Landslide and Liquefaction Maps for the Long Beach Peninsula

Total Page:16

File Type:pdf, Size:1020Kb

Landslide and Liquefaction Maps for the Long Beach Peninsula LANDSLIDE AND LIQUEFACTION MAPS FOR THE LONG BEACH PENINSULA, PACIFIC COUNTY, WASHINGTON: Effects on Tsunami Inundation Zones of a Cascadia Subduction Zone Earthquake by Stephen L. Slaughter, Timothy J. Walsh, Anton Ypma, Kelsay M. D. Stanton, Recep Cakir, and Trevor A. Contreras WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES Report of Investigations 37 October 2013 DISCLAIMER Neither the State of Washington, nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the State of Washington or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the State of Washington or any agency thereof. WASHINGTON STATE DEPARTMENT OF NATURAL RESOURCES Peter Goldmark—Commissioner of Public Lands DIVISION OF GEOLOGY AND EARTH RESOURCES David K. Norman—State Geologist John P. Bromley—Assistant State Geologist Washington Department of Natural Resources Division of Geology and Earth Resources Mailing Address: Street Address: MS 47007 Natural Resources Bldg, Rm 148 Olympia, WA 98504-7007 1111 Washington St SE Olympia, WA 98501 Phone: 360-902-1450; Fax: 360-902-1785 E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Publications List: http://www.dnr.wa.gov/researchscience/topics/geologypublications library/pages/pubs.aspx Online searchable catalog of the Washington Geology Library: http://www.dnr.wa.gov/researchscience/topics/geologypublications library/pages/washbib.aspx Washington State Geologic Information Portal: http://www.dnr.wa.gov/geologyportal Suggested Citation: Slaughter, S. L.; Walsh, T. J.; Ypma, Anton; Stanton, K. M. D.; Cakir, Recep; Contreras, T. A., 2013, Landslide and liquefaction maps for the Long Beach Peninsula, Pacific County, Washington—Effects on tsunami inundation zones of a Cascadia subduction zone earthquake: Washington Division of Geology and Earth Resources Report of Investigations 37, 3 sheets plus 27 p. text. Published in the United States of America © 2013 Washington Division of Geology and Earth Resources Contents Introduction ........................................................................................................................1 Seismically Induced Ground Failures .................................................................................2 Soil Liquefaction ......................................................................................................... 2 Landslides .................................................................................................................... 4 Regional Geology and Physiography ..................................................................................4 Method of Analysis .............................................................................................................5 Results and Discussion .......................................................................................................5 Recommendations ...............................................................................................................7 Acknowledgments ..............................................................................................................8 References Cited .................................................................................................................9 Appendix A. Technical Description of Landslide Vulnerability Modeling from a Cascadia Subduction Zone M9+ Earthquake ................................................. 13 Introduction ............................................................................................................... 13 Background ................................................................................................................ 13 Methods ..................................................................................................................... 14 Topography ......................................................................................................... 14 Geology and Soils .............................................................................................. 14 Groundwater ....................................................................................................... 15 Shallow Landslides ............................................................................................. 16 Discussion and Results .............................................................................................. 17 Shallow Rapid Landslides .................................................................................. 17 Newmark’s Analysis .................................................................................... 18 Deep-Seated Landslides ..................................................................................... 18 Other Landslide Hazards .................................................................................... 18 Appendix B. Technical Description of Liquefaction Susceptibility and Initiation Modeling from a Cascadia Subduction Zone M9+ Earthquake ................. 19 Introduction ............................................................................................................... 19 Background ................................................................................................................ 19 Methods ..................................................................................................................... 20 Geotechnical Borehole Logs .............................................................................. 20 Groundwater and Wetlands ................................................................................. 21 Liquefaction Susceptibility and Initiation Analysis ............................................ 21 Seismic Survey ................................................................................................... 22 Liquefaction Hazard Mapping ............................................................................ 22 Discussion and Results .............................................................................................. 22 Liquefaction Susceptibility and Initiation .......................................................... 23 Seismic Survey to Determine Shear-wave Velocity ........................................... 24 Appendix C. Analyzed Borehole Data Table .................................................................... 26 iii FIGURES Figure 1. Location of the Long Beach Peninsula study area.. .............................................2 Figure 2. Photos of seismically induced liquefaction damage to transportation networks ...............................................................................................3 Figure 3. Map showing documented liquefaction sites from the 2010 Chile M8.8 earthquake ................................................................................................4 Figure 4. Block diagram of the Cascadia subduction zone .................................................5 Figure 5. Tsunami inundation zones from a tsunami initiated by a M9+ Cascadia subduction zone earthquake on the Long Beach Peninsula. .........................6 Figure A1. Graphs of groundwater levels from select wells. ............................................ 15 Figure A2. Map of groundwater monitoring sites on the Long Beach Peninsula. ............ 16 Figure B1. Map of an evacuation route crossing several peat deposits and wetlands on the Long Beach Peninsula ............................................................... 23 Figure B2. Graph of active and passive shallow seismic survey Vs100 data at five locations in the study area .............................................................................. 25 TABLES Table B1. USCS soil properties for boreholes analyzed for the report area ...................... 20 Table B2. Characterization of overall site susceptibility to liquefaction hazards ............. 21 Table B3. Criteria used in this report to provide a soil liquefaction hazard rating ............ 22 Table B4. National Earthquake Hazards Reduction Program recommended site classifications ..................................................................................................... 25 Table C1. Initiation of liquefaction in terms of the factor of safety for a layer ................. 26 SHEETS Sheet 1. Shallow landslide vulnerability during a dry period for a Cascadia subduction zone magnitude 9+ earthquake for the Long Beach Peninsula, Pacific County, Washington Sheet 2. Shallow landslide vulnerability during a wet period for a Cascadia subduction zone magnitude 9+ earthquake for the Long Beach Peninsula, Pacific County, Washington Sheet 3. Liquefaction initiation hazard for a Cascadia subduction zone magnitude 9+ earthquake for the Long Beach Peninsula, Pacific County, Washington iv Landslide and Liquefaction Maps for the Long Beach Peninsula, Pacific County, Washington: Effects on Tsunami Inundation Zones of a Cascadia Subduction Zone Earthquake Stephen L. Slaughter, Timothy J. Walsh, Anton Ypma, Kelsay M. D. Stanton, Recep Cakir, and Trevor
Recommended publications
  • Landslides on the Loess Plateau of China: a Latest Statistics Together with a Close Look
    Landslides on the Loess Plateau of China: a latest statistics together with a close look Xiang-Zhou Xu, Wen-Zhao Guo, Ya- Kun Liu, Jian-Zhong Ma, Wen-Long Wang, Hong-Wu Zhang & Hang Gao Natural Hazards Journal of the International Society for the Prevention and Mitigation of Natural Hazards ISSN 0921-030X Volume 86 Number 3 Nat Hazards (2017) 86:1393-1403 DOI 10.1007/s11069-016-2738-6 1 23 Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media Dordrecht. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Nat Hazards (2017) 86:1393–1403 DOI 10.1007/s11069-016-2738-6 SHORT COMMUNICATION Landslides on the Loess Plateau of China: a latest statistics together with a close look 1,2 2 2 Xiang-Zhou Xu • Wen-Zhao Guo • Ya-Kun Liu • 1 1 3 Jian-Zhong Ma • Wen-Long Wang • Hong-Wu Zhang • Hang Gao2 Received: 16 December 2016 / Accepted: 26 December 2016 / Published online: 3 January 2017 Ó Springer Science+Business Media Dordrecht 2017 Abstract Landslide plays an important role in landscape evolution, delivers huge amounts of sediment to rivers and seriously affects the structure and function of ecosystems and society.
    [Show full text]
  • Doggin' America's Beaches
    Doggin’ America’s Beaches A Traveler’s Guide To Dog-Friendly Beaches - (and those that aren’t) Doug Gelbert illustrations by Andrew Chesworth Cruden Bay Books There is always something for an active dog to look forward to at the beach... DOGGIN’ AMERICA’S BEACHES Copyright 2007 by Cruden Bay Books All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system without permission in writing from the Publisher. Cruden Bay Books PO Box 467 Montchanin, DE 19710 www.hikewithyourdog.com International Standard Book Number 978-0-9797074-4-5 “Dogs are our link to paradise...to sit with a dog on a hillside on a glorious afternoon is to be back in Eden, where doing nothing was not boring - it was peace.” - Milan Kundera Ahead On The Trail Your Dog On The Atlantic Ocean Beaches 7 Your Dog On The Gulf Of Mexico Beaches 6 Your Dog On The Pacific Ocean Beaches 7 Your Dog On The Great Lakes Beaches 0 Also... Tips For Taking Your Dog To The Beach 6 Doggin’ The Chesapeake Bay 4 Introduction It is hard to imagine any place a dog is happier than at a beach. Whether running around on the sand, jumping in the water or just lying in the sun, every dog deserves a day at the beach. But all too often dog owners stopping at a sandy stretch of beach are met with signs designed to make hearts - human and canine alike - droop: NO DOGS ON BEACH.
    [Show full text]
  • A Study of Unstable Slopes in Permafrost Areas: Alaskan Case Studies Used As a Training Tool
    A Study of Unstable Slopes in Permafrost Areas: Alaskan Case Studies Used as a Training Tool Item Type Report Authors Darrow, Margaret M.; Huang, Scott L.; Obermiller, Kyle Publisher Alaska University Transportation Center Download date 26/09/2021 04:55:55 Link to Item http://hdl.handle.net/11122/7546 A Study of Unstable Slopes in Permafrost Areas: Alaskan Case Studies Used as a Training Tool Final Report December 2011 Prepared by PI: Margaret M. Darrow, Ph.D. Co-PI: Scott L. Huang, Ph.D. Co-author: Kyle Obermiller Institute of Northern Engineering for Alaska University Transportation Center REPORT CONTENTS TABLE OF CONTENTS 1.0 INTRODUCTION ................................................................................................................ 1 2.0 REVIEW OF UNSTABLE SOIL SLOPES IN PERMAFROST AREAS ............................... 1 3.0 THE NELCHINA SLIDE ..................................................................................................... 2 4.0 THE RICH113 SLIDE ......................................................................................................... 5 5.0 THE CHITINA DUMP SLIDE .............................................................................................. 6 6.0 SUMMARY ......................................................................................................................... 9 7.0 REFERENCES ................................................................................................................. 10 i A STUDY OF UNSTABLE SLOPES IN PERMAFROST AREAS 1.0 INTRODUCTION
    [Show full text]
  • Recommended Guidelines for Liquefaction Evaluations Using Ground Motions from Probabilistic Seismic Hazard Analyses
    RECOMMENDED GUIDELINES FOR LIQUEFACTION EVALUATIONS USING GROUND MOTIONS FROM PROBABILISTIC SEISMIC HAZARD ANALYSES Report to the Oregon Department of Transportation June, 2005 Prepared by Stephen Dickenson Associate Professor Geotechnical Engineering Group Department of Civil, Construction and Environmental Engineering Oregon State University ODOT Liquefaction Hazard Assessment using Ground Motions from PSHA Page 2 ABSTRACT The assessment of liquefaction hazards for bridge sites requires thorough geotechnical site characterization and credible estimates of the ground motions anticipated for the exposure interval of interest. The ODOT Bridge Design and Drafting Manual specifies that the ground motions used for evaluation of liquefaction hazards must be obtained from probabilistic seismic hazard analyses (PSHA). This ground motion data is routinely obtained from the U.S. Geologocal Survey Seismic Hazard Mapping program, through its interactive web site and associated publications. The use of ground motion parameters derived from a PSHA for evaluations of liquefaction susceptibility and ground failure potential requires that the ground motion values that are indicated for the site are correlated to a specific earthquake magnitude. The individual seismic sources that contribute to the cumulative seismic hazard must therefore be accounted for individually. The process of hazard de-aggregation has been applied in PSHA to highlight the relative contributions of the various regional seismic sources to the ground motion parameter of interest. The use of de-aggregation procedures in PSHA is beneficial for liquefaction investigations because the contribution of each magnitude-distance pair on the overall seismic hazard can be readily determined. The difficulty in applying de-aggregated seismic hazard results for liquefaction studies is that the practitioner is confronted with numerous magnitude-distance pairs, each of which may yield different liquefaction hazard results.
    [Show full text]
  • New Constraints on Coseismic Slip During Southern Cascadia Subduction Zone Earthquakes Over the Past 4600 Years Implied by Tsunami Deposits and Marine Turbidites
    W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 2018 New constraints on coseismic slip during southern Cascadia subduction zone earthquakes over the past 4600 years implied by tsunami deposits and marine turbidites GR Priest RC Witter Yinglong J. Zhang Virginia Institute of Marine Science C Goldfinger KL Wang See next page for additional authors Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Aquaculture and Fisheries Commons Recommended Citation Priest, GR; Witter, RC; Zhang, Yinglong J.; Goldfinger, C; Wang, KL; and Allen, JC, "New constraints on coseismic slip during southern Cascadia subduction zone earthquakes over the past 4600 years implied by tsunami deposits and marine turbidites" (2018). VIMS Articles. 734. https://scholarworks.wm.edu/vimsarticles/734 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Authors GR Priest, RC Witter, Yinglong J. Zhang, C Goldfinger, KL Wang, and JC Allen This article is available at W&M ScholarWorks: https://scholarworks.wm.edu/vimsarticles/734 Nat Hazards (2017) 88:285–313 DOI 10.1007/s11069-017-2864-9 ORIGINAL PAPER New constraints on coseismic slip during southern Cascadia subduction zone earthquakes over the past 4600 years implied by tsunami deposits and marine turbidites 1 2 3 George R. Priest • Robert C. Witter • Yinglong J. Zhang • 4 5 1 Chris Goldfinger • Kelin Wang • Jonathan C. Allan Received: 24 August 2016 / Accepted: 8 April 2017 / Published online: 29 April 2017 Ó Springer Science+Business Media Dordrecht (outside the USA) 2017 Abstract Forecasting earthquake and tsunami hazards along the southern Cascadia sub- duction zone is complicated by uncertainties in the amount of megathrust fault slip during past ruptures.
    [Show full text]
  • Bray 2011 Pseudostatic Slope Stability Procedure Paper
    Paper No. Theme Lecture 1 PSEUDOSTATIC SLOPE STABILITY PROCEDURE Jonathan D. BRAY 1 and Thaleia TRAVASAROU2 ABSTRACT Pseudostatic slope stability procedures can be employed in a straightforward manner, and thus, their use in engineering practice is appealing. The magnitude of the seismic coefficient that is applied to the potential sliding mass to represent the destabilizing effect of the earthquake shaking is a critical component of the procedure. It is often selected based on precedence, regulatory design guidance, and engineering judgment. However, the selection of the design value of the seismic coefficient employed in pseudostatic slope stability analysis should be based on the seismic hazard and the amount of seismic displacement that constitutes satisfactory performance for the project. The seismic coefficient should have a rational basis that depends on the seismic hazard and the allowable amount of calculated seismically induced permanent displacement. The recommended pseudostatic slope stability procedure requires that the engineer develops the project-specific allowable level of seismic displacement. The site- dependent seismic demand is characterized by the 5% damped elastic design spectral acceleration at the degraded period of the potential sliding mass as well as other key parameters. The level of uncertainty in the estimates of the seismic demand and displacement can be handled through the use of different percentile estimates of these values. Thus, the engineer can properly incorporate the amount of seismic displacement judged to be allowable and the seismic hazard at the site in the selection of the seismic coefficient. Keywords: Dam; Earthquake; Permanent Displacements; Reliability; Seismic Slope Stability INTRODUCTION Pseudostatic slope stability procedures are often used in engineering practice to evaluate the seismic performance of earth structures and natural slopes.
    [Show full text]
  • Southwest Washington Tour When You Think About the Terrific Golf in the Pacific Northwest, Southwest Washington Is a Big Part of It
    SepTeMber 2013 SouThWeST WaShIngTon Where you can play golf More than just golf to do in Southwest Washington in the SW Washington area SW Washington is a vast area There are plenty of options off the with a lot of golf courses, including golf course when visiting SW Wash- Green Mountain (right). Take a look ington, including windsurfing on the where to tee it up when you are in Columbia River. For more, please see the area. See Page 3 for the map. inside this section. Freeway golf: I-5 is loaded In Southwest Washington, there is no shortage of golf along Inter- state-5 as you drive between Olympia and Vancouver, in fact one course you can see from the freeway is Tri Moun- tain in Ridgefield (right), which has views of three different mountains. Another popular choice for freeway golfers is the Home Course (far right) in DuPont, which helped host the 2010 US Amateur. For more, see Page 2 of this section of Inside Golf. Southwest Washington Tour When you think about the terrific golf in the Pacific Northwest, Southwest Washington is a big part of it. The area is loaded with golf and offers a wide variety of courses to choose from. The Southwest Washington region stretches from Olympia west to the Pacific Ocean and south to the city of Vancouver. With some of the Pacific Northwest’s top public courses located in Southwest Washington, golf has proven to be a popular attraction. From places like Tumwater (left) to Elk Ridge Golf Course (below) at Carson Hot Springs in White Salmon, finding good golf is never a problem.
    [Show full text]
  • A Review of Geological Records of Large Tsunamis at Vancouver Island, British Columbia, and Implications for Hazard John J
    Quaternary Science Reviews 19 (2000) 849}863 A review of geological records of large tsunamis at Vancouver Island, British Columbia, and implications for hazard John J. Clague! " *, Peter T. Bobrowsky#, Ian Hutchinson$ !Depatment of Earth Sciences and Institute for Quaternary Research, Simon Fraser University, Burnaby, BC, Canada V5A 1S6 "Geological Survey of Canada, 101 - 605 Robson St., Vancouver, BC, Canada V6B 5J3 #Geological Survey Branch, P.O. Box 9320, Stn Prov Govt, Victoria, BC, Canada V8W 9N3 $Department of Geography and Institute for Quaternary Research, Simon Fraser University, Burnaby, Canada BC V5A 1S6 Abstract Large tsunamis strike the British Columbia coast an average of once every several hundred years. Some of the tsunamis, including one from Alaska in 1964, are the result of distant great earthquakes. Most, however, are triggered by earthquakes at the Cascadia subduction zone, which extends along the Paci"c coast from Vancouver Island to northern California. Evidence of these tsunamis has been found in tidal marshes and low-elevation coastal lakes on western Vancouver Island. The tsunamis deposited sheets of sand and gravel now preserved in sequences of peat and mud. These sheets commonly contain marine fossils, and they thin and "ne landward, consistent with deposition by landward surges of water. They occur in low-energy settings where other possible depositional processes, such as stream #ooding and storm surges, can be ruled out. The most recent large tsunami generated by an earthquake at the Cascadia subduction zone has been dated in Washington and Japan to AD 1700. The spatial distribution of the deposits of the 1700 tsunami, together with theoretical numerical modelling, indicate wave run-ups of up to 5 m asl along the outer coast of Vancouver Island and up to 15}20 m asl at the heads of some inlets.
    [Show full text]
  • Engineering Geology and Seismology for Public Schools and Hospitals in California
    The Resources Agency California Geological Survey Michael Chrisman, Secretary for Resources Dr. John G. Parrish, State Geologist Engineering Geology and Seismology for Public Schools and Hospitals in California to accompany California Geological Survey Note 48 Checklist by Robert H. Sydnor, Senior Engineering Geologist California Geological Survey www.conservation.ca.gov/cgs July 1, 2005 316 pages Engineering Geology and Seismology performance–based analysis, diligent subsurface for Public Schools and Hospitals sampling, careful reading of the extensive geologic in California literature, thorough knowledge of the California Building Code, combined with competent professional geological work. by Robert H. Sydnor Engineering geology aspects of hospital and public California Geological Survey school sites include: regional geology, regional fault July 1, 2005 316 pages maps, site-specific geologic mapping, geologic cross- sections, active faulting, official zones of investigation Abstract for liquefaction and landslides, geotechnical laboratory The 446+ hospitals, 1,400+ skilled nursing facilities testing of samples, expansive soils, soluble sulfate ±9,221 public schools, and 109 community college evaluation for Type II or V Portland-cement selection, campuses in California are regulated under California and flooding. Code of Regulations, Title 24, California Building Code. Seismology aspects include: evaluation of historic These facilities are plan–checked by senior–level seismicity, probabilistic seismic hazard analysis of Registered Structural Engineers within the Office of earthquake ground–motion, use of proper code terms Statewide Health Planning and Development (OSHPD) (Upper–Bound Earthquake ground–motion and Design– for hospitals and skilled nursing facilities, and the Basis ground–motion), classification of the geologic Division of the State Architect (DSA) for public schools, subgrade by shear–wave velocity to select the correct community colleges, and essential services buildings.
    [Show full text]
  • Types of Landslides.Indd
    Landslide Types and Processes andslides in the United States occur in all 50 States. The primary regions of landslide occurrence and potential are the coastal and mountainous areas of California, Oregon, Land Washington, the States comprising the intermountain west, and the mountainous and hilly regions of the Eastern United States. Alaska and Hawaii also experience all types of landslides. Landslides in the United States cause approximately $3.5 billion (year 2001 dollars) in dam- age, and kill between 25 and 50 people annually. Casualties in the United States are primar- ily caused by rockfalls, rock slides, and debris flows. Worldwide, landslides occur and cause thousands of casualties and billions in monetary losses annually. The information in this publication provides an introductory primer on understanding basic scientific facts about landslides—the different types of landslides, how they are initiated, and some basic information about how they can begin to be managed as a hazard. TYPES OF LANDSLIDES porate additional variables, such as the rate of movement and the water, air, or ice content of The term “landslide” describes a wide variety the landslide material. of processes that result in the downward and outward movement of slope-forming materials Although landslides are primarily associ- including rock, soil, artificial fill, or a com- ated with mountainous regions, they can bination of these. The materials may move also occur in areas of generally low relief. In by falling, toppling, sliding, spreading, or low-relief areas, landslides occur as cut-and- La Conchita, coastal area of southern Califor- flowing. Figure 1 shows a graphic illustration fill failures (roadway and building excava- nia.
    [Show full text]
  • Risk Analysis of Soil Liquefaction in Earthquake Disasters
    E3S Web of Conferences 118, 03037 (2019) https://doi.org/10.1051/e3sconf/201911803037 ICAEER 2019 Risk analysis of soil liquefaction in earthquake disasters Yubin Zhang1,* 1National Earthquake Response Support Service, Beijing 100049, P. R. China Abstract. China is an earthquake-prone country. With the development of urbanization in China, the effect of population aggregation becomes more and more obvious, and the Casualty Risk of earthquake disasters also increases. Combining with the characteristics of earthquake liquefaction, this paper analyses the disaster situation of soil liquefaction caused by earthquake in Indonesia. The internal influencing factors of soil liquefaction and the external dynamic factors caused by earthquake are summarized, and then the evaluation factors of seismic liquefaction are summarized. The earthquake liquefaction risk is indexed to facilitate trend analysis. The index of earthquake liquefaction risk is more conducive to the disaster trend analysis of soil liquefaction risk areas, which is of great significance for earthquake disaster rescue. 1 Risk analysis of earthquake an earthquake of M7.5 occurred in the Palu region of liquefaction Indonesia. The liquefaction caused by the earthquake is evident in its severity and spatial range. According to the Earthquake disasters often cause serious damage to us report of Indonesia's National Disaster Response Agency because they are unpredictable. Search the US Geological (BNPB), more than 3,000 people were missing in Petobo Survey (USGS) website for the number of earthquakes and Balaroa, two of Palu's worst-hit areas. These with magnitude 6 and above in the last 50 years, about situations were compared with remote sensing images 7,000times.Earthquake liquefaction has existed since before and after the disaster.
    [Show full text]
  • Landslide Triggering Mechanisms
    kChapter 4 GERALD F. WIECZOREK LANDSLIDE TRIGGERING MECHANISMS 1. INTRODUCTION 2.INTENSE RAINFALL andslides can have several causes, including Storms that produce intense rainfall for periods as L geological, morphological, physical, and hu- short as several hours or have a more moderate in- man (Alexander 1992; Cruden and Vames, Chap. tensity lasting several days have triggered abun- 3 in this report, p. 70), but only one trigger (Varnes dant landslides in many regions, for example, 1978, 26). By definition a trigger is an external California (Figures 4-1, 4-2, and 4-3). Well- stimulus such as intense rainfall, earthquake shak- documented studies that have revealed a close ing, volcanic eruption, storm waves, or rapid stream relationship between rainfall intensity and acti- erosion that causes a near-immediate response in vation of landslides include those from California the form of a landslide by rapidly increasing the (Campbell 1975; Ellen et al. 1988), North stresses or by reducing the strength of slope mate- Carolina (Gryta and Bartholomew 1983; Neary rials. In some cases landslides may occur without an and Swift 1987), Virginia (Kochel 1987; Gryta apparent attributable trigger because of a variety or and Bartholomew 1989; Jacobson et al. 1989), combination of causes, such as chemical or physi- Puerto Rico (Jibson 1989; Simon et al. 1990; cal weathering of materials, that gradually bring the Larsen and Torres Sanchez 1992)., and Hawaii slope to failure. The requisite short time frame of (Wilson et al. 1992; Ellen et al. 1993). cause and effect is the critical element in the iden- These studies show that shallow landslides in tification of a landslide trigger.
    [Show full text]