Changes in Geyser Eruption Behavior and Remotely Triggered Seismicity in Yellowstone National Park Produced by the 2002 M 7.9 Denali Fault Earthquake, Alaska

Total Page:16

File Type:pdf, Size:1020Kb

Changes in Geyser Eruption Behavior and Remotely Triggered Seismicity in Yellowstone National Park Produced by the 2002 M 7.9 Denali Fault Earthquake, Alaska Changes in geyser eruption behavior and remotely triggered seismicity in Yellowstone National Park produced by the 2002 M 7.9 Denali fault earthquake, Alaska S. Husen* Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, USA R. Taylor National Park Service, Yellowstone Center for Resources, Yellowstone National Park, Wyoming 82190, USA R.B. Smith Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, USA H. Healser National Park Service, Yellowstone Center for Resources, Yellowstone National Park, Wyoming 82190, USA ABSTRACT STUDY AREA Following the 2002 M 7.9 Denali fault earthquake, clear changes in geyser activity and The Yellowstone volcanic field, Wyoming, a series of local earthquake swarms were observed in the Yellowstone National Park area, centered in Yellowstone National Park (here- despite the large distance of 3100 km from the epicenter. Several geysers altered their after called ‘‘Yellowstone’’), is one of the larg- eruption frequency within hours after the arrival of large-amplitude surface waves from est silicic volcanic systems in the world the Denali fault earthquake. In addition, earthquake swarms occurred close to major (Christiansen, 2001; Smith and Siegel, 2000). geyser basins. These swarms were unusual compared to past seismicity in that they oc- Three major caldera-forming eruptions oc- curred simultaneously at different geyser basins. We interpret these observations as being curred within the past 2 m.y., the most recent induced by dynamic stresses associated with the arrival of large-amplitude surface waves. 0.6 m.y. ago. The current Yellowstone caldera We suggest that in a hydrothermal system dynamic stresses can locally alter permeability spans 75 km by 45 km (Fig. 1). Yellowstone by unclogging existing fractures, thereby changing geyser activity. Furthermore, we sug- includes Ͼ10,000 geysers, hot springs, and fu- gest that earthquakes were triggered by the redistribution of hydrothermal fluids and maroles, which are considered the result of hot locally increased pore pressures. Although changes in geyser activity and earthquake trig- water circulating along fracture systems in the gering have been documented elsewhere, here we present evidence for changes in a hy- upper crust and heated by crystallizing magma drothermal system induced by a large-magnitude event at a great distance, and evidence at a depth of 10–15 km (Fournier, 1989). Most for the important role hydrothermal systems play in remotely triggering seismicity. of Yellowstone’s hydrothermal features are lo- cated inside the Yellowstone caldera close to Keywords: Yellowstone National Park, geysers, hydrothermal processes, earthquake swarms. two resurgent domes and along a fault zone extending north from Norris Geyser Basin INTRODUCTION cleation, since elevated fluid pressure will al- (Fig. 1). Hydrothermal systems, including geysers ter the strength and the local stress regime on and hot springs, are regions in Earth’s crust a fault (Hickman et al., 1995). Evidence for HYDROTHERMAL OBSERVATIONS where hot fluids circulate at shallow depths. elevated fluid pressures was, for example, de- Coincident with the arrival of Denali earth- Numerical simulations indicate that geyser tected at the nucleation zone of the M 7.2 quake surface waves, hydrothermal changes eruption intervals are highly sensitive to the 1995 Kobe earthquake, Japan (Zhao et al., were observed at 100 Spring Plain, a hot- intrinsic permeabilities of the geyser’s conduit 1996). Migration and redistribution of fluids spring system at Norris Geyser Basin (S. Stur- and the surrounding rock matrix (Ingebritsen might also trigger earthquake swarms (Waite tevant, 2003, written commun.). Several small and Rojstaczer, 1993, 1996). It has been sug- and Smith, 2002) and drive aftershocks (Nur hot springs, not known to have geysered be- gested that geyser eruption intervals respond and Booker, 1972). Furthermore, remotely fore, suddenly surged into a heavy boil with to small changes in strain induced by atmo- triggered earthquakes occur preferentially in eruptions as high as ϳ1 m. The temperature spheric loading, Earth tides (Rinehart, 1972), geothermal and volcanic areas, suggesting that at one of these springs increased rapidly from and earthquakes (Silver and Valette-Silver, fluids are important in explaining this phe- ϳ42 to 93 ЊC and the pH value increased from 1992). Hot springs and geysers in the Yellow- nomenon (Hill et al., 1993). 2.44 to 5.30 before returning to 3.72 ϳ18 min stone National Park have displayed significant On 3 November 2002, a M 7.9 earthquake later. In the same area, another hot spring that was usually clear showed muddy, turbid water. changes in their eruption patterns following ruptured the Denali fault in central Alaska We monitored eruption intervals of 22 gey- large earthquakes at regional distances (Ͻ200 (Fig. 1). The Denali fault earthquake (hereaf- sers during the winter of 2002–2003 by plac- km) and following intense local earthquake ter Denali earthquake) was one of the largest swarms (Hutchinson, 1985; Marler, 1964; Pitt ing temperature sensors in the runoff chan- strike-slip earthquakes in North America in and Hutchinson, 1982; Watson, 1961). A re- nels.1 Of these 22 instrumented geysers, 8 the past 150 yr (Eberhart-Phillips et al., 2003). cent study (Rojstaczer et al., 2003), however, displayed notable changes in their eruption in- Within hours after the Denali earthquake, we suggested that geysers might be less sensitive tervals, i.e., the changes were larger than the observed significant changes in the eruption to elastic deformation than previously as- intervals of several geysers throughout Yel- sumed. In addition, variations in geyser erup- 1 lowstone, despite the large distance, 3100 km, GSA Data Repository item 2004087, table and tion intervals may also be controlled by inter- graphs of changes in eruption intervals at monitored nal dynamic processes of the geysers from its epicenter. In addition, intense swarms geysers, and cumulative number of earthquakes (Rojstaczer et al., 2003). of local earthquakes occurred close to hydro- close to major geyser basins prior to and after the 2002 Denali fault earthquake, is available at Fluids play a critical role in earthquake nu- thermal systems that experienced the changes in geyser activity. In this paper we report on www.geosociety.org/pubs/ft2004.htm, or on request from [email protected] or Document Secre- *Now at Swiss Seismological Service, ETH these observations and discuss mechanisms tary, GSA, P.O. Box 9140, Boulder, CO 80301- Hoenggerberg, CH 8093 Zurich, Switzerland. that might explain the observations. 9140, USA. ᭧ 2004 Geological Society of America. For permission to copy, contact Copyright Permissions, GSA, or [email protected]. Geology; June 2004; v. 32; no. 6; p. 537–540; doi: 10.1130/G20381.1; 3 figures; Data Repository item 2004087. 537 Figure 1. Location of re- motely triggered earth- quakes (colored circles) within first 6 h following passage of M 7.9 2002 Denali earthquake sur- face waves. Color of cir- cles is scaled by focal depth and size of circles is scaled with magnitude. Bold red line marks out- line of 0.60 Ma Yellow- stone caldera. Resurgent domes are shown by thin red lines. White line marks outline of Yellow- stone National Park. Ma- jor hydrothermal systems are shown by black stars. Major geyser basins are labeled: YL—Yellowstone Lake; WT—West Thumb Geyser Basin; UP— Upper Geyser Basin; LB—Lower Geyser Ba- sin; NS—Norris Geyser Basin. Inset map shows locations of Denali earth- quake relative to Yellow- stone volcanic field. Sol- id and dashed lines mark -great circle path ؎10؇ tra versed by surface waves directed along strike of Denali fault earthquake. standard error of the intervals prior to the earthquakes clustered close to major hydro- gering of local earthquakes. The latter is not Denali earthquake. Four geysers were too er- thermal systems (Fig. 1). The triggered earth- an unusual phenomenon; remote triggering of ratic to show any effects, and 10 geysers quakes showed swarm-like behavior, cluster- local earthquakes was observed following the showed no significant changes. There was no ing in time and space (Figs. 1 and 3). Many 1992 M 7.4 Landers (Hill et al., 1993) and the common pattern in geyser response to the of the triggered events had magnitudes of Mc 1999 M 7.1 Hector mine (Gomberg et al., Denali earthquake. The most obvious exam- Ͼ 2.0 (Mc denotes a duration magnitude 2001) earthquakes. Also, the 1988 M 7.6 Gulf ple, Daisy Geyser (Fig. 2) in Upper Geyser scaled to the local Richter magnitude scale), of Alaska earthquake triggered swarms of lo- Basin, showed a rapid decrease in the eruption and some were felt by National Park Service cal earthquakes in the Geysers, California, interval following the Denali earthquake, re- employees. Seismicity in the geyser basins geothermal field at a distance similar to that covering close to pre-Denali eruption intervals had returned to pre-Denali earthquake back- from the Denali earthquake to Yellowstone over subsequent weeks. Other geysers such as ground levels 24 h following the passage of (Stark and Davis, 1996). Castle, Plate, and Plume Geysers in Upper the surface waves (Fig. 3). Most of the trig- Previous studies of remote earthquake trig- Geyser Basin, and Pink Geyser in Lower Gey- gered earthquakes close to the hydrothermal gering in volcanic areas favor models where ser Basin, displayed short-term irregularities areas were relatively shallow; their focal magmatic or hydrothermal fluids interact with in their eruption behavior lasting for a few depths were Ͻ5 km (Fig. 1). dynamic stress transients produced by large- days. Lone Pine Geyser in West Thumb Gey- Although earthquake swarms are common amplitude surface waves (Hill et al., 1995, ser Basin, on the other hand, showed a gradual in Yellowstone, the seismicity following the 1993; Johnston et al., 1995; Linde et al., 1994; increase in eruption intervals that peaked three Denali earthquake is unusual for two reasons.
Recommended publications
  • Geologic Maps of the Eastern Alaska Range, Alaska, (44 Quadrangles, 1:63360 Scale)
    Report of Investigations 2015-6 GEOLOGIC MAPS OF THE EASTERN ALASKA RANGE, ALASKA, (44 quadrangles, 1:63,360 scale) descriptions and interpretations of map units by Warren J. Nokleberg, John N. Aleinikoff, Gerard C. Bond, Oscar J. Ferrians, Jr., Paige L. Herzon, Ian M. Lange, Ronny T. Miyaoka, Donald H. Richter, Carl E. Schwab, Steven R. Silva, Thomas E. Smith, and Richard E. Zehner Southeastern Tanana Basin Southern Yukon–Tanana Upland and Terrane Delta River Granite Jarvis Mountain Aurora Peak Creek Terrane Hines Creek Fault Black Rapids Glacier Jarvis Creek Glacier Subterrane - Southern Yukon–Tanana Terrane Windy Terrane Denali Denali Fault Fault East Susitna Canwell Batholith Glacier Maclaren Glacier McCallum Creek- Metamorhic Belt Meteor Peak Slate Creek Thrust Broxson Gulch Fault Thrust Rainbow Mountain Slana River Subterrane, Wrangellia Terrane Phelan Delta Creek River Highway Slana River Subterrane, Wrangellia Terrane Published by STATE OF ALASKA DEPARTMENT OF NATURAL RESOURCES DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS 2015 GEOLOGIC MAPS OF THE EASTERN ALASKA RANGE, ALASKA, (44 quadrangles, 1:63,360 scale) descriptions and interpretations of map units Warren J. Nokleberg, John N. Aleinikoff, Gerard C. Bond, Oscar J. Ferrians, Jr., Paige L. Herzon, Ian M. Lange, Ronny T. Miyaoka, Donald H. Richter, Carl E. Schwab, Steven R. Silva, Thomas E. Smith, and Richard E. Zehner COVER: View toward the north across the eastern Alaska Range and into the southern Yukon–Tanana Upland highlighting geologic, structural, and geomorphic features. View is across the central Mount Hayes Quadrangle and is centered on the Delta River, Richardson Highway, and Trans-Alaska Pipeline System (TAPS). Major geologic features, from south to north, are: (1) the Slana River Subterrane, Wrangellia Terrane; (2) the Maclaren Terrane containing the Maclaren Glacier Metamorphic Belt to the south and the East Susitna Batholith to the north; (3) the Windy Terrane; (4) the Aurora Peak Terrane; and (5) the Jarvis Creek Glacier Subterrane of the Yukon–Tanana Terrane.
    [Show full text]
  • Annual Climate Monitoring Report for Denali National Park and Preserve, Wrangell-St-Elias National Park and Preserve and Yukon-Charley Rivers National Preserve
    Annual Climate Monitoring Report for Denali National Park and Preserve, Wrangell-St-Elias National Park and Preserve and Yukon-Charley Rivers National Preserve Pamela J. Sousanes Denali National Park and Preserve P.O. Box 9 Denali Park, AK 99755 2005 Central Alaska Network NPS Report Series Number: NPS/AKCAKN/NRTR-2006/0xx Project Number: CAKN-xxxxxx Funding Source: Central Alaska Network Denali National Park and Preserve Draft 2005 Annual Climate Monitoring Report – March 2006 Central Alaska Inventory and Monitoring Network File Name: Sousanes_P_2006_ClimateMonitoringCAKN_0315.doc Recommended Citation: Sousanes, Pamela J. 2006. Annual Climate Monitoring Report for Denali National Park and Preserve, Wrangell-St. Elias National Park and Preserve, and Yukon- Charley Rivers National Preserve. NPS/AKCAKN/NRTR-2006/xx. National Park Service. Denali Park, AK. 75 pg. Acronyms: I&M Inventory and Monitoring CAKN Central Alaska Network DENA Denali National Park and Preserve WRST Wrangell-St. Elias National Park and Preserve YUCH Yukon-Charley Rivers National Preserve NPS National Park Service WRCC Western Regional Climate Center NRCS Natural Resources Conservation Service NWS National Weather Service RAWS Remote Automated Weather Station NCDC National Climatic Data Center AWOS Automated Weather Observation Station SNOTEL Snow Telemetry ii Draft 2005 Annual Climate Monitoring Report – March 2006 Central Alaska Inventory and Monitoring Network Table of Contents EXECUTIVE SUMMARY.............................................................................................
    [Show full text]
  • Mount Sanford…Errrr, Mount Jarvis. Wait, What?? Mount Who?? It Was Roughly Around Thanksgiving 2016 and the Time Had Come Fo
    Mount Sanford…errrr, Mount Jarvis. Wait, what?? Mount Who?? It was roughly around Thanksgiving 2016 and the time had come for me to book my next IMG adventure. With two young children at home and no family close by, I had settled into a routine of doing a big climb every other year. This year was a bit different, as I normally book my major climbs around September for an April or May departure the following year. However, due to a Mt. Blackburn (Alaska) trip falling through, I had to book another expedition. In 2015, I was on an IMG team that summitted Mt. Bona from the north side, not the original plan (jot that down – this will become a theme in Alaska), and really enjoyed the solitude, adventure, physical challenge, small team, and lack of schedule the Wrangell & St Elias Mountains had to offer. So, I hopped on IMG’s website, checked out the scheduled Alaskan climb for 2017, which was Mt. Sanford, and peppered George with my typical questions. Everything lined up, so I completed the pile of paperwork (do I really have to sign another waiver?!?), sent in my deposit (still no AMEX, ugh…), set my training schedule, and started Googling trip reports about Mt. Sanford. Little did I know that READING about Mt. Sanford was the closest I would ever get to it! Pulling from my previous Alaskan climbing experience, I was better prepared for this trip than for Mt Bona in 2015. Due to our bush pilot’s inability to safely land us on the south side of Bona two years prior, we flew up, around, and over the mountain and landed on the north side.
    [Show full text]
  • Yellowstone Visitor Guide 2019
    Yellowstone Visitor Guide 2019 Are you ready for your Yellowstone adventure? Place to stay Travel time Essentials Inside Hotels and campgrounds fill up Plan plenty of time to get to Top 5 sites to see: 2 Welcome quickly, both inside and around your destination. Yellowstone 1. Old Faithful Geyser 4 Camping the park. Make sure you have is worth pulling over for! 2. The Grand Canyon of the secured lodging before you make Plan a minimum of 40 minutes Yellowstone River 5 Activities other plans. If you do not, you to travel between junctions or 3. Yellowstone Lake 7 Suggested itineraries may have to drive several hours visitor service areas on the Grand 4. Mammoth Hot Springs away from the park to the nearest Loop Road. The speed limit in Terraces 8 Famously hot features available hotel or campsite. Yellowstone is 45 mph (73 kph) 5. Hayden or Lamar valleys 9 Wild lands and wildlife except where posted slower. 10 Area guides 15 Translations Area guides....pgs 10–14 Reservations.......pg 2 Road map.......pg 16 16 Yellowstone roads map Emergency Dial 911 Information line 307-344-7381 TTY 307-344-2386 Park entrance radio 1610 AM = Medical services Yellowstone is on 911 emergency service, including ambulances. Medical services are available year round at Mammoth Clinic (307- 344-7965), except some holidays. Services are also offered at Lake Clinic (307-242-7241) and at Old Faithful Clinic (307-545-7325) during the summer visitor season. Welcome to Yellowstone National Park Yellowstone is a special place, and very different from your home.
    [Show full text]
  • Human Impacts on Geyser Basins
    volume 17 • number 1 • 2009 Human Impacts on Geyser Basins The “Crystal” Salamanders of Yellowstone Presence of White-tailed Jackrabbits Nature Notes: Wolves and Tigers Geyser Basins with no Documented Impacts Valley of Geysers, Umnak (Russia) Island Geyser Basins Impacted by Energy Development Geyser Basins Impacted by Tourism Iceland Iceland Beowawe, ~61 ~27 Nevada ~30 0 Yellowstone ~220 Steamboat Springs, Nevada ~21 0 ~55 El Tatio, Chile North Island, New Zealand North Island, New Zealand Geysers existing in 1950 Geyser basins with documented negative effects of tourism Geysers remaining after geothermal energy development Impacts to geyser basins from human activities. At least half of the major geyser basins of the world have been altered by geothermal energy development or tourism. Courtesy of Steingisser, 2008. Yellowstone in a Global Context N THIS ISSUE of Yellowstone Science, Alethea Steingis- claimed they had been extirpated from the park. As they have ser and Andrew Marcus in “Human Impacts on Geyser since the park’s establishment, jackrabbits continue to persist IBasins” document the global distribution of geysers, their in the park in a small range characterized by arid, lower eleva- destruction at the hands of humans, and the tremendous tion sagebrush-grassland habitats. With so many species in the importance of Yellowstone National Park in preserving these world on the edge of survival, the confirmation of the jackrab- rare and ephemeral features. We hope this article will promote bit’s persistence is welcome. further documentation, research, and protection efforts for The Nature Note continues to consider Yellowstone with geyser basins around the world. Documentation of their exis- a broader perspective.
    [Show full text]
  • The Race to Seismic Safety Protecting California’S Transportation System
    THE RACE TO SEISMIC SAFETY PROTECTING CALIFORNIA’S TRANSPORTATION SYSTEM Submitted to the Director, California Department of Transportation by the Caltrans Seismic Advisory Board Joseph Penzien, Chairman December 2003 The Board of Inquiry has identified three essential challenges that must be addressed by the citizens of California, if they expect a future adequately safe from earthquakes: 1. Ensure that earthquake risks posed by new construction are acceptable. 2. Identify and correct unacceptable seismic safety conditions in existing structures. 3. Develop and implement actions that foster the rapid, effective, and economic response to and recovery from damaging earthquakes. Competing Against Time Governor’s Board of Inquiry on the 1989 Loma Prieta Earthquake It is the policy of the State of California that seismic safety shall be given priority consideration in the allo- cation of resources for transportation construction projects, and in the design and construction of all state structures, including transportation structures and public buildings. Governor George Deukmejian Executive Order D-86-90, June 2, 1990 The safety of every Californian, as well as the economy of our state, dictates that our highway system be seismically sound. That is why I have assigned top priority to seismic retrofit projects ahead of all other highway spending. Governor Pete Wilson Remarks on opening of the repaired Santa Monica Freeway damaged in the 1994 Northridge earthquake, April 11, 1994 The Seismic Advisory Board believes that the issues of seismic safety and performance of the state’s bridges require Legislative direction that is not subject to administrative change. The risk is not in doubt. Engineering, common sense, and knowledge from prior earthquakes tells us that the consequences of the 1989 and 1994 earthquakes, as devastating as they were, were small when compared to what is likely when a large earthquake strikes directly under an urban area, not at its periphery.
    [Show full text]
  • Bozeman Climbers Tackle Gan
    BOZEMAN CLIMBERS TACKLE GANNETT PEAK TO BENEFIT U... http://chronicleoutdoors.com/2010/03/18/bozeman-climbers-to-tackle-w... Chronicle Outdoors Dedicated to outdoor adventure in Southwest Montana Home Photo Gallery Where Am I Contest About Contact .: This week's poll :. Fifteen years ago wolves were released into Yellowstone Park. They have since established range outside the park and been embroiled in controversy. Do you think their presence is appropriate? Yes, wolves are a native predator that help maintain a natural balance in the Greater Yellowstone Ecosystem. No way, wolves have depleted elk herds, killed sheep and cattle and caused conflict. They create more problems than they solve. Vote View Results .: Gallatin ational Forest Avalanche Report :. GNFAC Avalanche Advisory for Sun Mar 21, 2010 Good Morning. This is Eric Knoff with the Gallatin National Forest Avalanche Advisory issued on Sunday, March 21, at 7:30 a.m. Bountiful Table, in cooperation with the Friends of the Avalanche Center, sponsors today's advisory. This advisory does not apply to operating ski areas. Mountain Weather: A ridge of high pressure has stalled over southwest M […] .: Latest news from Montana Fish, Wildlife & Parks :. Wild Bison’s Future In Montana What is the future for wild bison in Montana? […] Three Bear Aware Meetings Planned For Front State wildlife officials are planning three community meetings in April to remind north central Montana residents to be bear aware. The meetings will begin at 7 p.m. and take place April 12, Simms high school; April 13, Marias River Electric Coop in Shelby; and April 14, Wolf Creek School.
    [Show full text]
  • Lessons Learned from Oil Pipeline Natech Accidents and Recommendations for Natech Scenario Development
    Lessons learned from oil pipeline natech accidents and recommendations for natech scenario development Final Report Serkan Girgin, Elisabeth Krausmann 2015 Report EUR 26913 EN European Commission Joint Research Centre Institute for the Protection and Security of the Citizen Contact information Elisabeth Krausmann Address: Joint Research Centre, Via E. Fermi 2749, 21027 Ispra (VA), Italy E-mail: [email protected] https://ec.europa.eu/jrc Legal Notice This publication is a Science and Policy Report by the Joint Research Centre, the European Commission’s in-house science service. It aims to provide evidence-based scientific support to the European policy-making process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Image credits: Trans-Alaska Pipeline on slider supports at the Denali Fault crossing: ©T Dawson, USGS JRC92700 EUR 26913 EN ISBN 978-92-79-43970-4 ISSN 1831-9424 doi:10.2788/20737 Luxembourg: Publications Office of the European Union, 2015 © European Union, 2015 Reproduction is authorised provided the source is acknowledged. Abstract Natural hazards can impact oil transmission pipelines with potentially adverse consequences on the population and the environment. They can also cause significant economic impacts to pipeline operators. Currently, there is only limited historical information available on the dynamics of natural hazard impact on pipelines and Action A6 of the EPCIP 2012 Programme aimed at shedding light on this issue. This report presents the findings of the second year of the study that focused on the analysis of onshore hazardous liquid transmission pipeline natechs, with special emphasis on natural hazard impact and damage modes, incident consequences, and lessons learned for scenario building.
    [Show full text]
  • Alaska Range
    Alaska Range Introduction The heavily glacierized Alaska Range consists of a number of adjacent and discrete mountain ranges that extend in an arc more than 750 km long (figs. 1, 381). From east to west, named ranges include the Nutzotin, Mentas- ta, Amphitheater, Clearwater, Tokosha, Kichatna, Teocalli, Tordrillo, Terra Cotta, and Revelation Mountains. This arcuate mountain massif spans the area from the White River, just east of the Canadian Border, to Merrill Pass on the western side of Cook Inlet southwest of Anchorage. Many of the indi- Figure 381.—Index map of vidual ranges support glaciers. The total glacier area of the Alaska Range is the Alaska Range showing 2 approximately 13,900 km (Post and Meier, 1980, p. 45). Its several thousand the glacierized areas. Index glaciers range in size from tiny unnamed cirque glaciers with areas of less map modified from Field than 1 km2 to very large valley glaciers with lengths up to 76 km (Denton (1975a). Figure 382.—Enlargement of NOAA Advanced Very High Resolution Radiometer (AVHRR) image mosaic of the Alaska Range in summer 1995. National Oceanic and Atmospheric Administration image mosaic from Mike Fleming, Alaska Science Center, U.S. Geological Survey, Anchorage, Alaska. The numbers 1–5 indicate the seg- ments of the Alaska Range discussed in the text. K406 SATELLITE IMAGE ATLAS OF GLACIERS OF THE WORLD and Field, 1975a, p. 575) and areas of greater than 500 km2. Alaska Range glaciers extend in elevation from above 6,000 m, near the summit of Mount McKinley, to slightly more than 100 m above sea level at Capps and Triumvi- rate Glaciers in the southwestern part of the range.
    [Show full text]
  • UCLA UCLA Electronic Theses and Dissertations
    UCLA UCLA Electronic Theses and Dissertations Title An Improved Framework for the Analysis and Dissemination of Seismic Site Characterization Data at Varying Resolutions Permalink https://escholarship.org/uc/item/6p35w167 Author Ahdi, Sean Kamran Publication Date 2018 Supplemental Material https://escholarship.org/uc/item/6p35w167#supplemental Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles An Improved Framework for the Analysis and Dissemination of Seismic Site Characterization Data at Varying Resolutions A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Civil Engineering by Sean Kamran Ahdi 2018 © Copyright by Sean Kamran Ahdi 2018 ABSTRACT OF THE DISSERTATION An Improved Framework for the Analysis and Dissemination of Seismic Site Characterization Data at Varying Resolutions by Sean Kamran Ahdi Doctor of Philosophy in Civil Engineering University of California, Los Angeles, 2018 Professor Jonathan Paul Stewart, Chair The most commonly used parameter for representing site conditions for ground motion studies is the time-averaged shear-wave velocity in the upper 30 m, or VS30. While it is preferred to compute VS30 from a directly measured shear-wave velocity (VS) profile using in situ geophysical methods, this information is not always available. One major application of VS30 is the development of ergodic site amplification models, for example as part of ground motion model (GMM) development projects, which require VS30 values for all sites. The first part of this dissertation (Chapters 2-4) addresses the development of proxy-based models for estimation of VS30 for application in subduction zone regions.
    [Show full text]
  • Engineering Geology and Seismology for Public Schools and Hospitals in California
    The Resources Agency California Geological Survey Michael Chrisman, Secretary for Resources Dr. John G. Parrish, State Geologist Engineering Geology and Seismology for Public Schools and Hospitals in California to accompany California Geological Survey Note 48 Checklist by Robert H. Sydnor, Senior Engineering Geologist California Geological Survey www.conservation.ca.gov/cgs July 1, 2005 316 pages Engineering Geology and Seismology performance–based analysis, diligent subsurface for Public Schools and Hospitals sampling, careful reading of the extensive geologic in California literature, thorough knowledge of the California Building Code, combined with competent professional geological work. by Robert H. Sydnor Engineering geology aspects of hospital and public California Geological Survey school sites include: regional geology, regional fault July 1, 2005 316 pages maps, site-specific geologic mapping, geologic cross- sections, active faulting, official zones of investigation Abstract for liquefaction and landslides, geotechnical laboratory The 446+ hospitals, 1,400+ skilled nursing facilities testing of samples, expansive soils, soluble sulfate ±9,221 public schools, and 109 community college evaluation for Type II or V Portland-cement selection, campuses in California are regulated under California and flooding. Code of Regulations, Title 24, California Building Code. Seismology aspects include: evaluation of historic These facilities are plan–checked by senior–level seismicity, probabilistic seismic hazard analysis of Registered Structural Engineers within the Office of earthquake ground–motion, use of proper code terms Statewide Health Planning and Development (OSHPD) (Upper–Bound Earthquake ground–motion and Design– for hospitals and skilled nursing facilities, and the Basis ground–motion), classification of the geologic Division of the State Architect (DSA) for public schools, subgrade by shear–wave velocity to select the correct community colleges, and essential services buildings.
    [Show full text]
  • Visiting the Upper Geyser Basin (Old Faithful Geyser)
    ® Visiting the Upper Geyser Basin (Old Faithful Geyser) The Old Faithful Area (Upper Geyser Basin) is one of the most popular and crowded areas in the Summer. Start off with a visit to the new visitor’s center. Tour the center, but most importantly check the information desk for the estimated eruption times of pop - ular geysers in the basin. (Note that they are estimated times... so plan accordingly). Beat the crowds by starting early in the morning before those who did not sleep in the area arrive. Walk around the geyser basin and witness numerous well-known features; Old Faithful, Beehive, Castle, Grotto, Riverside & Morning Glory Pool to name a few. The cool morning air temperature intensifies the steam making the basin more magical. By mid-morning the Summer crowds get larger as the day goes until sunset. (When the area gets congested... head to the hills!, and take the hikes in the back country.) You’ll never get to see all the geysers erupt and will have to pick and chose those you want to invest with your time and how long younger family members can hold out. Prep your walk with a bathroom break and pack bottled beverages. Touring the basin takes time and before you know it you have walked a few miles. (For those in need there is a no frills bathroom near Morning Glory Pool.) Upper Geyser Basin Sites of Interest: 1. Walk through the new Visitor’s Center (opened in the Summer of 2011) 2. Tour the Upper Geyser Basin Boardwalk Upper Geyser Basin is the best place in Yellowstone to see geysers erupt.
    [Show full text]