Remediation and Waste Management at the Sillamae Site, Estonia Cheryl K. Rofer, E-ET Tonis Ka

Total Page:16

File Type:pdf, Size:1020Kb

Remediation and Waste Management at the Sillamae Site, Estonia Cheryl K. Rofer, E-ET Tonis Ka Approved for public release; distribution is unlimited. Title: Turning a Problem into a Resource: Remediation and Waste Management at the Sillamae Site, Estonia Author(s) Cheryl K. Rofer, E-ET Tonis Kaasik, OkoSil Ltd., Tallinn, Estonia Submitted to Conference Proceedings From a NATO Advanced Research Womhop, ,-e in Tallinn, Estonia, October 5 - 9, 1998 To be submitted to Kluwer Publishers, Belgium .- - _I CONTENTS Introduction and Recommendations Cheryl K. Rofer and Tirnis Kaasik ......................................................................... .V INTRODUCTORY MATERLAC: THE'SITUA'ITON AT SILLAM& Industrial Complex in Northeast Estonia: Technical, Economic and Environmental Aspects Mihkel Veiderma,.................................................................................................. .2 Uranium processing at SilWe and Decommissioning of the Tailings E. Lippmaa and E. Maremde .................................................................................. 5 Sillawe-A Common Baltic Concern Jan OlofSnihs...................................................................................................... .5 Master Plan for Remediation of the Sillami4e Tailings Pond and Technical Design Project T&is Kaasik ........................................................................................................ .21 Site Monitoring VladimirNosov ..................................................................................................... 27 Stability of the Dam at the SiUamiie Tailings Pond M. Mets and H. Torn,......................................................................................... ..31 Process Flow Sheet K Petrenko andA. Siinmaa................................................................................. .47 Rare Earth Production at the Sibmile Plant 1%9-1991 and the Possibility of Scandium Extraction from Loparite V. D. Kosynkin and K J. Nikonov ........................................................................ 57 Indoor Occupational Exposure to Radiation at the Silmet Plant in Estonia: A Preliminary Assessment Raimo Mustonen, Mika Marhnen, Eero Oksanen, and Raivo Rajamde.......... .63 EXPERIENCE WITH URANIUM TAILINGS IN OTHER COUNTRIES Remediation of the Former Uranium Mine Ranstad B. Sundblad.................................................................... 1..................................... 69 Remediation of Tailings Dams A. G. Benc~r....................................................................................................... 75 Remediation Concepts for Uranium Mining Operations .. in CEEC Jan VnJen............................................................................................................. 81 WISMUT Experience in Remediation of Uranium Mill Tailings Ponds A. T. Jakubick andM. Hagen ............................................................................... 93 Post-Remediation Monitoring and Maintenance Experience at Uranium Mill Tailings Sites, United States Charles A. Jones, Carl L. Jacobson, Mark P. Plessinger, and Russel Edge ..... 107 Current State of Remediation of Tailings Ponds and Their Surroundings in Hungary 1, Benkovics, J. Csicshk, M Csisvari, and Zs. Lendvai ....................................... 1 17 The Environmental Impact of Former Uranium Mining Activities at the Novoveska Huta Site, Slovakia Miroslav Kosik ................................................................................................... 129 A “Heritage” from Uranium Mining in Poland 2. Waciawek,J. Koszela, and W. Charewicz..................................................... 133 A Field Study of Capillary and Hydraulic Barriers in Landfill Covers Varying in Slope at Los Alamos, New Mexico, USA J. K Nyhan, T. G. Schojield, andJ. A. Saiazar................................................. 139 REGULATORY AND LEGAL ISSUES Estonian Radiation protection Requirements and the Sillamtie Site Enn Redo........................................................................................................... 153 rl Legal Responsibility and Liability for the Sillamtie Site Gorun Hedelius............................................................ .:. .................................. .165 Regulations and Requirements-Swedish Approach Jan OlofSnihs.................................................................................................... 171 Nordic Experience with Environmental Regulations Karin Broden ...................................................................................................... 177 ASSESSMENT OF OPTIONS Outline of a Multiattributc Utility Approach to Development of a Waste Management Strategy at Sillamiie Peter C. Anselmo ................................................................................................ 185 The Potential for Economic Recovery of Metals from the Sillamiie Site G.A. D~M’s......................................................................................................... 195 APPLICABLE TECHNOLOGIES Oil Shale Ash: Its Characterization and Possible Use in Remediation at the SiIlaWe Site T. Law and V. Kikas .......................................................................................... 207 Types of Oil Shale Ash and Methods for Increasing Their Reactivity R. Kuusik and T. Kaljuvee .................................................................................. 215 Utilization of Semi-Coke for Energy Production Juan Uustalu...................................................................................................... .22 1 - .i Magnetic Separation for Rare Earth Oxide Recovery at Sillamtie, Estonia L. M Worl, D. Hill, D. D. Padilla: F. C. Prenger, and E. Roth......................... 227 Purification and Utilization of Waste Waters fiom Silmet Plant Containing Ammonium Salts G. Raalo, T PetrovsRaya, andM. Glush......................................................... 237 New Approaches for the Treatment of Naturally Occurring Radioactive Materials Loes M M. Roelofs and Rob. B. Wiegers........................................................... 245 Ash Cemknts Stabilized by Supercritical C02Carbonation for Tailings Overlayer . James B. Rubin, Craig M. V: Tqlor, Patricia Paviet-Hartmann, and Thomas Hartmann........................................................................................................... .253 A Novel Chemical Nitrate Destruction Process J. Dziewinski and S. Marczak............................................................................ .265 . .I ACKNOWLEDGEMENTS The organization of the workshop was the dual responsibility of OkoSil Ltd. and the Los Alamos National Laboratory. 6koSil took care of most of the arrangements for organizing the meeting, and both institutions, together with Jan Olof Snihs of the Swedish Radiation Protection institute, developed the program and selected the participants, Editing the proceedings was primarily the responsibility of the Los Alamos National Laboratory. In Estonia, a number of institutions and individuals helped to make the workshop a success, The Estonian Ministry of the Environment provided expert advice in developing the program. The staff of the Estonian National Library, where the workshop sessions were held, were meticulous in their preparations and generous in their support. The City of Sillamtie and its mayor, the late Jaak Taam, graciously welcomed the workshop participants on their visit to the site. The Silmet Group provided financial support. The support of the Earth and Space Sciences Division and the Environmental Science and Waste Technology Division at the Los Alamos National Laboratory, made possible by C. Wes Myers and Thomas E. Baa, is gratefully acknowledged. Additionally, Inds Triay and M. James Aldrich provided significant encouragement to this effort. The session chairs, Dennis L. Hjeresen, Russel Edge, Jan Olof Snihs, and Raimo Mustonen, were helpfhl in developing the workshop itself and in completing this book. Russel Edge and Raimo Mustonen provided additional help in editing the papers for the book. Special thanks go to the 6koSil organizers, in particular Anti Siinmaa and Indrek Hellerma, who oversaw the details of the workshop preparation. At NATO, Dr. Nancy Schulte, Program Director of the Disarmament Technologies Division, was extremely helpful, patient, and supportive. The contributions of each participant to the workshop were important to the workshop’s success and are gratefully acknowledged. Cheryl K. Rofer, Los Alamos National Laboratory Tanis Kaasik, CikOSil Ltd. I[NTRODUCTION AND RECOMMENDATIONS CHERYL K. ROFER Los Alamos National Laboratory P. 0. Box 1663 Los Ahmos. NM 8 7545 USA TONIS KAASIK t)ROSil Ltd Ravi 2 Tallinn EEOOOI Estonia 1. Introduction Estonia, a country of about 1.5 million people and 45,200 km2 land area, inherited a number of environmental liabilities from the Soviet Union, One of the largest of these liabilities is the Sillnmie site in northeastern Estonia. A NATO Advanced Research Workshop;"Turning a Problem into a Resource: Remediation and Waste Management at the Sillamb Site, Estonia," was held in Tallinn, Estonia, 5-9 October 1998. The purpose of that workshop was to bring together experts to discuss relevant experience in other countries and make recommendations on the future course of remediation and waste management at Sillarniie. The Sillamtle Metallurgy Plant, which was managed by the USSR Ministry of Medium-Scale Engineering, was built in 1946 to produce uranium metal from local shales. The shales were found to be unsatisfactory for this purpose,
Recommended publications
  • Policy Issue Information
    POLICY ISSUE INFORMATION September 15, 2003 SECY-03-0161 FOR: The Commissioners FROM: William D. Travers Executive Director for Operations SUBJECT: 2003 ANNUAL UPDATE - STATUS OF DECOMMISSIONING PROGRAM PURPOSE: To provide the Commission with an annual comprehensive overview of decommissioning activities, including the decommissioning of Site Decommissioning Management Plan (SDMP) sites and other complex decommissioning sites, commercial reactors, research and test reactors, uranium mill tailings facilities, and fuel cycle facilities. This report provides a status update on the decommissioning activities presented in last year’s report (SECY-02-0169), as well as current key decommissioning program issues. SUMMARY: Consistent with Commission direction, this paper provides a combined overview of all decommissioning activities within the Office of Nuclear Material Safety and Safeguards (NMSS); Office of Nuclear Regulatory Research (RES); and the Office of Nuclear Reactor Regulation (NRR). Using SECY-02-0169 as a baseline, progress made in each of the program areas, through at least August 1, 2003, is described in this paper. CONTACT: John T. Buckley, NMSS/DWM (301) 415-6607 The Commissioners -2- BACKGROUND: In a Staff Requirements Memorandum (SRM) dated June 23, 1999, the Commission directed the staff to provide a single coordinated annual report on all decommissioning activities, instead of annual reports from separate offices. In addition, an SRM dated August 26, 1999, requested that the staff provide: (1) the status of the remaining active SDMP sites, including plans and schedules for each site; and (2) a summary report on all sites currently in the SDMP. In response to these SRMs, the staff provided comprehensive overviews of decommissioning activities in annual reports, SECY-00-0094 and SECY-01-0156, dated April 20, 2000, and August 17, 2001, respectively.
    [Show full text]
  • INL Research Library Digital Repository
    INL/EXT-17-40907 2016 Annual Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Ponds February 2017 The INL is a U.S. Department of Energy National Laboratory Idaho National operated by Battelle Energy Alliance Laboratory INL/EXT-17-40907 2016 Annual Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Ponds February 2017 Idaho National Laboratory Idaho Falls, Idaho 83415 http://www.inl.gov Prepared for the U.S. Department of Energy Office of Nuclear Energy, Science, and Technology Under DOE Idaho Operations Office Contract DE-AC07-05ID14517 ABSTRACT This report describes conditions and information, as required by the state of Idaho, Department of Environmental Quality Reuse Permit I-161-02, for the Advanced Test Reactor Complex Cold Waste Ponds located at Idaho National Laboratory from November 1, 2015–October 31, 2016. The effective date of Reuse Permit I-161-02 is November 20, 2014 with an expiration date of November 19, 2019. This report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Permit required groundwater monitoring data • Status of compliance activities • Issues • Discussion of the facility’s environmental impacts. During the 2016 permit year, 180.99 million gallons of wastewater were discharged to the Cold Waste Ponds. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest in well USGS-065, which is the closest downgradient well to the Cold Waste Ponds.
    [Show full text]
  • Helpful Study Guide (PDF)
    WASTEWATER STABILIZATION POND (WWSP) STUDY GUIDE ALASKA DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF WATER OPERATOR TRAINING AND CERTIFICATION PROGRAM http://dec.alaska.gov/water/opcert/index.htm Phone: (907) 465-1139 Email: [email protected] January 2011 Edition Introduction This study guide is made available to examinees to prepare for the Wastewater Stabilization Pond (WWSP) certification exam. This study guide covers only topics concerning non-aerated WWSPs. The WWSP certification exam is comprised of 50 multiple choice questions in various topics. These topics will be addressed in this study guide. The procedure to apply for the WWSP certification exam is available on our website at: http://www.dec.state.ak.us/water/opcert/LargeSystem_Operator.htm. It is highly recommended that an examinee complete one of the following courses to prepare for the WWSP certification exam. 1. Montana Water Center Operator Basics 2005 Training Series, Wastewater Lagoon module; 2. ATTAC Lagoons online course; or 3. CSUS Operation of Wastewater Treatment Plants, Volume I, Wastewater Stabilization Pond chapter. If you have any questions, please contact the Operator Training and Certification Program staff at (907) 465-1139 or [email protected]. Definitions 1. Aerobic: A condition in which “free” or dissolved oxygen is present in an aquatic environment. 2. Algae: Simple microscopic plants that contain chlorophyll and require sunlight; they live suspended or floating in water, or attached to a surface such as a rock. 3. Anaerobic: A condition in which “free” or dissolved oxygen is not present in an aquatic environment. 4. Bacteria: Microscopic organisms consisting of a single living cell.
    [Show full text]
  • International Conference on Nuclear Knowledge Management: Strategies, Information Management and Human Resource Development
    Flyer.qxd 2004-03-24 09:00 Page 1 International Conference on Steering Committee Objectives Contact Information Nuclear Knowledge Management: International Atomic H.S. Cherif The objective of this conference is to reach a clear and com- International Atomic Energy Agency Energy Agency P.J. Gowin mon understanding of issues related to nuclear knowledge Conference IAEA - CN-123 Strategies, Information Y. Ya n ev management for sustaining knowledge and expertise in nuclear Vienna International Centre France, CEA B. Gillet science and technology. Wagramer Strasse 5 CEA/INSTN D. Gentile Management and Human P.O.Box 100 CEA/INSTN C. Feltin The conference will provide a forum for professionals and deci- A-1400 Vienna, Austria EUSIDIC J. van Halm Resource Development European Commission G. van Goethem sion makers in the nuclear sector, comprising industry, govern- Tel.: +43 1 26000 FORATOM P. Haug ments and academia as well as professionals in the knowledge Fax: +43 1 26007 Japan Atomic Industrial Forum N. Ishizuka management and information technology sectors E-mail: [email protected] OECD/Nuclear Energy Agency T. Haapalehto World Nuclear University J. Ritch, World Nuclear Association ∑ to exchange information and share experience on nuclear WONUC A. Maïsseu knowledge management, comprising strategies, informa- Scientific Secretariat (IAEA) Argentina, Atomic R. Cirimello tion management and human resource development; H.S. Cherif Department of Management Energy Commission P.J. Gowin Department of Nuclear Energy Belgium, Nuclear Research F. Moons ∑ to identify lessons learned and to embark on the develop- Y.L. Yanev Department of Nuclear Energy Centre (SCK•CEN) ment of new initiatives and concepts for nuclear knowl- France, CEA C.
    [Show full text]
  • Kennecott Groundwater Permit Pipelines
    GROUND WATER QUALITY DISCHARGE PERMIT UGW450012 STATEMENT OF BASIS US Magnesium LLC Rowley, Utah April, 2020 Introduction The Director of the Division of Water Quality (Director) under the authority of the Utah Ground Water Quality Protection Rules1 (Ground Water Rules) issues ground water discharge permits to facilities which have a potential to discharge contaminants to ground water2. As defined by the Ground Water Rules, such facilities include milling and metallurgical operations and ponds and lagoons whether lined or not. As defined in Utah Admin. Code R317-6-1, US Magnesium is considered an existing facility because it was under operation before February 10, 1990. The Ground Water Rules are based on an anti- degradation strategy for ground water protection as opposed to non-degradation; therefore, discharge of contaminants to ground water may be allowed provided that current and future beneficial uses of the ground water are not impaired and the other requirements of Rule 317-6-6.4.C are met4. Following this strategy, ground water is divided into classes based on its quality5; and higher-quality ground water is given greater protection6 due to the greater potential for beneficial uses. The Director has developed permit conditions consistent with Rule 317-6 and appropriate to the nature of the wastewater, facility operations, maintenance, discharge minimization technology7 and the hydrogeologic and climatic conditions of the site, to ensure that the operation not contaminate ground water. Basis for Permit Issuance Under Rule 317-6-6.4A, the Director may issue a ground water discharge permit for an existing facility if: 1) The applicant demonstrates that the applicable class TDS limits, ground water quality standards and protection levels will be met; 2) The monitoring plan, sampling and reporting requirements are adequate to determine compliance with applicable requirements; 3) The applicant utilizes treatment and discharge minimization technology commensurate with plant process design capability and similar or 1 Utah Admin.
    [Show full text]
  • CERCLA Cleanup, 1
    Environmental Defense Institute Troy, Idaho 83871-0220 http://envirinmental-defense-institute.org Assessment of Agency Five-Year Review Advanced Test Reactor Complex formerly called Test Reactor Area CERCLA Cleanup Plan Submitter by Chuck Broscious December 12, 2015 Rev-11 1 Preface This Environmental Defense Institute Review of the Idaho National Laboratory Advanced Test Reactor Complex (ATRC) - formerly called Test Reactor Area (TRA) - CERCLA Cleanup is an updated iteration of our previous Comments (March 1997) on the three agency 1992 collective Record of Decision and subsequent Five-Year Reviews. EDI’s review of the co-located Engineering Test Reactor (ETR) and Materials Test Reactor (MTR) Decommission – Decontamination is covered in separate EDI Comment on ETR – MTR CERCLA Cleanup 12/24/15. References are imbedded in the text in [brackets] with an acronym/agency document ascension number and page [“@”] number that can be identified in the Reference section with the complete citation at the end of this report. Tragically, the collective federal and state agency aversion for environmental remediation has not changed since the 1949 Atomic Energy Commission (AEC) designated National Reactor Test Station – now called the Idaho National Laboratory - in south-eastern Idaho desert as another nuclear sacrifice zone. The underlying Snake River Aquifer was perfect for providing the massive water needs for what the AEC and its successor Department of Energy required for the 52 reactors that were built/tested at the site. In the early years, the aquifer was both the source for reactor cooling water but also the place to inject the highly radioactive hot waste water that could not be dumped in percolation ponds for fear of worker exposure.
    [Show full text]
  • 00414:J Uc-11
    //8' PNL-2253 00414:J UC-11 ECOLOGY OF THE 200 AREA PLATEAU WASTE MANAGEMENT ENVIRONS: A STATUS REPORT ~J • " Edited by: L. E. Rogers ~I. H. Rickard PLEASE RETURN TO: October 1977 ENVIRO NM ENTAL DlVISI ON RESOURCE CEl~TE. R BATTELLE Pacific Northwest Laboratories , • .. .. \. •· .. ·. Richland, Washington 99352 This work was performed as part of the Rockwell Hanford Operation's Program under Contract No. EY-77-C-06-2130 i;•-- ,., ••. ~ --- - ' ,,.[ ,,r~ ,, ·1 ' THIS PAGE INTENTIONALLY LEFT BLANK ~er !!il. •. I "}J ·, ,., : ~- ;1;,.; ,--1• .... .,. ,. ~ . • • ,. -t · ·~ t ...r·"'"' 1. ... _1 , a ~:_-~ ~ - • f I) .. ,: .:, }' l_~ : •1 :t J ~{ : • . :·_ :, .... -· ' : -, '· .' L • I , .. _ •• --~ \ !, l . ~. ; •. ; \ ,,:' ·.:_ •• • ·_ ·, ..: ::~;_: ·. : A,~- , _· • • •• - - ... ... , :~-.:.: · .·, .... \ I : ,~ .;-~\;:... .· ... /·.,\ , 1'1 THIS PAGE INTE TIONALLY LEFT BLANK ., • ACKNOWLEDGEMENTS This document was prepared for the Rockwell Hanford Operation's (RHO) Biotic Transport program under Intercontractor Support Program. A number of the ideas and concepts contained herein have developed over the past few years as a result of close cooperation between Rockwell Hanford . ,-. Operations (RHO) and Battelle, Pacific Northwest Laboratory personnel . In ~eveloping our concepts, we have drawn extensively on the data base, design paradigms and professional experience of staff associated with the ROWMA program and its predecessor programs funded by the Division of Biomedical and Environmental Sciences of the Department of Energy. Numerous meetings have been held also with RHO staff, RHO's outside consultants and PNL's ecology staff in order to develop a comprehensive ecological capability to deal with biotic transport problems. We wish also to thank the following individuals (RHO) for their interest and participation which contributed to the success of thls effort: R.
    [Show full text]
  • Mining and Environment in the Western Balkans
    Mining and environment in the Western Balkans www.envsec.org This study was initiated by the Environment and Security Initiative (ENV- SEC), a partnership between UNDP, UNEP, OSCE, NATO, UNECE and REC. Disclaimer: The views expressed in this study are those of the authors and do not necessarily reflect views of neither UNEP nor ENVSEC partner organizations or their member-countries. The designations employed and the presentation of material in this study do not imply the expression of any opinion on the part of the organizations concerning the legal status of any country, territory, city or area of its authority, or delineation of its frontiers and boundaries. “Mining and Environment in the Western Balkans” is also available as in- teractive map and information film for further insight in this subject. Both are available at www.envsec.org UNEP promotes environmentally sound practices globally and in its own activities. This report is printed on 100% recycled paper, using vegetable-based inks and other eco- friendly practices. Our distribution policy aims to reduce UNEP’s carbon footprint. Mining and environment in the Western Balkans Editor This study was prepared by Zoi Environment Christina Stuhlberger Network on behalf of UNEP Vienna in the framework of the Environment and Security Ini- Cartography tiative - South Eastern Europe with support of the Matthias Beilstein Austrian Development Agency (ADA) and the www.zoinet.org Produced by Zoï Environment Network Christina Stuhlberger Ministry of Foreign Affairs of Finland. Photography A special “thank you” to the many members of UNDP Montenegro the ENVSEC - South Eastern Europe family and Philip Peck friends of the Balkan who contributed through- Christina Stuhlberger out the years with passion and dedication to the topic.
    [Show full text]
  • Coal Ash: the Toxic Threat to Our Health and Environment 3
    Coal Ash The toxic threat to our health and environment A RepoRt FRom physiciAns FoR sociAl Responsibility And eARthJustice By Barbara Gottlieb with Steven G. Gilbert, PhD, DABT and Lisa Gollin Evans Coal Ash The toxic threat to our health and environment A RepoRt FRom physiciAns FoR sociAl Responsibility And eARthjustice By Barbara Gottlieb with Steven G. Gilbert, PhD, DABT and Lisa Gollin Evans AcknowLEDGmEnts the authors express their gratitude to tim K. takaro, md, mph, ms; Roberta Richardson, md; and molly Rauch, mph for their careful reading of the text; to Rebecca Abelman for research support and copy editing; and to jared saylor for editing. cover Art: david stuart ABouT EArThjusticE earthjustice is a non-profit public interest law firm dedicated to protecting the magnificent places, natural resources, and wildlife of this earth, and to defending the right of all people to a healthy environment. We bring about far-reaching change by enforcing and strengthening environmental laws on behalf of hundreds of organizations, coalitions and communities. We’ve provided legal representation at no cost to more than 700 clients. For more information, visit www.earthjustice.org. ABouT PhySiciAnS for SociAL rESPonSiBiLiTy psR has a long and respected history of physician-led activism to protect the public’s health. Founded in 1961 by physicians concerned about the impact of nuclear proliferation, psR shared the 1985 nobel peace prize with international physicians for the prevention of nuclear War for building public pressure to end the nuclear arms race. today, psR’s members, staff, and state and local chapters form a nationwide network of key contacts and trained medical spokespeople who can effectively target threats to global survival.
    [Show full text]
  • Qc 250 • -V3g,466.00 Reports Requhed
    GEORGIA INSTITUTE OF TECHNOLOGY OFFICE OF CONTRACT ADMINISTRATION SPONSORED PROJECT INITIATION Date: 312479 Project Title: DemonztAation; WaAte Stabilization Pond E liguent6 "*". Project No: E-26-641 CContinuation of A-1923 which began 11/17/761 Project Director: Pt. T. F. CAag Sponsor: Coastae Minn Regionat Complizaion; Chaxeezton, SC 294Q1 Agreement Period: From 1/1/19 Until 11/17/79 Type Agreement: Grant No. 10740003 Amount: CPRC GU TOTAL $122,098.58 [A-19231 $7,736 •(E-862-0011 $124,834.58 8,117.42 [E-26-6411 514 CE-26-3211 - 8,63%42 130,276.00 ..qc 250 • -V3g,466.00 Reports Requhed. semi-Ann clot.. RepoktA; Annwzt Reports Sponsor Contact Person (s): Technical Matters Contractual Matters (thru OCA) MaVek (tatzon, Pnognam 066icek Jamey Al. Buttek, 'Executive Dikectox CoaAtat Mainz Reg.LonaL Commi4Aibn - 215 EaAt Bay Stiieet Chakteaton,.S. C. 29401 803/724-4250 Defense Priority Rating: n/a Assigned to: Nucteak Engineeking (School/Laboratory) COPIES TO: Project Director Library. Technical Reports Section Division Chief (EES) EES Information Office School/Laboratory Director EES Reports & Procedures Dean/Director—EES Project File (OCA) Accounting Office Project Code (GTRI) Procurement Office Other Security Coordinator (OCA) Reports Coordinator COCA) GEORGIA INSTITUTE OF TECHNOLOGY OFFICE OF CONTRACT ADMINISTRATION SPONSORED PROJECT TERMINATION Date: September 21, 1980 " Project Title: Demonstration: Filtration of Waste Stabilization Pond Effluents Project No: E-26-641 (Continuation of A-1923 which began 11/17/76) Project Director: Dr. T. F. Craft Sponsor: Coastal Plains Regional Commission; Charleston, SC 29401 Effective Termination Date: 9/1/80 Clearance of Accounting Charges: - _ Grant/Contract Closeout Actions Remaining: None Final Invoice and Closing Documents Final Fiscal Report Final Report of Inventions Govt.
    [Show full text]
  • Wannabe Oligarchs: Tycoons & Influence in the Baltic States
    Conflict Studies Research Centre G111 Wannabe Oligarchs: Tycoons & Influence in the Baltic States Mel Huang In recent years the rise of an oligarch class has significantly affected some post- communist transition processes in central and east Europe (CEE), as business and political interests converge in the hands of a small powerful group taking advantage of the opportunities created by the transition process. The most notable example of the phenomenon was in post-Soviet Russia, where a group of tycoons bankrolled and engineered the 1996 re-election campaign of President Boris Yeltsin. These same figures were rewarded with powerful government posts and other shadier offerings – creating a vicious cycle of corruption, as political influence results in economic power and vice versa. However, the distribution of the phenomenon is neither universal nor even throughout CEE. Some countries, like Estonia, demonstrated a relatively strong division between the spheres of politics and business considering the great number of opportunities to exploit the transition process from both vantage points. This work will examine the differing levels of the manifestation of the oligarchy phenomenon in the Baltic countries of Estonia, Latvia and Lithuania. Privatisation & Corruption - Roots of the Phenomenon In looking at oligarchs, it is perhaps more appropriate to focus on the concept of influence rather than power, as many define power with a negative connotation. The rewards on offer in transitional CEE were clearly significant, especially during the process of mass privatisation of valuable state assets. Following the collapse of the command economy, CEE countries embarked upon – at differing pace and extent – privatisation programmes to create the basis of a market economy.
    [Show full text]
  • Comparison of Evaporation Rates from Feedyard Pond Effluent and Clear Water As Applied to Seepage Predictions
    COMPARISON OF EVAPORATION RATES FROM FEEDYARD POND EFFLUENT AND CLEAR WATER AS APPLIED TO SEEPAGE PREDICTIONS D. B. Parker, B. W. Auvermann, D. L. Williams ABSTRACT. Evaporation estimates are often used in water balance calculations to determine seepage rates from feedyard holding ponds and lagoons. These estimates have been made using empirical equations derived for clear water, Class A Pan evaporation measurements using clear water, and rule-of-thumb estimates. However, feedyard effluent has different physical and chemical characteristics than clear water. The objectives of this research were to compare clear water and feedyard effluent evaporation rates and to determine how inaccuracies in evaporation estimates affect seepage predictions. Small evaporation pans were placed in a 4 × 4 Latin square design adjacent to a Class A Pan. Four experiments were conducted to compare evaporation rates at different concentrations of feedyard effluent, and a fifth experiment was conducted to compare clear water evaporation at different salt concentrations to test for potential vapor pressure effects. For the two experiments when freshly collected feedyard effluent from a holding pond was used, representing typical feedlot holding pond conditions with visible suspended sediment concentrations and dark colored effluent, the feedyard effluent evaporated 8.3 and 10.7% more than the clear water (p = 0.001 and p = 0.0001). When week-old feedyard effluent was used, representing clearer effluent with minimal suspended sediment, the differences were reduced to 3.2 and 0.0% (p = 0.03 and p = 0.70). For clay liners with hydraulic conductivities of 1 × 10–7 to 1 × 10–8 cm/s, we show that underestimating evaporation by 10% when actual evaporation is 1.1 cm/day results in seepage rate predictions of 3 to 20 times higher than actual seepage rates.
    [Show full text]