Qc 250 • -V3g,466.00 Reports Requhed

Total Page:16

File Type:pdf, Size:1020Kb

Qc 250 � • -V3g,466.00 Reports Requhed GEORGIA INSTITUTE OF TECHNOLOGY OFFICE OF CONTRACT ADMINISTRATION SPONSORED PROJECT INITIATION Date: 312479 Project Title: DemonztAation; WaAte Stabilization Pond E liguent6 "*". Project No: E-26-641 CContinuation of A-1923 which began 11/17/761 Project Director: Pt. T. F. CAag Sponsor: Coastae Minn Regionat Complizaion; Chaxeezton, SC 294Q1 Agreement Period: From 1/1/19 Until 11/17/79 Type Agreement: Grant No. 10740003 Amount: CPRC GU TOTAL $122,098.58 [A-19231 $7,736 •(E-862-0011 $124,834.58 8,117.42 [E-26-6411 514 CE-26-3211 - 8,63%42 130,276.00 ..qc 250 • -V3g,466.00 Reports Requhed. semi-Ann clot.. RepoktA; Annwzt Reports Sponsor Contact Person (s): Technical Matters Contractual Matters (thru OCA) MaVek (tatzon, Pnognam 066icek Jamey Al. Buttek, 'Executive Dikectox CoaAtat Mainz Reg.LonaL Commi4Aibn - 215 EaAt Bay Stiieet Chakteaton,.S. C. 29401 803/724-4250 Defense Priority Rating: n/a Assigned to: Nucteak Engineeking (School/Laboratory) COPIES TO: Project Director Library. Technical Reports Section Division Chief (EES) EES Information Office School/Laboratory Director EES Reports & Procedures Dean/Director—EES Project File (OCA) Accounting Office Project Code (GTRI) Procurement Office Other Security Coordinator (OCA) Reports Coordinator COCA) GEORGIA INSTITUTE OF TECHNOLOGY OFFICE OF CONTRACT ADMINISTRATION SPONSORED PROJECT TERMINATION Date: September 21, 1980 " Project Title: Demonstration: Filtration of Waste Stabilization Pond Effluents Project No: E-26-641 (Continuation of A-1923 which began 11/17/76) Project Director: Dr. T. F. Craft Sponsor: Coastal Plains Regional Commission; Charleston, SC 29401 Effective Termination Date: 9/1/80 Clearance of Accounting Charges: - _ Grant/Contract Closeout Actions Remaining: None Final Invoice and Closing Documents Final Fiscal Report Final Report of Inventions Govt. Property Inventory & Related Certificate Classified Material Certificate Other Assigned to: Nuclear Engineering (School/Laboratory) COPIES TO: Project Director Library, Technical Reports Section Division Chief (EES) EES Information Office School/Laboratory Director Project File (OCA) Dean/Director—EES Project Code (GTRI) Accounting Office Other Mr. C. E. Smith Procurement Office Security Coordinator (OCA) sports (OCA) CA-4 (1/79) DEMONSTRATION: FILTRATION OF WASTE STABILIZATION POND EFFLUENTS by T. F. Craft Progress Report Project A-1923 Sponsored by Coastal Plains Regional Commission 215 East Bay Street Charleston, S. C. 29401 The Engineering Experiment Station Georgia Institute of Technology Atlanta, Georgia 30332 May 17, 1977 FILTRATION OF WASTE STABILIZATION POND EFFLUENTS .Introduction The objective of the subject work is to obtain field data on the general applicability of sand, authracite, and mixed media filters for upgrading the effluent from ponds to bring them in compliance with federal regulations concerning suspended solids. Waste stabilization ponds are widely used in smaller comflunities, and have generally been found to be acceptable in terms of efficiency, cost, and upkeep. The promulgation of new federal regulations has produced a need for lower effluent suspended solids content than is usually obtained. As it is wholly unrealistic to consider abandonment of ponds as a treatment method, means for producing better pond effluents are needed. Filtration is a general procedure for separating particulate matter from liquids, and is widely used in water treatment and, to a much lesser extent, in wastewater treatment. While there is seemingly no 'a priori reason that filtration of pond effluents will not work, the technique has not yet been demonstrated, and consequently no engineering data is available. The project has been undertaken to provide a demonstration and appropriate data. Equipment Acquisition The major item of concern has been (and is) the filter and its accoutrements. Specifications were drawn for the desired equipment, which included a complete set-up mounted on a trailer and including a generator for operation without regard to availability of an external power source. All bids were far too high, as the cost of the trailer was much higher than previously estimated. Through a concerted effort and with the splendid cooperation of the Georgia State Agency for Surplus Property we obtained an eminently satis- 1 factory trailer. Although it was manufactured in 1954, the massive frame of this old surplus Air Force trailer is in excellent condition. Repairs were required on the brakes and lights, and all tires needed replacement, but when all costs are added, the total is less than 10% of the cost of a new trailer. A portable generator was also obtained from this same source, and again at a small fraction of the cost of a new unit. The initial bids were all rejected and new bids were requested. The low acceptable bid was submitted by Davco-Defiance, Thomasville, Georgia and the order was placed. This supplier has so far been most cooperative in making slight changes in layout and design of the filter unit, and a very good result is expected. Davco-Defiance has also agreed to mount the filter and generator on our trailer, so that the unit will be essentially ready to run when delivered. The initial delivery date was scheduled to be the first of May, but the rebidding caused delay. Presently the filter is to be completed May 12, with mounting and other final details to require 2 or 3 more days. The project director is planning to inspect the completed unit at Thomasville May 19. Site Selection With the assistance of representatives of the Georgia State Environmental Protection Agency, some 20 ponds were selected for consideration. The main technological aspects sought were that the pond is in "normal" operating conditions and that it is representative of a larger number of ponds. Imposed on these factors is the very practical matter of accessibility of the pond so that the large, heavy (about 32,000 lbs) filter unit can be moved in. This latter consideration has eliminated those locations whose approaches include a narrow, rutted, steep incline, or (very frequently) a small bridge of unknown, but suspect capacity. Other practical limitations, particularly in the Atlanta area, have eliminated other sites. Houses are located quite 2 close to some of these ponds and the noise of a gasoline engine powered generator running all night would obviously be a nuisance. Candidate locations in the Atlanta area were inspected with particular care, as a situation close to Georgia Tech was sought where initial start- up could be accomplished and data collected. If any problems arise, prox- imity to our home base will be very important as a matter of convenience and travel time. A two-stage pond in Gwinnett County has been chosen for the initial site. It is located about 30 miles from the Tech campus, but is less than 2 miles from Interstate 1-85. Paved roads lead to within a few feet of the fence surrounding the pond. There is obviously an advantage to a two-stage operation, as it will be possible to withdraw effluent from each stage, and thereby provide two sets of data from a single location. This pond receives no industrial wastes, and serves only a residential area and a grammar school. Plan of Operation The filter is expected to be delivered to the Gwinnett County site before the end of May, and operations will begin immediately. Samples will be collected at frequent intervals and transported to Tech for analysis. Analytical data collected by the county Will also be obtained and utilized. It is not possible at this time to determine just how long it will be necessary to work at the initial location, but it is estimated to be about 6 weeks. If things work out in an easy fashion, the time could be somewhat less. The second location for operation is at Monroe, Georgia, where the multi-cell pond arrangement includes aerators in the first cell. Subsequent locations will be toward the south, with the expectation of eventually reaching the Brunswick area. 3 GEORGIA INSTITUTE OF TECHNOLOGY ATLANTA, GEORGIA 30332 OFFICE OF THE COMPTROLLER July 24, 1980 Mr. McIver Watson, Program Officer Costal Plains Regional Commission 215 East Bay Street Charleston, S.C. 29401 Dear Mr. Watson: Enclosed is the Final Fiscal Report for Grant No. 10740003 covering the period January 1, 1979 through May 1, 1930. If you have any questions or require additional information, please let us know. Sincerely, David V. Welch, Manager Grants and Contracts Accounting DVW/BITS/j b Enclosure cc: Dr. T. F. Craft Dr. L. E. Weaver Mr. E. E. Renfro Mr. O. H. Rodgers File E-26-641 J 3 a GEORGIA INSTITUTE OF TECHNOLOGY GRANT NO. 10740003 FINAL FISCAL REPORT 1/1/79 - 5/1/80 SPONSOR GRANTEE TOTAL Personal Services $ 55,544.13 $ 4,650.17 $ 60,194.30 Retirement 5,069.90 443.50 5,513.40 Materials & Supplies 8,285.40 8,285.40 Travel 4,295.26 4,295.26 Capital Outlay 19,090.24 19,090.24 Consultants 160.62 160.62 Overhead (68% of P.S.) 37,770.45 3,162.11 40,932.56 $ 130,216.00 $ 8,255.78 $ 138,471.78 DEMONSTRATION: FILTRATION OF WASTE STABILIZATION POND EFFLUENTS by T. F. Craft Annual Report Project A-1923-000 Sponsored by Coastal Plains Regional Commission 215 East Bay Street Charleston, S. C. 29401 The Engineering Experiment Station Georgia Institute of Technology Atlanta, Georgia 30332 November 17, 1977 DEMONSTRATION : FILTRATION OF WASTE STABILIZATION POND EFFLUENTS Summary. Edition by T. F. CRAFT Georgia Institute of Technology Atlanta, Georgia for The Coastal Plains Regional Commission Charleston, South Carolina 1979 LEGAL NOTICE This report was prepared by Georgia Institute of Technology as an account of work sponsored by the Coastal Plains Regional Commission (CPRC). Neither CPRC, Georgia Institute of Technology, nor any person acting on behalf of either: (a) makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or (b) assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this report.
Recommended publications
  • Margdarshika for Gram Panchayat and Paani Samiti
    JJM Document - 7 Building Partnership Changing Lives Margdarshika for Gram Panchayat & VWSC to provide safe drinking water in rural households Jal Jeevan Mission (Har Ghar Jal) Government of India Ministry of Jal Shakti Department of Drinking Water and Sanitation National Jal Jeevan Mission 2020 Jal Jeevan Mission Status of household tap connecons as on 15.8.2019 Statewise Tap Connecons 0% - 10% 11% - 25% 26% - 50% 51% - 75% 76% - 99.99% 100% Source: JJM - IMIS Margdarshika for Gram Panchayat & VWSC to provide safe drinking water in rural households Jal Jeevan Mission (Har Ghar Jal) Government of India Ministry of Jal Shakti Department of Drinking Water and Sanitation National Jal Jeevan Mission 2020 15 August, 2019 ...I declare from the Red Fort today that in the days to come, we will take forward the Jal Jeevan Mission. The central and the state governments will jointly work on this Jal Jeevan Mission. We have promised to spend more than Rs. 3.50 Lakh Crore on this mission in the coming years... (Address to the Naon on 73 Independence Day, 15 August, 2019 at Red Fort, New Delhi) ..... The implementaon of this Mission is in the hands of community, all members of the village are to come together to implement this Mission...decisions on route of water pipeline, water harvesng, operaon and maintenance will be made by people themselves and our sisters have a very important role to play... (Extract from Prime Minister's address at Bundelkhand on 29 Feb, 2020) Shri Narendra Modi Prime Minister of India 15 August, 2020 (Aer one year…) Brothers and sisters, Last me, I had announced Jal Jeevan Mission.
    [Show full text]
  • Macrophyte Waste Stabilization Ponds: an Option for Municipal Wastewater Treatment
    International Journal of Physical Sciences Vol. 7(30), pp. 5162 - 5166, 9 August, 2012 Available online at http://www.academicjournals.org/IJPS DOI: 10.5897/IJPS12.309 ISSN 1992 -1950 ©2012 Academic Journals Full Length Research Paper Macrophyte waste stabilization ponds: An option for municipal wastewater treatment Mumtaz Shah1* and Hashim Nisar Hashmi2 1Department of Civil and Environmental Engineering, University of Engineering and Technology (UET) Taxila, Pakistan. 2Department of Civil Engineering, University of Engineering and Technology (UET) Taxila, Pakistan. Accepted 3 August, 2012 The objective of this research is to evaluate the performance of macrophyte waste stabilization pond system for municipal wastewater collected from Taxila (Pakistan). A model of macrophyte waste stabilization pond system was operated for six trials with each trials comprising different detention times that is 3, 5, 7 and 10 days, respectively. For the treatment, locally available macrophyte (water hyacinth) was used. To evaluate the performance of macrophyte waste stabilization pond, BOD5, TDS, TSS, COD, faecal coliform and Nitrogen for the effluent from pond model were measured at each detention time of every trial after ensuring steady state conditions. The influent values of same parameters have been measured at the start of each trial as the wastewater sample was collected from the municipal sewer. The average reduction of effluent value of each parameter varies from 30 to 48%, that is BOD5 (48%), TDS (31%), TSS (30%), COD (42%), faecal coliform
    [Show full text]
  • Policy Issue Information
    POLICY ISSUE INFORMATION September 15, 2003 SECY-03-0161 FOR: The Commissioners FROM: William D. Travers Executive Director for Operations SUBJECT: 2003 ANNUAL UPDATE - STATUS OF DECOMMISSIONING PROGRAM PURPOSE: To provide the Commission with an annual comprehensive overview of decommissioning activities, including the decommissioning of Site Decommissioning Management Plan (SDMP) sites and other complex decommissioning sites, commercial reactors, research and test reactors, uranium mill tailings facilities, and fuel cycle facilities. This report provides a status update on the decommissioning activities presented in last year’s report (SECY-02-0169), as well as current key decommissioning program issues. SUMMARY: Consistent with Commission direction, this paper provides a combined overview of all decommissioning activities within the Office of Nuclear Material Safety and Safeguards (NMSS); Office of Nuclear Regulatory Research (RES); and the Office of Nuclear Reactor Regulation (NRR). Using SECY-02-0169 as a baseline, progress made in each of the program areas, through at least August 1, 2003, is described in this paper. CONTACT: John T. Buckley, NMSS/DWM (301) 415-6607 The Commissioners -2- BACKGROUND: In a Staff Requirements Memorandum (SRM) dated June 23, 1999, the Commission directed the staff to provide a single coordinated annual report on all decommissioning activities, instead of annual reports from separate offices. In addition, an SRM dated August 26, 1999, requested that the staff provide: (1) the status of the remaining active SDMP sites, including plans and schedules for each site; and (2) a summary report on all sites currently in the SDMP. In response to these SRMs, the staff provided comprehensive overviews of decommissioning activities in annual reports, SECY-00-0094 and SECY-01-0156, dated April 20, 2000, and August 17, 2001, respectively.
    [Show full text]
  • Remediation and Waste Management at the Sillamae Site, Estonia Cheryl K. Rofer, E-ET Tonis Ka
    Approved for public release; distribution is unlimited. Title: Turning a Problem into a Resource: Remediation and Waste Management at the Sillamae Site, Estonia Author(s) Cheryl K. Rofer, E-ET Tonis Kaasik, OkoSil Ltd., Tallinn, Estonia Submitted to Conference Proceedings From a NATO Advanced Research Womhop, ,-e in Tallinn, Estonia, October 5 - 9, 1998 To be submitted to Kluwer Publishers, Belgium .- - _I CONTENTS Introduction and Recommendations Cheryl K. Rofer and Tirnis Kaasik ......................................................................... .V INTRODUCTORY MATERLAC: THE'SITUA'ITON AT SILLAM& Industrial Complex in Northeast Estonia: Technical, Economic and Environmental Aspects Mihkel Veiderma,.................................................................................................. .2 Uranium processing at SilWe and Decommissioning of the Tailings E. Lippmaa and E. Maremde .................................................................................. 5 Sillawe-A Common Baltic Concern Jan OlofSnihs...................................................................................................... .5 Master Plan for Remediation of the Sillami4e Tailings Pond and Technical Design Project T&is Kaasik ........................................................................................................ .21 Site Monitoring VladimirNosov ..................................................................................................... 27 Stability of the Dam at the SiUamiie Tailings Pond M. Mets and H. Torn,........................................................................................
    [Show full text]
  • INL Research Library Digital Repository
    INL/EXT-17-40907 2016 Annual Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Ponds February 2017 The INL is a U.S. Department of Energy National Laboratory Idaho National operated by Battelle Energy Alliance Laboratory INL/EXT-17-40907 2016 Annual Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Ponds February 2017 Idaho National Laboratory Idaho Falls, Idaho 83415 http://www.inl.gov Prepared for the U.S. Department of Energy Office of Nuclear Energy, Science, and Technology Under DOE Idaho Operations Office Contract DE-AC07-05ID14517 ABSTRACT This report describes conditions and information, as required by the state of Idaho, Department of Environmental Quality Reuse Permit I-161-02, for the Advanced Test Reactor Complex Cold Waste Ponds located at Idaho National Laboratory from November 1, 2015–October 31, 2016. The effective date of Reuse Permit I-161-02 is November 20, 2014 with an expiration date of November 19, 2019. This report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Permit required groundwater monitoring data • Status of compliance activities • Issues • Discussion of the facility’s environmental impacts. During the 2016 permit year, 180.99 million gallons of wastewater were discharged to the Cold Waste Ponds. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest in well USGS-065, which is the closest downgradient well to the Cold Waste Ponds.
    [Show full text]
  • Reengineering of an Obsolete Sewage Treatment System
    water Article Transformation of Waste Stabilization Ponds: Reengineering of an Obsolete Sewage Treatment System Silvânia Lucas dos Santos 1 and Adrianus van Haandel 2,* 1 Department of Civil Engineering, Federal University of Rio Grande do Norte, 59.078-970 Natal, Brazil; [email protected] 2 Department of Civil Engineering, Federal University of Campina Grande, 59.429-350 Campina Grande, Brazil * Correspondence: [email protected]; Tel.: +55-83-99133-0196 Abstract: Waste Stabilization Ponds (WSPs) are commonly used for sewage treatment. These systems are composed of a series of ponds: (1) anaerobic ponds, (2) facultative ponds, and (3) maturation ponds. WSPs generally produce good-quality effluent in terms of organic matter and pathogen removal, but their application has disadvantages. The most serious disadvantages are a long retention time, the release of biogas, and the impossibility of removing nutrients. A promising alternative to the use of WSPs is replacing the anaerobic pond and facultative pond with an upflow anaerobic sludge blanket (UASB) reactor, with the advantages of greatly reducing the retention time and the biogas capture. The post-treatment ponds of the UASB reactor effluent involve oxygen production and the biological consumption of carbon dioxide, which raises the pH. An experimental investigation showed that it is possible to use polishing ponds in a sequential batch regime instead of continuous flow. This modification accelerates the decay of pathogens and accelerates the increase in pH, which, in turn, facilitates the removal of nitrogen and phosphorus. This produces a good-quality effluent with low concentrations of biodegradable organic material, nutrients, and pathogens. This good- Citation: dos Santos, S.L.; quality effluent is obtained in a system without energy consumption or auxiliary materials and with van Haandel, A.
    [Show full text]
  • The Removal of Faecal Coliforms in Waste Stabilization Pond Systems and Eutrophic Lakes
    THE REMOVAL OF FAECAL COLIFORMS IN WASTE STABILIZATION POND SYSTEMS AND EUTROPHIC LAKES ebenezer d.o. ansa iii THE REMOVAL OF FAECAL COLIFORMS IN WASTE STABILIZATION POND SYSTEMS AND EUTROPHIC LAKES iii iv THE REMOVAL OF FAECAL COLIFORMS IN Thesis committee WASTE STABILIZATION POND SYSTEMS AND Promotor EUTROPHIC LAKES Prof. dr. H.J. Gijzen Professor of Environmental Biotechnology UNESCO-IHE Institute of Water Education, Delft/ Wageningen University The Netherlands Co-promotor Dr. H.J. Lubberding Senior lecturer Microbiology UNESCO-IHE Institute of Water Education, Delft The Netherlands Other members Prof. dr. K.A. Irvine UNESCO-IHE Institute of Water Education, Delft/ Wageningen University The Netherlands Prof. dr. ir. A.J.M. Stams Wageningen University The Netherlands Prof. dr. H.J. Laanbroek Utrecht University The Netherlands Prof. dr. ir. P.N.L. Lens UNESCO-IHE Institute of Water Education, Delft/ Wageningen University The Netherlands This research was conducted under the auspices of the Graduate School WIMEK-SENSE v THE REMOVAL OF FAECAL COLIFORMS IN WASTE STABILIZATION POND SYSTEMS AND EUTROPHIC LAKES Thesis submitted in fulfilment of the requirements of the Academic Board of Wageningen University and the Academic Board of the UNESCO-IHE Institute for Water Education for the Degree of DOCTOR to be defended in public on Tuesday 16 April, 2013 at 15:00 hrs in Delft, The Netherlands by EBENEZER D.O. ANSA Born in Swedru, Ghana v vi THE REMOVAL OF FAECAL COLIFORMS IN WASTE STABILIZATION POND SYSTEMS AND EUTROPHIC LAKES Thesis submitted in fulfilment of the requirements of the Academic Board of Wageningen University and the Academic Board of the UNESCO-IHE Institute for Water Education for the Degree of DOCTOR to be defended in public on Tuesday 16 April, 2013 at 15:00 hrs in Delft, The Netherlands Taylor & Francis is an imprint of the Taylor and Francis Group, an informal business by © 2013, E.
    [Show full text]
  • Helpful Study Guide (PDF)
    WASTEWATER STABILIZATION POND (WWSP) STUDY GUIDE ALASKA DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF WATER OPERATOR TRAINING AND CERTIFICATION PROGRAM http://dec.alaska.gov/water/opcert/index.htm Phone: (907) 465-1139 Email: [email protected] January 2011 Edition Introduction This study guide is made available to examinees to prepare for the Wastewater Stabilization Pond (WWSP) certification exam. This study guide covers only topics concerning non-aerated WWSPs. The WWSP certification exam is comprised of 50 multiple choice questions in various topics. These topics will be addressed in this study guide. The procedure to apply for the WWSP certification exam is available on our website at: http://www.dec.state.ak.us/water/opcert/LargeSystem_Operator.htm. It is highly recommended that an examinee complete one of the following courses to prepare for the WWSP certification exam. 1. Montana Water Center Operator Basics 2005 Training Series, Wastewater Lagoon module; 2. ATTAC Lagoons online course; or 3. CSUS Operation of Wastewater Treatment Plants, Volume I, Wastewater Stabilization Pond chapter. If you have any questions, please contact the Operator Training and Certification Program staff at (907) 465-1139 or [email protected]. Definitions 1. Aerobic: A condition in which “free” or dissolved oxygen is present in an aquatic environment. 2. Algae: Simple microscopic plants that contain chlorophyll and require sunlight; they live suspended or floating in water, or attached to a surface such as a rock. 3. Anaerobic: A condition in which “free” or dissolved oxygen is not present in an aquatic environment. 4. Bacteria: Microscopic organisms consisting of a single living cell.
    [Show full text]
  • Utilizing Different Aquatic Resources for Livelihoods in Asia
    Freshwater systems/Terrestrial systems Freshwater systems/Terrestrial Systems An Overview of Rice-Based Small-Scale Aquaculture Rice-Based Aquaculture in China Enhancing the Performance of Irrigation Systems through Aquaculture Rice and Fish Culture in Seasonally Flooded Ecosystems Increasing Wild Fish Harvests by Enhancing the Rice Field Habitats Polyculture Systems: Principles and Basic Considerations Promoting Rice-Based Aquaculture in Mountainous Areas of Vietnam Aquaculture in Stream-Fed Flow-Through Ponds Short-Cycle Aquaculture in Seasonal Ponds Low-Cost Aquaculture in Undrainable Homestead Ponds Homestead Fish Culture: An Example from Bangladesh Integrating Intensive and Semi-Intensive Culture Systems to Utilize Feeding Waste Low-Cost Fertilization in Inland Pond Aquaculture Culture of Fish Food Organisms and Biofertilizers Feeds in Small-Scale Aquaculture Decentralized Seed Production Strategy for the Development of Small-Scale Aquaculture Small-Scale Eel Culture: Its Relevance for Rural Households Small-scale Macrobrachium Culture in Bangladesh Culture of Chinese Mitten- Handed Crabs Aquaculture and Sewage Water Treatment Water Quality Management for Freshwater Fish Culture 1 of 135 2 of 135 An Overview of Rice-Based Small-Scale Aquaculture Asian countries as rice-fish societies Many countries in Asia can be called "rice-fish societies" in the sense that rice is the staple crop for basic subsistence, while fish is the main source of animal protein. The availability of rice and fish has long been associated with prosperity and food security. In Thailand, for example, the early inscription of the 13th century king, Ramkhamhaeng, states "in the waters are fish and in the field is rice" as an indicator of wealth and stability.
    [Show full text]
  • Kennecott Groundwater Permit Pipelines
    GROUND WATER QUALITY DISCHARGE PERMIT UGW450012 STATEMENT OF BASIS US Magnesium LLC Rowley, Utah April, 2020 Introduction The Director of the Division of Water Quality (Director) under the authority of the Utah Ground Water Quality Protection Rules1 (Ground Water Rules) issues ground water discharge permits to facilities which have a potential to discharge contaminants to ground water2. As defined by the Ground Water Rules, such facilities include milling and metallurgical operations and ponds and lagoons whether lined or not. As defined in Utah Admin. Code R317-6-1, US Magnesium is considered an existing facility because it was under operation before February 10, 1990. The Ground Water Rules are based on an anti- degradation strategy for ground water protection as opposed to non-degradation; therefore, discharge of contaminants to ground water may be allowed provided that current and future beneficial uses of the ground water are not impaired and the other requirements of Rule 317-6-6.4.C are met4. Following this strategy, ground water is divided into classes based on its quality5; and higher-quality ground water is given greater protection6 due to the greater potential for beneficial uses. The Director has developed permit conditions consistent with Rule 317-6 and appropriate to the nature of the wastewater, facility operations, maintenance, discharge minimization technology7 and the hydrogeologic and climatic conditions of the site, to ensure that the operation not contaminate ground water. Basis for Permit Issuance Under Rule 317-6-6.4A, the Director may issue a ground water discharge permit for an existing facility if: 1) The applicant demonstrates that the applicable class TDS limits, ground water quality standards and protection levels will be met; 2) The monitoring plan, sampling and reporting requirements are adequate to determine compliance with applicable requirements; 3) The applicant utilizes treatment and discharge minimization technology commensurate with plant process design capability and similar or 1 Utah Admin.
    [Show full text]
  • CERCLA Cleanup, 1
    Environmental Defense Institute Troy, Idaho 83871-0220 http://envirinmental-defense-institute.org Assessment of Agency Five-Year Review Advanced Test Reactor Complex formerly called Test Reactor Area CERCLA Cleanup Plan Submitter by Chuck Broscious December 12, 2015 Rev-11 1 Preface This Environmental Defense Institute Review of the Idaho National Laboratory Advanced Test Reactor Complex (ATRC) - formerly called Test Reactor Area (TRA) - CERCLA Cleanup is an updated iteration of our previous Comments (March 1997) on the three agency 1992 collective Record of Decision and subsequent Five-Year Reviews. EDI’s review of the co-located Engineering Test Reactor (ETR) and Materials Test Reactor (MTR) Decommission – Decontamination is covered in separate EDI Comment on ETR – MTR CERCLA Cleanup 12/24/15. References are imbedded in the text in [brackets] with an acronym/agency document ascension number and page [“@”] number that can be identified in the Reference section with the complete citation at the end of this report. Tragically, the collective federal and state agency aversion for environmental remediation has not changed since the 1949 Atomic Energy Commission (AEC) designated National Reactor Test Station – now called the Idaho National Laboratory - in south-eastern Idaho desert as another nuclear sacrifice zone. The underlying Snake River Aquifer was perfect for providing the massive water needs for what the AEC and its successor Department of Energy required for the 52 reactors that were built/tested at the site. In the early years, the aquifer was both the source for reactor cooling water but also the place to inject the highly radioactive hot waste water that could not be dumped in percolation ponds for fear of worker exposure.
    [Show full text]
  • IS 5611 (1987): Code of Practice for Construction of Waste Stabilization Ponds (Faculative Type) [CED 24: Public Health Engineering.]
    इंटरनेट मानक Disclosure to Promote the Right To Information Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public. “जान का अधकार, जी का अधकार” “परा को छोड न 5 तरफ” Mazdoor Kisan Shakti Sangathan Jawaharlal Nehru “The Right to Information, The Right to Live” “Step Out From the Old to the New” IS 5611 (1987): Code of Practice for Construction of Waste Stabilization Ponds (Faculative Type) [CED 24: Public Health Engineering.] “ान $ एक न भारत का नमण” Satyanarayan Gangaram Pitroda “Invent a New India Using Knowledge” “ान एक ऐसा खजाना > जो कभी चराया नह जा सकताह ै”ै Bhartṛhari—Nītiśatakam “Knowledge is such a treasure which cannot be stolen” IS : 5811 - 1987 ( Asattlrmed 1992 ) Indian Standard CODE OF PRACTICE FOR CONSTRUCTION OF WASTE STABILIZATION PONDS ( FACULATIVE TYPE ) ( First Revision ) ( First Reprint JANUARY 1998 ) UDC 628.357.1 : 006.76 0 Copyright 1987 BUREAU OF INDIAN STANDARDS MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG NEW DELHI 110002 Gr 5 October 1987 IS : 5611- 1987 Indian Standard CODE OF PRACTICE FOR CONSTRUCTION OF WASTE STABILIZATION PONDS ( FACULATIVE TYPE ) (First Revision) Water Supply and Sanitation Sectional Committee, BDC 24 Chairman Representing SHRI J.
    [Show full text]