Summary Report on Evs at Scale and the U.S. Electric Power System November 2019
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bioenergy's Role in Balancing the Electricity Grid and Providing Storage Options – an EU Perspective
Bioenergy's role in balancing the electricity grid and providing storage options – an EU perspective Front cover information panel IEA Bioenergy: Task 41P6: 2017: 01 Bioenergy's role in balancing the electricity grid and providing storage options – an EU perspective Antti Arasto, David Chiaramonti, Juha Kiviluoma, Eric van den Heuvel, Lars Waldheim, Kyriakos Maniatis, Kai Sipilä Copyright © 2017 IEA Bioenergy. All rights Reserved Published by IEA Bioenergy IEA Bioenergy, also known as the Technology Collaboration Programme (TCP) for a Programme of Research, Development and Demonstration on Bioenergy, functions within a Framework created by the International Energy Agency (IEA). Views, findings and publications of IEA Bioenergy do not necessarily represent the views or policies of the IEA Secretariat or of its individual Member countries. Foreword The global energy supply system is currently in transition from one that relies on polluting and depleting inputs to a system that relies on non-polluting and non-depleting inputs that are dominantly abundant and intermittent. Optimising the stability and cost-effectiveness of such a future system requires seamless integration and control of various energy inputs. The role of energy supply management is therefore expected to increase in the future to ensure that customers will continue to receive the desired quality of energy at the required time. The COP21 Paris Agreement gives momentum to renewables. The IPCC has reported that with current GHG emissions it will take 5 years before the carbon budget is used for +1,5C and 20 years for +2C. The IEA has recently published the Medium- Term Renewable Energy Market Report 2016, launched on 25.10.2016 in Singapore. -
A New Era for Wind Power in the United States
Chapter 3 Wind Vision: A New Era for Wind Power in the United States 1 Photo from iStock 7943575 1 This page is intentionally left blank 3 Impacts of the Wind Vision Summary Chapter 3 of the Wind Vision identifies and quantifies an array of impacts associated with continued deployment of wind energy. This 3 | Summary Chapter chapter provides a detailed accounting of the methods applied and results from this work. Costs, benefits, and other impacts are assessed for a future scenario that is consistent with economic modeling outcomes detailed in Chapter 1 of the Wind Vision, as well as exist- ing industry construction and manufacturing capacity, and past research. Impacts reported here are intended to facilitate informed discus- sions of the broad-based value of wind energy as part of the nation’s electricity future. The primary tool used to evaluate impacts is the National Renewable Energy Laboratory’s (NREL’s) Regional Energy Deployment System (ReEDS) model. ReEDS is a capacity expan- sion model that simulates the construction and operation of generation and transmission capacity to meet electricity demand. In addition to the ReEDS model, other methods are applied to analyze and quantify additional impacts. Modeling analysis is focused on the Wind Vision Study Scenario (referred to as the Study Scenario) and the Baseline Scenario. The Study Scenario is defined as wind penetration, as a share of annual end-use electricity demand, of 10% by 2020, 20% by 2030, and 35% by 2050. In contrast, the Baseline Scenario holds the installed capacity of wind constant at levels observed through year-end 2013. -
Innovation Landscape for a Renewable-Powered Future: Solutions to Integrate Variable Renewables
INNOVATION LANDSCAPE FOR A RENEWABLE-POWERED FUTURE: SOLUTIONS TO INTEGRATE VARIABLE RENEWABLES SUMMARY FOR POLICY MAKERS POLICY FOR SUMMARY INNOVATION LANDSCAPE FOR A RENEWABLE POWER FUTURE Copyright © IRENA 2019 Unless otherwise stated, material in this publication may be freely used, shared, copied, reproduced, printed and/or stored, provided that appropriate acknowledgement is given of IRENA as the source and copyright holder. Material in this publication that is attributed to third parties may be subject to separate terms of use and restrictions, and appropriate permissions from these third parties may need to be secured before any use of such material. Citation: IRENA (2019), Innovation landscape for a renewable-powered future: Solutions to integrate variable renewables. Summary for policy makers. International Renewable Energy Agency, Abu Dhabi. Disclaimer This publication and the material herein are provided “as is”. All reasonable precautions have been taken by IRENA to verify the reliability of the material in this publication. However, neither IRENA nor any of its officials, agents, data or other third-party content providers provides a warranty of any kind, either expressed or implied, and they accept no responsibility or liability for any consequence of use of the publication or material herein. The information contained herein does not necessarily represent the views of the Members of IRENA. The mention of specific companies or certain projects or products does not imply that they are endorsed or recommended by IRENA in preference to others of a similar nature that are not mentioned. The designations employed and the presentation of material herein do not imply the expression of any opinion on the part of IRENA concerning the legal status of any region, country, territory, city or area or of its authorities, or concerning the delimitation of frontiers or boundaries. -
Fibre Reinforced Plastic Concepts for Structural Chassis Parts
Transport Research Arena 2014, Paris Fibre Reinforced Plastic Concepts for Structural Chassis Parts Oliver Deisser*, Prof. Dr. Horst E. Friedrich, Gundolf Kopp German Aerospace Center / Institute of Vehicle Concepts Pfaffenwaldring 38-40, 70569 Stuttgart Abstract Fibre reinforced plastics (FRP) have a high potential for reducing masses of automotive parts, but are seldom used for structural parts in the chassis. If the whole chassis concept is adapted to the new material, then a high weight saving potential can be gained and new body concepts can result. DLR Institute of Vehicle Concepts designed and dimensioned a highly stressed structural part in FRP. A topology optimisation of a defined working space with the estimated loads was performed. The results were analysed and fibre reinforced part concepts derived, detailed and evaluated. Especially by the use of the new FRP material system in the chassis area, a weight saving of more than 30% compared to the steel reference was realised. With the help of those concepts it is shown, that there is also a great weight saving potential in the field of chassis design, if the design fits with the material properties. The existing concepts still have to be detailed further, simulated and validated to gain the full lightweight potential. Keywords: Fibre Reinforced Plastics; Chassis Design; Lightweight Design Concepts; Finite Element Simulation; FEM. Résumé Plastiques renforcés de fibres (PRF) ont un fort potentiel de réduction des masses de pièces automobiles, mais sont rarement utilisés pour des pièces de structure du châssis. Si le concept de châssis est adapté au nouveau matériel, un potentiel élevé d'épargne de poids peut être acquis et de nouveaux concepts de construction peuvent en résulter. -
2019 Clean Energy Plan
2019 Clean Energy Plan A Brighter Energy Future for Michigan Solar Gardens power plant at This Clean Energy Plan charts Grand Valley State University. a course for Consumers Energy to embrace the opportunities and meet the challenges of a new era, while safely serving Michigan with affordable, reliable energy for decades to come. Executive Summary A New Energy Future for Michigan Consumers Energy is seizing a once-in-a-generation opportunity to redefine our company and to help reshape Michigan’s energy future. We’re viewing the world through a wider lens — considering how our decisions impact people, the planet and our state’s prosperity. At a time of unprecedented change in the energy industry, we’re uniquely positioned to act as a driving force for good and take the lead on what it means to run a clean and lean energy company. This Clean Energy Plan, filed under Michigan’s Integrated Resource Plan law, details our proposed strategy to meet customers’ long-term energy needs for years to come. We developed our plan by gathering input from a diverse group of key stakeholders to build a deeper understanding of our shared goals and modeling a variety of future scenarios. Our Clean Energy Plan aligns with our Triple Bottom Line strategy (people, planet, prosperity). By 2040, we plan to: • End coal use to generate electricity. • Reduce carbon emissions by 90 percent from 2005 levels. • Meet customers’ needs with 90 percent clean energy resources. Consumers Energy 2019 Clean Energy Plan • Executive Summary • 2 The Process Integrated Resource Planning Process We developed the Clean Energy Plan for 2019–2040 considering people, the planet and Identify Goals Load Forecast Existing Resources Michigan’s prosperity by modeling a variety of assumptions, such as market prices, energy Determine Need for New Resources demand and levels of clean energy resources (wind, solar, batteries and energy waste Supply Transmission and Distribution Demand reduction). -
Autonomous Vehicle Engineering Guide Top Breakthroughs & Resources in Autonomous and Connected Vehicles AUTONOMOUS VEHICLE ENGINEERING GUIDE
EBOOK Autonomous Vehicle Engineering Guide Top Breakthroughs & Resources in Autonomous and Connected Vehicles AUTONOMOUS VEHICLE ENGINEERING GUIDE 5 Contents SENSORS 7 3 For Lidar, MEMs the Word 5 New Performance Metrics for Lidar 7 Detecting Pedestrians SOFTWARE AND AI/MACHINE LEARNING 12 9 Software Building Blocks for AV Systems 12 New Mobility’s Mega Mappers 15 Can Autonomous Vehicles Make the Right ‘Decision?’ 19 CONNECTED VEHICLE ELECTRONICS 17 Expanding the Role of FPGAs 19 Electronic Architectures Get Smart ABOUT ON THE COVER Autonomous Vehicle Engineering covers the In the article Software Building Blocks constantly-evolving field of autonomous and for AV Systems, Sebastian Klaas explores connected vehicles from end to end — covering how Elektrobit's unique software frame- key technologies and applications including work is designed to smooth develop- sensor fusion, artificial intelligence, smart cities, ment of automated driving functions. and much more. This Autonomous Vehicle Automated valet parking is an example Engineering Ebook is a compilation of some of of a practical application of the software the magazine's top feature articles from thought framework. Read more on page 9. leaders, and is your guide to designing the next (Image: Elektrobit) generation of vehicles. 2 AUTONOMOUS VEHICLE ENGINEERING SAE EBOOK SENSORS For Lidar, MEMS the Word by Charles Chung, Ph.D. Tiny gimballed mirrors on chips are being developed that could improve the form factor and cost of automotive lidar. As automakers and their technology partners develop lidar sensors to enable SAE Level 4-5 autonomous driving, some systems designers believe MEMS micromirrors have the potential to reduce overall size and cost—two major hurdles to widespread lidar adoption. -
The Electric Vehicle Evolution
THE ELECTRIC VEHICLE EVOLUTION Electric vehicles are a growing market for new car purchases with more and more people making the switch from the gas station to an electrical outlet to fuel their vehicles. Electric vehicles use electricity as their primary fuel or use electricity along with a conventional engine to improve efficiency (plug-in hybrid vehicles). Drivers are purchasing the vehicles for all kinds of reasons. Many decide to buy when they hear about the savings. Drivers see around $700 in savings a year in gasoline expenses when they drive an average of 12,000 miles. They also can realize substantial tax credits that encourage low-emission and emissions-free driving. Additional benefits include environmental improvements because of reduced vehicle emissions, energy independence by way of using locally-generated electricity and high quality driving performance. With the influx of electric vehicles comes a need for charging infrastructure. Throughout the country, businesses, governments and utilities have been installing electric vehicle charging stations. According to the U.S. Department of Energy’s Alternative Fuels Data Center, there are over tens of thousands of vehicle charging outlets across the country. This trend toward electric vehicles is expected to continue, especially with the billions of dollars that auto manufacturers are investing in these new vehicles. The list of manufacturer support is long with almost every large automobile manufacturer currently developing or selling an electric vehicle. But how and why did this all get started? Let’s step back and take a look at the history of electric transportation. 1 THE ELECTRIC VEHICLE EVOLUTION EARLY SUCCESS Electric vehicles actually have their origin in the 1800s. -
Assignment of New Vehicle Identification Number Application
APPLICATION AND ASSIGNMENT OF NEW VEHICLE IDENTIFICATION NUMBER SECRETARY OF STATE BUREAU OF MOTOR VEHICLES $33.00 FEE REQUIRED DIVISION OF TITLE SERVICES Make Checks payable to: SECRETARY OF STATE OWNERS LEGAL NAME DATE OF BIRTH CURRENT STREET ADDRESS CITY STATE ZIP APPLICATION DATE HOME PHONE WORK PHONE YEAR MAKE MODEL BODY TYPE MISSING VEHICLE IDENTIFICATION NUMBER – IF KNOWN EXACT CURRENT LOCATION OF VEHICLE –STREET ADDRESS CITY STATE ZIP NET WEIGHT - IF TRAILER CC - IF MOTORCYCLE ENGINE NUMBER – IF MOTORCYCLE Subject to inspection by a Bureau of Motor Vehicle detective, the undersigned makes this application for a new vehicle identification number, to be assigned permanently to the vehicle listed above. The applicant also agrees to submit an application for a title certificate (MVT-2) to bear the new number, if this vehicle is 1995 or newer and subject to Maine title law. I certify that I am the owner of the vehicle described above and that said Vehicle requires a Vehicle Identification Number because (CHECK ONE REASON BELOW): ❑ Number was destroyed or obliterated ❑ Homemade vehicle ❑ Other (Explain) _________________________________________________________________________________________ ______________________________________________________________________ OWNER’S SIGNATURE IMPORTANT – PLEASE ALSO READ AND COMPLETE THE BACK OF THIS FORM FOR BMV USE ONLY SPECIAL MOTOR VEHICLE CERTIFICATION FOR BMV USE ONLY This permanent Vehicle Identification Number has been properly affixed to the vehicle described above M E INSPECTOR’S NAME (PLEASE PRINT CLEARLY) INSPECTOR’S SIGNATURE DATE NUMBER AFFIXED ODOMETER READING COMMENTS 101 Hospital Street, #29 State House Station, Augusta, ME 04333-0029 Tel. (207) 624-9000 ext. 52138 Fax: (207) 624-9239 TTY Users call Maine Relay 711 MVT-6 Rev. -
Electric Power Grid Modernization Trends, Challenges, and Opportunities
Electric Power Grid Modernization Trends, Challenges, and Opportunities Michael I. Henderson, Damir Novosel, and Mariesa L. Crow November 2017. This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 United States License. Background The traditional electric power grid connected large central generating stations through a high- voltage (HV) transmission system to a distribution system that directly fed customer demand. Generating stations consisted primarily of steam stations that used fossil fuels and hydro turbines that turned high inertia turbines to produce electricity. The transmission system grew from local and regional grids into a large interconnected network that was managed by coordinated operating and planning procedures. Peak demand and energy consumption grew at predictable rates, and technology evolved in a relatively well-defined operational and regulatory environment. Ove the last hundred years, there have been considerable technological advances for the bulk power grid. The power grid has been continually updated with new technologies including increased efficient and environmentally friendly generating sources higher voltage equipment power electronics in the form of HV direct current (HVdc) and flexible alternating current transmission systems (FACTS) advancements in computerized monitoring, protection, control, and grid management techniques for planning, real-time operations, and maintenance methods of demand response and energy-efficient load management. The rate of change in the electric power industry continues to accelerate annually. Drivers for Change Public policies, economics, and technological innovations are driving the rapid rate of change in the electric power system. The power system advances toward the goal of supplying reliable electricity from increasingly clean and inexpensive resources. The electrical power system has transitioned to the new two-way power flow system with a fast rate and continues to move forward (Figure 1). -
History of Intelligent Transportation Systems Publication Number
HISTORY OF INTELLIGENT TRANSPORTATION SYSTEMS WWW.ITS.DOT.GOV/INDEX.HTM PUBLICATION NUMBER WWW.ITS.DOT.GOV/INDEX.HTM PUBLICATION NUMBER: FHWA-JPO-16-329 U.S. DEPARTMENT OF TRANSPORTATION INTELLIGENT TRANSPORTATION SYSTEMS JOINT PROGRAM OFFICE B U.S. DEPARTMENT OF TRANSPORTATION INTELLIGENT TRANSPORTATION SYSTEMS JOINT PROGRAM OFFICE Produced by Booz Allen Hamilton U.S. Department of Transportation Intelligent Transportation Systems Joint Program Office Notice This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. The U.S. Government is not endorsing any manufacturers, products, or services cited herein and any trade name that may appear in the work has been included only because it is essential to the contents of the work. C U.S. DEPARTMENT OF TRANSPORTATION INTELLIGENT TRANSPORTATION SYSTEMS JOINT PROGRAM OFFICE Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. FHWA-JPO-16-329 4. Title and Subtitle 5. Report Date History of Intelligent Transportation Systems May 2016 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Ashley Auer, Shelley Feese, and Stephen Lockwood 9. Performing Organization Name And Address 10. Work Unit No. (TRAIS) Booz Allen Hamilton 8283 Greensboro Drive 11. Contract or Grant No. McLean, VA 22102 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered U.S. Department of Transportation Intelligent Transportation Systems Joint Program Office 1200 New Jersey Ave SE 14. Sponsoring Agency Code Washington, DC 20590 15. -
The Autonomous Vehicle Revolution Fostering Innovation with Smart Regulation
THE AUTONOMOUS VEHICLE REVOLUTION FOSTERING INNOVATION WITH SMART REGULATION MARCH 2017 The Center for the Study of the Presidency and Congress, founded in 1965, is a nonprofit, nonpartisan 501(c)(3) organization. The Center’s mission is to utilize the lessons of history to address the challenges of today; serve as a strategic honest broker for discussions with leaders from government, the private sector, and the policy community; and to educate the next generation of leaders through the Presidential and International Fellows Program. THE AUTONOMOUS VEHICLE REVOLUTION: FOSTERING INNOVATION WITH SMART REGULATION March 2017 Copyright © 2017 CENTER FOR THE STUDY OF THE PRESIDENCY & CONGRESS All rights reserved. No portion of this report may be reproduced, by any process or technique, without the express written consent of the publisher. Published in the United States of America. Selected Cover Image Credits: Silver Blue, Flickr; Jennifer Morrow, Flickr; Wikimedia Commons 601 Thirteenth Street, NW – Suite 1050N Washington, D.C. 20005 Phone: 202-872-9800 Fax: 202-872-9811 www.thePresidency.org Copyright © 2017 All rights reserved THE AUTONOMOUS VEHICLE REVOLUTION: FOSTERING INNOVATION WITH SMART REGULATION PROJECT DIRECTORS: MAXMILLIAN ANGERHOLZER III DAN MAHAFFEE LEAD RESEARCHER: MADELINE VALE PROJECT ADVISORS: JAMES KITFIELD HURST RENNER WASHINGTON, D.C. MARCH 2017 TABLE OF CONTENTS INTRODUCTION .................................................................................................................. 1 REPORT FINDINGS ............................................................................................................. -
Autonomous Vehicle Technology: a Guide for Policymakers
Autonomous Vehicle Technology A Guide for Policymakers James M. Anderson, Nidhi Kalra, Karlyn D. Stanley, Paul Sorensen, Constantine Samaras, Oluwatobi A. Oluwatola C O R P O R A T I O N For more information on this publication, visit www.rand.org/t/rr443-2 This revised edition incorporates minor editorial changes. Library of Congress Cataloging-in-Publication Data is available for this publication. ISBN: 978-0-8330-8398-2 Published by the RAND Corporation, Santa Monica, Calif. © Copyright 2016 RAND Corporation R® is a registered trademark. Cover image: Advertisement from 1957 for “America’s Independent Electric Light and Power Companies” (art by H. Miller). Text with original: “ELECTRICITY MAY BE THE DRIVER. One day your car may speed along an electric super-highway, its speed and steering automatically controlled by electronic devices embedded in the road. Highways will be made safe—by electricity! No traffic jams…no collisions…no driver fatigue.” Limited Print and Electronic Distribution Rights This document and trademark(s) contained herein are protected by law. This representation of RAND intellectual property is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited. Permission is given to duplicate this document for personal use only, as long as it is unaltered and complete. Permission is required from RAND to reproduce, or reuse in another form, any of its research documents for commercial use. For information on reprint and linking permissions, please visit www.rand.org/pubs/permissions.html. The RAND Corporation is a research organization that develops solutions to public policy challenges to help make communities throughout the world safer and more secure, healthier and more prosperous.