements, Phoenician reliefs, Greek temple porches, Hellenistic columns, Etruscan urns, Roman entablatures, Gothic portals, Renaissance balconies, niches, and choir stalls; parapets and balustrades, sarcophagi, pulpits, and ornamental details. Center stage, a three-arched Romanesque church façade spans the entire width of the skylit gallery, colliding awkwardly into the surrounding peristyle. We find ourselves in a hypnotic space fabricated from reproduced building parts from widely various times and places. Cast from buildings still in use, from ruins, or from bits and pieces of architecture long since relocated to museums, the fragments present a condensed historical panorama. Decontextualized, dismembered, and with surfaces fashioned to imitate the patina of their referents, the casts convey a weird reality effect. Mute and ghostlike, they seem programmed to evoke the experience of the real thing. For me, the effect of this mimetic extravaganza only became more puzzling when I recognized— among chefs d’oeuvre such as a column from the Vesta temple at Tivoli, a portal from the cathedral in Bordeaux, and Lorenzo Ghiberti’s golden Gates of Paradise from the baptistery in Florence— a twelfth- century Norwegian stave- church portal. Impeccably document- ing the laboriously carved ornaments of the wooden church, it is mounted shoulder to shoulder with doorways from French and British medieval stone churches, the sequence materializing as three- dimensional wallpa- per.