Engineering Geology and Seismology for Public Schools and Hospitals in California

Total Page:16

File Type:pdf, Size:1020Kb

Engineering Geology and Seismology for Public Schools and Hospitals in California The Resources Agency California Geological Survey Michael Chrisman, Secretary for Resources Dr. John G. Parrish, State Geologist Engineering Geology and Seismology for Public Schools and Hospitals in California to accompany California Geological Survey Note 48 Checklist by Robert H. Sydnor, Senior Engineering Geologist California Geological Survey www.conservation.ca.gov/cgs July 1, 2005 316 pages Engineering Geology and Seismology performance–based analysis, diligent subsurface for Public Schools and Hospitals sampling, careful reading of the extensive geologic in California literature, thorough knowledge of the California Building Code, combined with competent professional geological work. by Robert H. Sydnor Engineering geology aspects of hospital and public California Geological Survey school sites include: regional geology, regional fault July 1, 2005 316 pages maps, site-specific geologic mapping, geologic cross- sections, active faulting, official zones of investigation Abstract for liquefaction and landslides, geotechnical laboratory The 446+ hospitals, 1,400+ skilled nursing facilities testing of samples, expansive soils, soluble sulfate ±9,221 public schools, and 109 community college evaluation for Type II or V Portland-cement selection, campuses in California are regulated under California and flooding. Code of Regulations, Title 24, California Building Code. Seismology aspects include: evaluation of historic These facilities are plan–checked by senior–level seismicity, probabilistic seismic hazard analysis of Registered Structural Engineers within the Office of earthquake ground–motion, use of proper code terms Statewide Health Planning and Development (OSHPD) (Upper–Bound Earthquake ground–motion and Design– for hospitals and skilled nursing facilities, and the Basis ground–motion), classification of the geologic Division of the State Architect (DSA) for public schools, subgrade by shear–wave velocity to select the correct community colleges, and essential services buildings. earthquake attenuation formula, near–source The California Geological Survey (CGS) serves coefficients, peak ground acceleration (PGA), under contract as the advisor to these two sister state normalized spectral acceleration, and determination of agencies for engineering geology and seismology. The Seismic Zone 3 or Zone 4. CGS review work is performed by a Certified Liquefaction analysis for appropriate sites includes: Engineering Geologist. geologic setting, liquefaction methodology, dynamic To assist consulting geology and geotechnical firms compaction of sands (above and below the water table), with the preparation of their reports, the California lateral spreading, remedial options, and acceptance Geological Survey uses CGS Note 48, Checklist for the criteria for liquefaction remediation. Review of Engineering Geology and Seismology Reports Exceptional geologic hazards or complicated site for California Public Schools, Hospitals, and Essential conditions may possibly include: Phase I & II Services Buildings. This two–page checklist is meant to Environmental Site Assessment work for toxics, be used by the consulting Certified Engineering hazardous petroleum materials, environmental geology, Geologist and Registered Geotechnical Engineer. ground–water quality of drinking–water supplies, The purpose of this publication is to explain each of septic systems for suburban or rural campuses, the 52 sections within Note 48 checklist. It provides coseismic deformation and non-tectonic faulting, citations to the California Building Code, makes anthropic rise in groundwater surface, regional suggestions how to approach various geologic hazards, subsidence, volcanic eruptions, tsunamis & seiches, and provides practical references in engineering asbestos & tremolite, and Radon–222. geology, seismology, and geotechnical engineering. Review of the grading plans includes evaluation of The goal of this publication and Note 48 is to problems such as: cut/fill areas, over–excavation increase seismic safety for 35+ million Californians requirements, oversize boulders and rocky fills, orchard while streamlining the plan–check process to focus on rip–outs, subdrainage, surface drainage, seismic the relevant geologic hazards at a particular site. impedance across cut/fill lines, deep foundations, Construction schedules can be maintained and overall retaining walls, engineered fill buttresses, soil–nailed construction costs can be kept in line if consulting walls, geosynthetics, and gabions. geology and geotechnical firms prepare adequate and Current scientific publications in geology, appropriate reports that pass through DSA and OSHPD seismology, and geotechnical engineering are needed for plan–check on the first screening. CCR Title 24 projects. The geology of California is highly varied from the For hospitals and public schools, the consultants Nevada border to the Pacific Ocean, and from the must be properly licensed as Certified Engineering Oregon border to the Mexico border. One simple Geologists and Registered Geotechnical Engineers. checklist cannot cover every geologic hazard on each campus. An optimum approach includes: California Geological Survey ― Note 48 Checklist for the Review of Engineering Geology and Seismology Reports for California Public Schools, Hospitals, and Essential Services Buildings January 1, 2004 Note 48 is used by the California Geological Survey (CGS) to determine adequacy and completeness of consulting engineering geology, seismology, and geotechnical reports that are prepared under California Code of Regulations, Title 24, California Building Code. CCR Title 24 applies to California Public Schools, Hospitals, Skilled Nursing Facilities, and Essential Services Buildings. The Building Official for public schools is the Division of the State Architect (DSA). Hospitals and Skilled Nursing Facilities in California are under the jurisdiction of the Office of Statewide Health Planning & Development (OSHPD). The California Geological Survey serves under contract to these two state agencies for engineering geology and seismology review purposes. www.conservation.ca.gov/cgs Project Name: _____________________________ Location: _________________________________ OSHPD or DSA File # ______________________ Review by: _______________________________ Date Reviewed: ____________________________ California Certified Engineering Geologist # _________ Adequately Additional Checklist Item or Parameter within Consulting Report Described; Data Needed; N/A = not applicable N/R = not reviewed; not evaluated at this time Satisfactory Not Satisfactory Project Location 1. Site Location Map, Street Address, County Name, Plot Plan with Building Footprint 2. Adequate Number of Boreholes or Trenches - one per 5,000 ft², with minimum of 2 for any one building 3. Site Coordinates (latitude & longitude) -correctly plotted on a 7½-minute USGS quadrangle base-map Engineering Geology 4. Regional Geology and Regional Fault Maps — concise page-sized illustrations with site plotted 5. Geologic Map of Site — detailed (large-scale) geologic map with proper symbols and geologic legend 6. Subsurface Geology at Site — engineering geology description summarized from boreholes or trench logs 7. Geologic Cross-Sections ― several detailed geologic sections showing pertinent foundations & site grading 8. Active Faulting and Coseismic Deformation Across Site — Alquist-Priolo Earthquake Fault Zones for active faults; excavation of fault trenches; 50-foot setbacks from fault plane 9. Geologic Hazard Zones ― Seismic Hazard Zone Maps (liquefaction & landslides) Provide page-sized extract of official map showing liquefaction and landslide zones from California Geological Survey (as applicable) and any pertinent geologic map from the Safety Element of the local agency (city or county). 10. Landslides ― both on-site & on adjacent hillslope property (above or below); debris flows & rockfalls 11. Geotechnical Testing of Representative Samples ― broad suite of appropriate geotechnical tests 12. Expansive Soils -- Clay Mineralogy of the Geologic Subgrade Classify by Table 18-1-B & remediate 13. Geochemistry of Geologic Subgrade - Soluble Sulfates and Corrosive Soils Specify either Type II or Type V portland cement. Typical soluble sulfates include gypsum and jarosite. 14. Flooding & Severe Erosion - discuss FEMA Flood Zones; show site plotted on official map (if applicable) Seismology & Calculation of Earthquake Ground-Motion 15. Evaluation of Historic Seismicity ― significant earthquakes that affected the site in the past 200 years 16. Probabilistic Seismic Hazard Analysis ( PSHA ) Evaluation of Earthquake Ground-Motion 17. Upper-Bound Earthquake Ground-Motion ― 10% chance of exceedance in 100 years: cite & use 18. Design-Basis Earthquake Ground-Motion ― 10% chance of exceedance in 50 years: cite & use 19. Characterize and Classify the Geologic Subgrade from Table 16A-J of Code; shear-wave velocity 20. Near-Source Coefficients and Distance to Nearest Active Fault ― if applicable: Na, Nv, Ca, Cv 21. Peak Ground Acceleration for UBE and DBE levels of ground-motion - summary PGA values 22. Normalized Spectral Acceleration - Site-specific spectral acceleration is required for dynamic analysis for irregular and tall buildings. Use ζ ≡ 5 percent viscous damping for both UBE and DBE ground-motion. 23. Seismic Zone 3 or 4 ― determine appropriate zone from Figure 16A-2 and Section 1629A.4.1 24. Scaled Time-Histories of Earthquake Ground-Motion - as applicable for base-isolated structures
Recommended publications
  • Montana Kaimin, May 4, 1979 Associated Students of the University of Montana
    University of Montana ScholarWorks at University of Montana Associated Students of the University of Montana Montana Kaimin, 1898-present (ASUM) 5-4-1979 Montana Kaimin, May 4, 1979 Associated Students of the University of Montana Let us know how access to this document benefits ouy . Follow this and additional works at: https://scholarworks.umt.edu/studentnewspaper Recommended Citation Associated Students of the University of Montana, "Montana Kaimin, May 4, 1979" (1979). Montana Kaimin, 1898-present. 6834. https://scholarworks.umt.edu/studentnewspaper/6834 This Newspaper is brought to you for free and open access by the Associated Students of the University of Montana (ASUM) at ScholarWorks at University of Montana. It has been accepted for inclusion in Montana Kaimin, 1898-present by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. Aber Day Kegger picket proposed by labor council By MARK ELLSWORTH Max Weiss, a legal counselor at Lawry said there would be no Montana Kalmfn Reporter the University of Montana, said the "line to cross" that could cause problem with a secondary boycott trouble. He said the picket is a A meeting Wednesday night is that those involved can be held potentially "explosive issue," but between the Aber Day Kegger liable for any loss of business by the group is “trying to keep it as promoters and the Missoula the third party. cool as it can." Trades and Labor Council took But in some instances, Weiss Amid all the rising sentiment place to discuss a possible picket said, if the boycott is “in­ against Coors, there is still no at the kegger site to protest formational in nature, and peace­ word that MLAC is planning to serving Coors beer.
    [Show full text]
  • New Constraints on Coseismic Slip During Southern Cascadia Subduction Zone Earthquakes Over the Past 4600 Years Implied by Tsunami Deposits and Marine Turbidites
    W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 2018 New constraints on coseismic slip during southern Cascadia subduction zone earthquakes over the past 4600 years implied by tsunami deposits and marine turbidites GR Priest RC Witter Yinglong J. Zhang Virginia Institute of Marine Science C Goldfinger KL Wang See next page for additional authors Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Aquaculture and Fisheries Commons Recommended Citation Priest, GR; Witter, RC; Zhang, Yinglong J.; Goldfinger, C; Wang, KL; and Allen, JC, "New constraints on coseismic slip during southern Cascadia subduction zone earthquakes over the past 4600 years implied by tsunami deposits and marine turbidites" (2018). VIMS Articles. 734. https://scholarworks.wm.edu/vimsarticles/734 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Authors GR Priest, RC Witter, Yinglong J. Zhang, C Goldfinger, KL Wang, and JC Allen This article is available at W&M ScholarWorks: https://scholarworks.wm.edu/vimsarticles/734 Nat Hazards (2017) 88:285–313 DOI 10.1007/s11069-017-2864-9 ORIGINAL PAPER New constraints on coseismic slip during southern Cascadia subduction zone earthquakes over the past 4600 years implied by tsunami deposits and marine turbidites 1 2 3 George R. Priest • Robert C. Witter • Yinglong J. Zhang • 4 5 1 Chris Goldfinger • Kelin Wang • Jonathan C. Allan Received: 24 August 2016 / Accepted: 8 April 2017 / Published online: 29 April 2017 Ó Springer Science+Business Media Dordrecht (outside the USA) 2017 Abstract Forecasting earthquake and tsunami hazards along the southern Cascadia sub- duction zone is complicated by uncertainties in the amount of megathrust fault slip during past ruptures.
    [Show full text]
  • Changes in Geyser Eruption Behavior and Remotely Triggered Seismicity in Yellowstone National Park Produced by the 2002 M 7.9 Denali Fault Earthquake, Alaska
    Changes in geyser eruption behavior and remotely triggered seismicity in Yellowstone National Park produced by the 2002 M 7.9 Denali fault earthquake, Alaska S. Husen* Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, USA R. Taylor National Park Service, Yellowstone Center for Resources, Yellowstone National Park, Wyoming 82190, USA R.B. Smith Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, USA H. Healser National Park Service, Yellowstone Center for Resources, Yellowstone National Park, Wyoming 82190, USA ABSTRACT STUDY AREA Following the 2002 M 7.9 Denali fault earthquake, clear changes in geyser activity and The Yellowstone volcanic field, Wyoming, a series of local earthquake swarms were observed in the Yellowstone National Park area, centered in Yellowstone National Park (here- despite the large distance of 3100 km from the epicenter. Several geysers altered their after called ‘‘Yellowstone’’), is one of the larg- eruption frequency within hours after the arrival of large-amplitude surface waves from est silicic volcanic systems in the world the Denali fault earthquake. In addition, earthquake swarms occurred close to major (Christiansen, 2001; Smith and Siegel, 2000). geyser basins. These swarms were unusual compared to past seismicity in that they oc- Three major caldera-forming eruptions oc- curred simultaneously at different geyser basins. We interpret these observations as being curred within the past 2 m.y., the most recent induced by dynamic stresses associated with the arrival of large-amplitude surface waves. 0.6 m.y. ago. The current Yellowstone caldera We suggest that in a hydrothermal system dynamic stresses can locally alter permeability spans 75 km by 45 km (Fig.
    [Show full text]
  • The Race to Seismic Safety Protecting California’S Transportation System
    THE RACE TO SEISMIC SAFETY PROTECTING CALIFORNIA’S TRANSPORTATION SYSTEM Submitted to the Director, California Department of Transportation by the Caltrans Seismic Advisory Board Joseph Penzien, Chairman December 2003 The Board of Inquiry has identified three essential challenges that must be addressed by the citizens of California, if they expect a future adequately safe from earthquakes: 1. Ensure that earthquake risks posed by new construction are acceptable. 2. Identify and correct unacceptable seismic safety conditions in existing structures. 3. Develop and implement actions that foster the rapid, effective, and economic response to and recovery from damaging earthquakes. Competing Against Time Governor’s Board of Inquiry on the 1989 Loma Prieta Earthquake It is the policy of the State of California that seismic safety shall be given priority consideration in the allo- cation of resources for transportation construction projects, and in the design and construction of all state structures, including transportation structures and public buildings. Governor George Deukmejian Executive Order D-86-90, June 2, 1990 The safety of every Californian, as well as the economy of our state, dictates that our highway system be seismically sound. That is why I have assigned top priority to seismic retrofit projects ahead of all other highway spending. Governor Pete Wilson Remarks on opening of the repaired Santa Monica Freeway damaged in the 1994 Northridge earthquake, April 11, 1994 The Seismic Advisory Board believes that the issues of seismic safety and performance of the state’s bridges require Legislative direction that is not subject to administrative change. The risk is not in doubt. Engineering, common sense, and knowledge from prior earthquakes tells us that the consequences of the 1989 and 1994 earthquakes, as devastating as they were, were small when compared to what is likely when a large earthquake strikes directly under an urban area, not at its periphery.
    [Show full text]
  • A Review of Geological Records of Large Tsunamis at Vancouver Island, British Columbia, and Implications for Hazard John J
    Quaternary Science Reviews 19 (2000) 849}863 A review of geological records of large tsunamis at Vancouver Island, British Columbia, and implications for hazard John J. Clague! " *, Peter T. Bobrowsky#, Ian Hutchinson$ !Depatment of Earth Sciences and Institute for Quaternary Research, Simon Fraser University, Burnaby, BC, Canada V5A 1S6 "Geological Survey of Canada, 101 - 605 Robson St., Vancouver, BC, Canada V6B 5J3 #Geological Survey Branch, P.O. Box 9320, Stn Prov Govt, Victoria, BC, Canada V8W 9N3 $Department of Geography and Institute for Quaternary Research, Simon Fraser University, Burnaby, Canada BC V5A 1S6 Abstract Large tsunamis strike the British Columbia coast an average of once every several hundred years. Some of the tsunamis, including one from Alaska in 1964, are the result of distant great earthquakes. Most, however, are triggered by earthquakes at the Cascadia subduction zone, which extends along the Paci"c coast from Vancouver Island to northern California. Evidence of these tsunamis has been found in tidal marshes and low-elevation coastal lakes on western Vancouver Island. The tsunamis deposited sheets of sand and gravel now preserved in sequences of peat and mud. These sheets commonly contain marine fossils, and they thin and "ne landward, consistent with deposition by landward surges of water. They occur in low-energy settings where other possible depositional processes, such as stream #ooding and storm surges, can be ruled out. The most recent large tsunami generated by an earthquake at the Cascadia subduction zone has been dated in Washington and Japan to AD 1700. The spatial distribution of the deposits of the 1700 tsunami, together with theoretical numerical modelling, indicate wave run-ups of up to 5 m asl along the outer coast of Vancouver Island and up to 15}20 m asl at the heads of some inlets.
    [Show full text]
  • Weathering, Erosion, and Susceptibility to Weathering Henri Robert George Kenneth Hack
    Weathering, erosion, and susceptibility to weathering Henri Robert George Kenneth Hack To cite this version: Henri Robert George Kenneth Hack. Weathering, erosion, and susceptibility to weathering. Kanji, Milton; He, Manchao; Ribeira e Sousa, Luis. Soft Rock Mechanics and Engineering, Springer Inter- national Publishing, pp.291-333, 2020, 9783030294779. 10.1007/978-3-030-29477-9. hal-03096505 HAL Id: hal-03096505 https://hal.archives-ouvertes.fr/hal-03096505 Submitted on 5 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Published in: Hack, H.R.G.K., 2020. Weathering, erosion and susceptibility to weathering. 1 In: Kanji, M., He, M., Ribeira E Sousa, L. (Eds), Soft Rock Mechanics and Engineering, 1 ed, Ch. 11. Springer Nature Switzerland AG, Cham, Switzerland. ISBN: 9783030294779. DOI: 10.1007/978303029477-9_11. pp. 291-333. Weathering, erosion, and susceptibility to weathering H. Robert G.K. Hack Engineering Geology, ESA, Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente Enschede, The Netherlands e-mail: [email protected] phone: +31624505442 Abstract: Soft grounds are often the result of weathering. Weathering is the chemical and physical change in time of ground under influence of atmosphere, hydrosphere, cryosphere, biosphere, and nuclear radiation (temperature, rain, circulating groundwater, vegetation, etc.).
    [Show full text]
  • Lessons Learned from Oil Pipeline Natech Accidents and Recommendations for Natech Scenario Development
    Lessons learned from oil pipeline natech accidents and recommendations for natech scenario development Final Report Serkan Girgin, Elisabeth Krausmann 2015 Report EUR 26913 EN European Commission Joint Research Centre Institute for the Protection and Security of the Citizen Contact information Elisabeth Krausmann Address: Joint Research Centre, Via E. Fermi 2749, 21027 Ispra (VA), Italy E-mail: [email protected] https://ec.europa.eu/jrc Legal Notice This publication is a Science and Policy Report by the Joint Research Centre, the European Commission’s in-house science service. It aims to provide evidence-based scientific support to the European policy-making process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Image credits: Trans-Alaska Pipeline on slider supports at the Denali Fault crossing: ©T Dawson, USGS JRC92700 EUR 26913 EN ISBN 978-92-79-43970-4 ISSN 1831-9424 doi:10.2788/20737 Luxembourg: Publications Office of the European Union, 2015 © European Union, 2015 Reproduction is authorised provided the source is acknowledged. Abstract Natural hazards can impact oil transmission pipelines with potentially adverse consequences on the population and the environment. They can also cause significant economic impacts to pipeline operators. Currently, there is only limited historical information available on the dynamics of natural hazard impact on pipelines and Action A6 of the EPCIP 2012 Programme aimed at shedding light on this issue. This report presents the findings of the second year of the study that focused on the analysis of onshore hazardous liquid transmission pipeline natechs, with special emphasis on natural hazard impact and damage modes, incident consequences, and lessons learned for scenario building.
    [Show full text]
  • Principles of Engineering Geology Principles of Engineering Geology
    PRINCIPLES OF ENGINEERING GEOLOGY PRINCIPLES OF ENGINEERING GEOLOGY P. B. ATTEWELL and I. W. FARMER University of Durham LONDON CHAPMAN AND HALL A Halsted Press Book JOHN WILEY & SONS, INC., NEW YORK First published 1976 by Chapman and Hall Ltd 11 New Fetter Lane, London EC4P 4EE © 1976 J. E. Attewell and L. C. Attewell Sriftcover reprillt rifthe hardcover 1ft editiolt 1976 Typeset by Preface Ltd, Salisbury, Wilts Fletcher & Son Ltd, Norwich ISBN-13: 978-94-009-5709-1 e-ISBN-13: 978-94-009-5707-7 DOl: 10.1007/978-94-009-5707-7 All rights reserved. No part of this book may be reprinted, or reproduced or utilized in any form or by any electronic, mechanical or other means, now known or hereafter invented, including photocopying and recording, or in any information storage and retrieval system, without permission in writing from the Publisher. Distributed in the U.S.A. by Halsted Press, a Division of John Wiley & Sons, Inc., New York Library of Congress Cataloging in Publication Data Attewell, P B Principles of engineering geology. 1. Engineering geology. I. Farmer, Ian William, joint author. II. Title. TA705.A87 1975 624'151 75-20012 Contents Preface xi Symbols xvii Composition of Rocks 1 1.1 Origin and geological classification of rocks 1 1.2 Rock forming minerals 7 1.3 Clay minerals 16 1.4 Base exchange and water adsorption in clay minerals 20 1.5 Mineralogical identification 25 2 Rock Particles and Particle Systems 30 2.1 Rock particle classification 30 2.2 Typical rock particle systems 33 2.3 Physical properties of particulate systems
    [Show full text]
  • Guidebook Contains Preliminary Findings of a Number of Concurrent Projects Being Worked on by the Trip Leaders
    TH FRIENDS OF THE PLEISTOCENE, ROCKY MOUNTAIN-CELL, 45 FIELD CONFERENCE PLIO-PLEISTOCENE STRATIGRAPHY AND GEOMORPHOLOGY OF THE CENTRAL PART OF THE ALBUQUERQUE BASIN OCTOBER 12-14, 2001 SEAN D. CONNELL New Mexico Bureau of Geology and Mineral Resources-Albuquerque Office, New Mexico Institute of Mining and Technology, 2808 Central Ave. SE, Albuquerque, New Mexico 87106 DAVID W. LOVE New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801 JOHN D. SORRELL Tribal Hydrologist, Pueblo of Isleta, P.O. Box 1270, Isleta, NM 87022 J. BRUCE J. HARRISON Dept. of Earth and Environmental Sciences, New Mexico Institute of Mining and Technology 801 Leroy Place, Socorro, NM 87801 Open-File Report 454C and D Initial Release: October 11, 2001 New Mexico Bureau of Geology and Mineral Resources New Mexico Institute of Mining and Technology 801 Leroy Place, Socorro, NM 87801 NMBGMR OFR454 C & D INTRODUCTION This field-guide accompanies the 45th annual Rocky Mountain Cell of the Friends of the Pleistocene (FOP), held at Isleta Lakes, New Mexico. The Friends of the Pleistocene is an informal gathering of Quaternary geologists, geomorphologists, and pedologists who meet annually in the field. The field guide has been separated into two parts. Part C (open-file report 454C) contains the three-days of road logs and stop descriptions. Part D (open-file report 454D) contains a collection of mini-papers relevant to field-trip stops. This field guide is a companion to open-file report 454A and 454B, which accompanied a field trip for the annual meeting of the Rocky Mountain/South Central Section of the Geological Society of America, held in Albuquerque in late April.
    [Show full text]
  • With Focus on the Genus Handleyomys and Related Taxa
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2015-04-01 Evolution and Biogeography of Mesoamerican Small Mammals: With Focus on the Genus Handleyomys and Related Taxa Ana Villalba Almendra Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Biology Commons BYU ScholarsArchive Citation Villalba Almendra, Ana, "Evolution and Biogeography of Mesoamerican Small Mammals: With Focus on the Genus Handleyomys and Related Taxa" (2015). Theses and Dissertations. 5812. https://scholarsarchive.byu.edu/etd/5812 This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Evolution and Biogeography of Mesoamerican Small Mammals: Focus on the Genus Handleyomys and Related Taxa Ana Laura Villalba Almendra A dissertation submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Duke S. Rogers, Chair Byron J. Adams Jerald B. Johnson Leigh A. Johnson Eric A. Rickart Department of Biology Brigham Young University March 2015 Copyright © 2015 Ana Laura Villalba Almendra All Rights Reserved ABSTRACT Evolution and Biogeography of Mesoamerican Small Mammals: Focus on the Genus Handleyomys and Related Taxa Ana Laura Villalba Almendra Department of Biology, BYU Doctor of Philosophy Mesoamerica is considered a biodiversity hot spot with levels of endemism and species diversity likely underestimated. For mammals, the patterns of diversification of Mesoamerican taxa still are controversial. Reasons for this include the region’s complex geologic history, and the relatively recent timing of such geological events.
    [Show full text]
  • Engineering Geologist Examination Content
    CONTENT SPECIFICATIONS AND REFERENCES FOR ENGINEERING GEOLOGIST EXAMINATION I. PROJECT PLANNING (17%) – Determine scope and objectives of project, applicable regulatory or jurisdictional statutes, and evaluate research and background information. Tasks T1. Define type and level of engineering geologic investigation for intended application. T2. Plan monitoring system to quantify ground movement and fluctuations in groundwater. T3. Identify types and quantity of subsurface explorations to adequately characterize the geologic conditions at the site for the intended application. T4. Identify regulatory permits and requirements for field exploration and project application. T5. Review grading and development plans to evaluate potential impacts from adverse geologic conditions and impacts to exploration program. T6. Plan areal reconnaissance to evaluate potential geologic impacts and constraints on site exploration and development. T7. Review published and unpublished geologic information to identify geologic conditions that could impact site development. T8. Review site conditions, and historical and anecdotal information to support observed geological conditions, past site usage and site modification. T9. Review aerial photographs and other remote sensing data to plan explorations, and identify past site usage, ground surface changes and landforms. T10.Plan laboratory programs to characterize earth materials for intended application. References • 1997 Uniform Building Code • Bell, F. G. (1998). Environmental geology. Oxford: Blackwell Publishing, Ltd. • Burns, S. (1998). Environmental, groundwater and engineering geology: Applications from Oregon. Belmont, CA: Star Publishing Company • Cheny, R. & Chassie, R. (2000). Soils and foundations workshop reference manual. Washington, DC: National Highway Institute Publication NHI-00-045, Federal Highway Administration • Crandell, D. R., & Mullineaux, D. R. (1975). Technique and rationale of volcanic hazards appraisals in the Cascade Range, northwestern United States.
    [Show full text]
  • ISSMGE Bulletin
    ISSMGE Bulletin Volume 7, Issue 6 December 2013 International Society for Soil Mechanics and Geotechnical Engineering If the quality of the distributed file is not satisfactory for you, please access ISSMGE website and download a better one. www.issmge.org I NSIDE T HIS I SSUE 1 R Frank President Message 4 Report ICSMGE Paris 9 Report on iYGEC MESSAGE FROM THE NEW ISSMGE PRESIDENT 12 Nash Medal 14 Foundation Report 42 DVD for the Special Issue Prof. Dr.-Ing. Roger Frank 44 Hungarian Society Books 46 Transportation Journal Dear Members of ISSMGE, NEWS ON RECENT Dear Colleagues, CONFERENCES 47 5th KGS-JGS It is a great honour and privilege 48 Geosynthetic Belogna for me to have been elected by the 52 Chinese Taipei Member Societies of ISSMGE as your 59 Auckland President for the 4-year term from 61 ISAFE Singapore 2013 to 2017. The election took place during the Council meeting, UPCOMING CONFERENCES just before the opening of the 18th 66 Offshore Geotech ISFOG International Conference on Soils 67 Poppi Course Mechanics and Geotechnical OTHERS Engineering (18 ICSMGE) in Paris, 2- 68 Briaud Book 6 September 2013. 69 Event Diary 76 Corporate Associates Before updating you with the 80 Foundation Donors various matters which might be of 82 ISSMGE’s International interest to you, I would like to acknowledge the great work and achievements of Journal of Geoengineering my two predecessors, President Pedro Sêco e Pinto and President Jean-Louis Case Histories Briaud. I was a member of the Board during their two mandates and it was a real pleasure to work under their leadership, with the efficient assistance of our TECHNICAL ARTICLE Secretary General Neil Taylor.
    [Show full text]