USGS Open File Report 2007-1437, CGS Special Report #203, SCEC

Total Page:16

File Type:pdf, Size:1020Kb

USGS Open File Report 2007-1437, CGS Special Report #203, SCEC The Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2) By 2007 Working Group on California Earthquake Probabilities* USGS Open File Report 2007-1437 CGS Special Report 203 SCEC Contribution #1138 Version 1.0 2008 *Edward H. Field, Timothy E. Dawson, Karen R. Felzer, Arthur D. Frankel, Vipin Gupta, Thomas H. Jordan, Tom Parsons, Mark D. Petersen, Ross S. Stein, Ray J. Weldon II, and Chris J. Wills U.S. Department of the Interior U.S. Geological Survey California Department of Conservation California Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director State of California ARNOLD SCHWARZENEGGER, Governor The Resources Agency MIKE CHRISMAN, Secretary for Resources Department of Conservation Bridgett Luther, Director California Geological Survey John G. Parrish, Ph.D., State Geologist U.S. Geological Survey, Reston, Virginia 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: 2007 Working Group on California Earthquake Probabilities, 2008, The Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2): U.S. Geological Survey Open-File Report 2007-1437 and California Geological Survey Special Report 203 [http://pubs.usgs.gov/of/2007/1091/]. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. ii Executive Committee (ExCom) Edward H. Field (Chair) U. S. Geological Survey, Pasadena, Calif. Tom Parsons U. S. Geological Survey, Menlo Park, Calif. Mark D. Petersen U. S. Geological Survey, Golden, Colo. Ross S. Stein U. S. Geological Survey, Menlo Park, Calif. Ray J. Weldon II SCEC, University of Oregon, Eugene, Oreg. Chris J. Wills California Geological Survey Scientific Review Panel (SRP) William L. Ellsworth (Chair) U. S. Geological Survey, Menlo Park, Calif. Michael L. Blanpied U. S. Geological Survey, Reston, Virg. Lloyd C. Cluff Pacific Gas and Electric Company C. Allin Cornell Stanford University, Stanford, Calif. Arthur D. Frankel U. S. Geological Survey, Golden, Colo. David D. Jackson University of California, Los Angeles, Los Angeles, Calif. David P. Schwartz U. S. Geological Survey, Menlo Park, Calif. Steve G. Wesnousky University of Nevada, Reno, Reno, Nev. Management Oversight Committee (MOC) Thomas H. Jordan (Chair) SCEC Director, University of Southern California Rufus D. Catchings U. S. Geological Survey, Menlo Park, Calif. Jill R. McCarthy U. S. Geological Survey, Golden, Colo. Michael S. Reichle California Geological Survey iii Authors and Co-authors of Appendices Glenn P. Biasi University of Nevada, Reno, Reno, Nev. William A. Bryant California Geological Survey Tianqing Cao California Geological Survey Timothy E. Dawson U. S. Geological Survey, Menlo Park, Calif. Karen R. Felzer U. S. Geological Survey, Pasadena, Calif. Edward H. Field U. S. Geological Survey, Pasadena, Calif. Arthur D. Frankel U. S. Geological Survey, Golden, Colo. Thomas E. Fumal U. S. Geological Survey, Menlo Park, Calif. Vipin Gupta SCEC/ University of Southern California Katherine J. Kendrick U. S. Geological Survey, Pasadena, Calif. Charles S. Mueller U. S. Geological Survey, Golden, Colo. Tom Parsons U. S. Geological Survey, Menlo Park, Calif. Mark D. Petersen U. S. Geological Survey, Golden, Colo. David A. Schmidt University of Oregon, Eugene, Oreg. Ross S. Stein U. S. Geological Survey, Menlo Park, Calif. Tom K. Rockwell San Diego State University, San Diego, Calif. Ray J. Weldon II SCEC/University of Oregon, Eugene, Oreg. Chris J. Wills California Geological Survey Beth A. Wisely University of Oregon, Eugene, Oreg. Yuehua Zeng U. S. Geological Survey, Golden, Colo. iv UCERF 2 Report Table of Contents List of Appendices ....................................................................................................................................... vi List of Supplementary Materials.................................................................................................................vii Executive Summary...................................................................................................................................... 1 A. Introduction.............................................................................................................................................. 9 A.1. Motivation and Structure of WGCEP (2007).................................................................................. 11 A.2. Key Differences and Updates from Previous WGCEP Models ...................................................... 12 A.3. Modeling Framework ...................................................................................................................... 13 A.4. Representation of Epistemic Uncertainty........................................................................................ 14 A.5. Review and Consensus-Building Processes .................................................................................... 16 A.6. Key Products ................................................................................................................................... 18 A.7. Report Organization ........................................................................................................................ 19 B. Fault Models........................................................................................................................................... 20 B.1. Fault Section Database .................................................................................................................... 20 B.2. Alternative Fault Models ................................................................................................................. 22 C. Deformation Models .............................................................................................................................. 24 C.1. Preferred and Alternative Deformation Models .............................................................................. 24 C.2. Aseismic Slip Factors ...................................................................................................................... 27 C.3. Crustal Shear Zones......................................................................................................................... 29 C.4. Path-Integral Tests of Deformation Models .................................................................................... 30 D. Earthquake Rate Models ........................................................................................................................ 33 D.1. Earthquake Source Types................................................................................................................ 33 D.2. Reduction of Moment Rate on Faults.............................................................................................. 34 D.3. Type-A Source Rate Models ........................................................................................................... 35 D.4. Type-B Source Rate Models ........................................................................................................... 41 D.5. Type-C Source Rate Models ........................................................................................................... 42 D.6. Background Seismicity Rate Models .............................................................................................. 43 D.7. The Cascadia Subduction Zone....................................................................................................... 43 D.8. Tests of the Earthquake Rate Models.............................................................................................. 46 E. Probability Models ................................................................................................................................. 59 E.1. WGCEP (2003) Probability Models ................................................................................................ 59 E.2. Selection of Probability Models....................................................................................................... 61 E.3. Statewide Empirical Model.............................................................................................................. 62 E.4. Cascadia Probability Model............................................................................................................. 64 F. Results of Probability Calculations......................................................................................................... 65 F.1. Probability of What? ........................................................................................................................ 65 F.2. Regional Probabilities...................................................................................................................... 66 F.3. Probabilities for Faults ..................................................................................................................... 71 F.4. Probability Sensitivity Analysis......................................................................................................
Recommended publications
  • 3.6 Geology and Soils
    3. Environmental Setting, Impacts, and Mitigation Measures 3.6 Geology and Soils 3.6 Geology and Soils This section describes and evaluates potential impacts related to geology and soils conditions and hazards, including paleontological resources. The section contains: (1) a description of the existing regional and local conditions of the Project Site and the surrounding areas as it pertains to geology and soils as well as a description of the Adjusted Baseline Environmental Setting; (2) a summary of the federal, State, and local regulations related to geology and soils; and (3) an analysis of the potential impacts related to geology and soils associated with the implementation of the Proposed Project, as well as identification of potentially feasible mitigation measures that could mitigate the significant impacts. Comments received in response to the NOP for the EIR regarding geology and soils can be found in Appendix B. Any applicable issues and concerns regarding potential impacts related to geology and soils that were raised in comments on the NOP are analyzed in this section. The analysis included in this section was developed based on Project-specific construction and operational features; the Paleontological Resources Assessment Report prepared by ESA and dated July 2019 (Appendix I); and the site-specific existing conditions, including geotechnical hazards, identified in the Preliminary Geotechnical Report prepared by AECOM and dated September 14, 2018 (Appendix H).1 3.6.1 Environmental Setting Regional Setting The Project Site is located in the northern Peninsular Ranges geomorphic province close to the boundary with the Transverse Ranges geomorphic province. The Transverse Ranges geomorphic province is characterized by east-west trending mountain ranges that include the Santa Monica Mountains.
    [Show full text]
  • Changes in Geyser Eruption Behavior and Remotely Triggered Seismicity in Yellowstone National Park Produced by the 2002 M 7.9 Denali Fault Earthquake, Alaska
    Changes in geyser eruption behavior and remotely triggered seismicity in Yellowstone National Park produced by the 2002 M 7.9 Denali fault earthquake, Alaska S. Husen* Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, USA R. Taylor National Park Service, Yellowstone Center for Resources, Yellowstone National Park, Wyoming 82190, USA R.B. Smith Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, USA H. Healser National Park Service, Yellowstone Center for Resources, Yellowstone National Park, Wyoming 82190, USA ABSTRACT STUDY AREA Following the 2002 M 7.9 Denali fault earthquake, clear changes in geyser activity and The Yellowstone volcanic field, Wyoming, a series of local earthquake swarms were observed in the Yellowstone National Park area, centered in Yellowstone National Park (here- despite the large distance of 3100 km from the epicenter. Several geysers altered their after called ‘‘Yellowstone’’), is one of the larg- eruption frequency within hours after the arrival of large-amplitude surface waves from est silicic volcanic systems in the world the Denali fault earthquake. In addition, earthquake swarms occurred close to major (Christiansen, 2001; Smith and Siegel, 2000). geyser basins. These swarms were unusual compared to past seismicity in that they oc- Three major caldera-forming eruptions oc- curred simultaneously at different geyser basins. We interpret these observations as being curred within the past 2 m.y., the most recent induced by dynamic stresses associated with the arrival of large-amplitude surface waves. 0.6 m.y. ago. The current Yellowstone caldera We suggest that in a hydrothermal system dynamic stresses can locally alter permeability spans 75 km by 45 km (Fig.
    [Show full text]
  • The Coastal Scrub and Chaparral Bird Conservation Plan
    The Coastal Scrub and Chaparral Bird Conservation Plan A Strategy for Protecting and Managing Coastal Scrub and Chaparral Habitats and Associated Birds in California A Project of California Partners in Flight and PRBO Conservation Science The Coastal Scrub and Chaparral Bird Conservation Plan A Strategy for Protecting and Managing Coastal Scrub and Chaparral Habitats and Associated Birds in California Version 2.0 2004 Conservation Plan Authors Grant Ballard, PRBO Conservation Science Mary K. Chase, PRBO Conservation Science Tom Gardali, PRBO Conservation Science Geoffrey R. Geupel, PRBO Conservation Science Tonya Haff, PRBO Conservation Science (Currently at Museum of Natural History Collections, Environmental Studies Dept., University of CA) Aaron Holmes, PRBO Conservation Science Diana Humple, PRBO Conservation Science John C. Lovio, Naval Facilities Engineering Command, U.S. Navy (Currently at TAIC, San Diego) Mike Lynes, PRBO Conservation Science (Currently at Hastings University) Sandy Scoggin, PRBO Conservation Science (Currently at San Francisco Bay Joint Venture) Christopher Solek, Cal Poly Ponoma (Currently at UC Berkeley) Diana Stralberg, PRBO Conservation Science Species Account Authors Completed Accounts Mountain Quail - Kirsten Winter, Cleveland National Forest. Greater Roadrunner - Pete Famolaro, Sweetwater Authority Water District. Coastal Cactus Wren - Laszlo Szijj and Chris Solek, Cal Poly Pomona. Wrentit - Geoff Geupel, Grant Ballard, and Mary K. Chase, PRBO Conservation Science. Gray Vireo - Kirsten Winter, Cleveland National Forest. Black-chinned Sparrow - Kirsten Winter, Cleveland National Forest. Costa's Hummingbird (coastal) - Kirsten Winter, Cleveland National Forest. Sage Sparrow - Barbara A. Carlson, UC-Riverside Reserve System, and Mary K. Chase. California Gnatcatcher - Patrick Mock, URS Consultants (San Diego). Accounts in Progress Rufous-crowned Sparrow - Scott Morrison, The Nature Conservancy (San Diego).
    [Show full text]
  • The Race to Seismic Safety Protecting California’S Transportation System
    THE RACE TO SEISMIC SAFETY PROTECTING CALIFORNIA’S TRANSPORTATION SYSTEM Submitted to the Director, California Department of Transportation by the Caltrans Seismic Advisory Board Joseph Penzien, Chairman December 2003 The Board of Inquiry has identified three essential challenges that must be addressed by the citizens of California, if they expect a future adequately safe from earthquakes: 1. Ensure that earthquake risks posed by new construction are acceptable. 2. Identify and correct unacceptable seismic safety conditions in existing structures. 3. Develop and implement actions that foster the rapid, effective, and economic response to and recovery from damaging earthquakes. Competing Against Time Governor’s Board of Inquiry on the 1989 Loma Prieta Earthquake It is the policy of the State of California that seismic safety shall be given priority consideration in the allo- cation of resources for transportation construction projects, and in the design and construction of all state structures, including transportation structures and public buildings. Governor George Deukmejian Executive Order D-86-90, June 2, 1990 The safety of every Californian, as well as the economy of our state, dictates that our highway system be seismically sound. That is why I have assigned top priority to seismic retrofit projects ahead of all other highway spending. Governor Pete Wilson Remarks on opening of the repaired Santa Monica Freeway damaged in the 1994 Northridge earthquake, April 11, 1994 The Seismic Advisory Board believes that the issues of seismic safety and performance of the state’s bridges require Legislative direction that is not subject to administrative change. The risk is not in doubt. Engineering, common sense, and knowledge from prior earthquakes tells us that the consequences of the 1989 and 1994 earthquakes, as devastating as they were, were small when compared to what is likely when a large earthquake strikes directly under an urban area, not at its periphery.
    [Show full text]
  • Lessons Learned from Oil Pipeline Natech Accidents and Recommendations for Natech Scenario Development
    Lessons learned from oil pipeline natech accidents and recommendations for natech scenario development Final Report Serkan Girgin, Elisabeth Krausmann 2015 Report EUR 26913 EN European Commission Joint Research Centre Institute for the Protection and Security of the Citizen Contact information Elisabeth Krausmann Address: Joint Research Centre, Via E. Fermi 2749, 21027 Ispra (VA), Italy E-mail: [email protected] https://ec.europa.eu/jrc Legal Notice This publication is a Science and Policy Report by the Joint Research Centre, the European Commission’s in-house science service. It aims to provide evidence-based scientific support to the European policy-making process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Image credits: Trans-Alaska Pipeline on slider supports at the Denali Fault crossing: ©T Dawson, USGS JRC92700 EUR 26913 EN ISBN 978-92-79-43970-4 ISSN 1831-9424 doi:10.2788/20737 Luxembourg: Publications Office of the European Union, 2015 © European Union, 2015 Reproduction is authorised provided the source is acknowledged. Abstract Natural hazards can impact oil transmission pipelines with potentially adverse consequences on the population and the environment. They can also cause significant economic impacts to pipeline operators. Currently, there is only limited historical information available on the dynamics of natural hazard impact on pipelines and Action A6 of the EPCIP 2012 Programme aimed at shedding light on this issue. This report presents the findings of the second year of the study that focused on the analysis of onshore hazardous liquid transmission pipeline natechs, with special emphasis on natural hazard impact and damage modes, incident consequences, and lessons learned for scenario building.
    [Show full text]
  • UCLA UCLA Electronic Theses and Dissertations
    UCLA UCLA Electronic Theses and Dissertations Title An Improved Framework for the Analysis and Dissemination of Seismic Site Characterization Data at Varying Resolutions Permalink https://escholarship.org/uc/item/6p35w167 Author Ahdi, Sean Kamran Publication Date 2018 Supplemental Material https://escholarship.org/uc/item/6p35w167#supplemental Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles An Improved Framework for the Analysis and Dissemination of Seismic Site Characterization Data at Varying Resolutions A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Civil Engineering by Sean Kamran Ahdi 2018 © Copyright by Sean Kamran Ahdi 2018 ABSTRACT OF THE DISSERTATION An Improved Framework for the Analysis and Dissemination of Seismic Site Characterization Data at Varying Resolutions by Sean Kamran Ahdi Doctor of Philosophy in Civil Engineering University of California, Los Angeles, 2018 Professor Jonathan Paul Stewart, Chair The most commonly used parameter for representing site conditions for ground motion studies is the time-averaged shear-wave velocity in the upper 30 m, or VS30. While it is preferred to compute VS30 from a directly measured shear-wave velocity (VS) profile using in situ geophysical methods, this information is not always available. One major application of VS30 is the development of ergodic site amplification models, for example as part of ground motion model (GMM) development projects, which require VS30 values for all sites. The first part of this dissertation (Chapters 2-4) addresses the development of proxy-based models for estimation of VS30 for application in subduction zone regions.
    [Show full text]
  • Engineering Geology and Seismology for Public Schools and Hospitals in California
    The Resources Agency California Geological Survey Michael Chrisman, Secretary for Resources Dr. John G. Parrish, State Geologist Engineering Geology and Seismology for Public Schools and Hospitals in California to accompany California Geological Survey Note 48 Checklist by Robert H. Sydnor, Senior Engineering Geologist California Geological Survey www.conservation.ca.gov/cgs July 1, 2005 316 pages Engineering Geology and Seismology performance–based analysis, diligent subsurface for Public Schools and Hospitals sampling, careful reading of the extensive geologic in California literature, thorough knowledge of the California Building Code, combined with competent professional geological work. by Robert H. Sydnor Engineering geology aspects of hospital and public California Geological Survey school sites include: regional geology, regional fault July 1, 2005 316 pages maps, site-specific geologic mapping, geologic cross- sections, active faulting, official zones of investigation Abstract for liquefaction and landslides, geotechnical laboratory The 446+ hospitals, 1,400+ skilled nursing facilities testing of samples, expansive soils, soluble sulfate ±9,221 public schools, and 109 community college evaluation for Type II or V Portland-cement selection, campuses in California are regulated under California and flooding. Code of Regulations, Title 24, California Building Code. Seismology aspects include: evaluation of historic These facilities are plan–checked by senior–level seismicity, probabilistic seismic hazard analysis of Registered Structural Engineers within the Office of earthquake ground–motion, use of proper code terms Statewide Health Planning and Development (OSHPD) (Upper–Bound Earthquake ground–motion and Design– for hospitals and skilled nursing facilities, and the Basis ground–motion), classification of the geologic Division of the State Architect (DSA) for public schools, subgrade by shear–wave velocity to select the correct community colleges, and essential services buildings.
    [Show full text]
  • Investigating Earthquake Hazards in the Northern Salton Trough, Southern California, Using Data from the Salton Seismic Imaging Project (SSIP)
    Investigating Earthquake Hazards in the Northern Salton Trough, Southern California, Using Data from the Salton Seismic Imaging Project (SSIP) G. S. Fuis1, J. A. Hole2, J. M. Stock3, N. W. Driscoll4, G. M. Kent5, A. J. Harding4, A. Kell5, M. R. Goldman1, E. J. Rose1, R. D. Catchings1, M. J. Rymer1, V. E. Langenheim1, D. S. Scheirer1, N. D. Athens1, J. M. Tarnowski6 Refraction Models Line 6 Line 7 Abstract 1 U.S. Geological Survey (USGS), Earthquake Science Center (ESC), Menlo Park, CA. The southernmost San Andreas fault (SAF) system, in the northern Salton Trough (Salton Sea and Coachella Valley), is considered likely to produce a large-magnitude, damaging earthquake in the 2 Virginia Polytechnic Institute and State University, near future. The geometry of the SAF and the velocity and geometry of adjacent sedimentary Dept. Geosciences, Blacksburg, VA basins will strongly influence energy radiation and strong ground shaking during a future rupture. The Salton Seismic Imaging Project (SSIP) was undertaken, in part, to provide more accurate infor- 3 California Institute of Technology, Seismological mation on the SAF and basins in this region. Laboratory 252-21, Pasadena, CA. We report preliminary results from modeling four seismic profiles (Lines 4-7) that cross the Salton 4 Scripps Institution of Oceanography, La Jolla, CA. Trough in this region. Lines 4 to 6 terminate on the SW in the Peninsular Ranges, underlain by Meso- From high-res zoic batholithic rocks, and terminate on the NE in or near the Little San Bernardino or Orocopia active-source seismic - 5 Nevada Seismological Laboratory, University of From 1986 North Palm ? modeling 8 km SE PC and Mz igneous Mountains, underlain by Precambrian and Mesozoic igneous and metamorphic rocks.
    [Show full text]
  • Geologic Mapping and the Trans-Alaska Pipeline Using Geologic Maps to Protect Infrastructure and the Environment
    Case Study Geologic Mapping and the Trans-Alaska Pipeline Using geologic maps to protect infrastructure and the environment Overview The 800-mile-long Trans-Alaska Pipeline, which starts at examining the fault closely and analyzing its rate of Prudhoe Bay on Alaska’s North Slope, can carry 2 million movement, geologists determined that the area around barrels of oil per day south to the port of Valdez for export, the pipeline crossing—had the potential to generate a equal to roughly 10% of the daily consumption in the United very significant earthquake greater than magnitude 8. States in 2017. The pipeline crosses the Denali fault some 90 miles south of Fairbanks. A major earthquake along the fault could cause the pipeline to rupture, spilling crude oil into the surrounding environment. Denali Fault Trace In 2002, a magnitude 7.9 earthquake struck the Denali fault, one of the largest earthquakes ever recorded in North America, which caused violent shaking and large ground movement where the pipeline crossed the fault. However, the pipeline did not spill a drop of oil, and only saw a 3-day shutdown for inspections. Geologic mapping of the pipeline area prior to its construction allowed geologists and engineers to identify and plan for earthquake hazards in the pipeline design, which mitigated damage to pipeline infrastructure and helped prevent a potentially major oil spill during the 2002 earthquake. Geologic Mapping The Trans-Alaska Pipeline after the 2002 earthquake on the Denali Mapping the bedrock geology along the 1,000-mile-long fault. The fault rupture occurred between the second and third Denali fault revealed information on past movement on the beams fault and the likely direction of motion on the fault in future Image credit: Tim Dawson, U.S.
    [Show full text]
  • Fault-Rupture Hazard Zones in California
    SPECIAL PUBLICATION 42 Interim Revision 2007 FAULT-RUPTURE HAZARD ZONES IN CALIFORNIA Alquist-Priolo Earthquake Fault Zoning Act 1 with Index to Earthquake Fault Zones Maps 1 Name changed from Special Studies Zones January 1, 1994 DEPARTMENT OF CONSERVATION California Geological Survey STATE OF CALIFORNIA ARNOLD SCHWARZENEGGER GOVERNOR THE RESOURCES AGENCY DEPARTMENT OF CONSERVATION MIKE CHRISMAN BRIDGETT LUTHER SECRETARY FOR RESOURCES DIRECTOR CALIFORNIA GEOLOGICAL SURVEY JOHN G. PARRISH, PH.D. STATE GEOLOGIST SPECIAL PUBLICATION 42 FAULT-RUPTURE HAZARD ZONES IN CALIFORNIA Alquist-Priolo Earthquake Fault Zoning Act With Index to Earthquake Fault Zones Maps by WILLIAM A. BRYANT and EARL W. HART Geologists Interim Revision 2007 California Department of Conservation California Geological Survey 801 K Street, MS 12-31 Sacramento, California 95814 PREFACE The purpose of the Alquist-Priolo Earthquake Fault Zoning Act is to regulate development near active faults so as to mitigate the hazard of surface fault rupture. This report summarizes the various responsibilities under the Act and details the actions taken by the State Geologist and his staff to implement the Act. This is the eleventh revision of Special Publication 42, which was first issued in December 1973 as an “Index to Maps of Special Studies Zones.” A text was added in 1975 and subsequent revisions were made in 1976, 1977, 1980, 1985, 1988, 1990, 1992, 1994, and 1997. The 2007 revision is an interim version, available in electronic format only, that has been updated to reflect changes in the index map and listing of additional affected cities. In response to requests from various users of Alquist-Priolo maps and reports, several digital products are now available, including digital raster graphic (pdf) and Geographic Information System (GIS) files of the Earthquake Fault Zones maps, and digital files of Fault Evaluation Reports and site reports submitted to the California Geological Survey in compliance with the Alquist-Priolo Act (see Appendix E).
    [Show full text]
  • Nehrp Final Technical Report
    NEHRP FINAL TECHNICAL REPORT Grant Number: G16AP00097 Term of Award: 9/2016-9/2017, extended to 12/2017 PI: Whitney Maria Behr1 Quaternary geologic slip rates along the Agua Blanca fault: implications for hazard to southern California and northern Baja California Abstract The Agua Blanca and San Miguel-Vallecitos Faults transfer ~14% of San Andreas-related Pacific-North American dextral plate motion across the Peninsular Ranges of Baja California. The Late Quaternary slip histories for the these faults are integral to mapping how strain is transferred by the southern San Andreas fault system from the Gulf of California to the western edge of the plate boundary, but have remained inadequately constrained. We present the first quantitative geologic slip rates for the Agua Blanca Fault, which of the two fault is characterized by the most prominent tectonic geomorphologic evidence of significant Late Quaternary dextral slip. Four slip rates from three sites measured using new airborne lidar and both cosmogenic 10Be exposure and optically stimulated luminescence geochronology suggest a steady along-strike rate of ~3 mm/a over 4 time frames. Specifically, the most probable Late Quaternary slip rates for the Agua Blanca Fault are 2.8 +0.8/-0.6 mm/a since ~65.1 ka, 3.0 +1.4/-0.8 mm/a since ~21.8 ka, 3.4 +0.8/-0.6 mm/a since ~11.8 ka, and 3.0 +3.0/-1.5 mm/a since ~1.6 ka, with all uncertainties reported at 95% confidence. These rates suggest that the Agua Blanca Fault accommodates at least half of plate boundary slip across northern Baja California.
    [Show full text]
  • GEOPHYSICAL STUDY of the SALTON TROUGH of Soutllern CALIFORNIA
    GEOPHYSICAL STUDY OF THE SALTON TROUGH OF SOUTllERN CALIFORNIA Thesis by Shawn Biehler In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy California Institute of Technology Pasadena. California 1964 (Su bm i t t ed Ma Y 7, l 964) PLEASE NOTE: Figures are not original copy. 11 These pages tend to "curl • Very small print on several. Filmed in the best possible way. UNIVERSITY MICROFILMS, INC. i i ACKNOWLEDGMENTS The author gratefully acknowledges Frank Press and Clarence R. Allen for their advice and suggestions through­ out this entire study. Robert L. Kovach kindly made avail­ able all of this Qravity and seismic data in the Colorado Delta region. G. P. Woo11ard supplied regional gravity maps of southern California and Arizona. Martin F. Kane made available his terrain correction program. c. w. Jenn­ ings released prel imlnary field maps of the San Bernardino ct11u Ni::eule::> quad1-angles. c. E. Co1-bato supplied information on the gravimeter calibration loop. The oil companies of California supplied helpful infor­ mation on thelr wells and released somA QAnphysical data. The Standard Oil Company of California supplied a grant-In- a l d for the s e i sm i c f i e l d work • I am i ndebt e d to Drs Luc i en La Coste of La Coste and Romberg for supplying the underwater gravimeter, and to Aerial Control, Inc. and Paclf ic Air Industries for the use of their Tellurometers. A.Ibrahim and L. Teng assisted with the seismic field program. am especially indebted to Elaine E.
    [Show full text]