The Walls of the Diencephalon Form The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Brainstem: Structure & Its Mode of Action
Journal of Neurology & Neurophysiology 2021, Vol.12, Issue 3, 521 Opinion Brainstem: Structure & Its Mode of action Karthikeyan Rupani Research Fellow, Tata Medical Centre, India. Corresponding Author* The brainstem is exceptionally little, making up around as it were 2.6 percent of the brain's add up to weight. It has the basic parts of directing cardiac, and Rupani K, respiratory work, making a difference to control heart rate and breathing rate. Research Fellow, Tata Medical Centre, India; It moreover gives the most engine and tactile nerve supply to the confront and E-mail: [email protected] neck by means of the cranial nerves. Ten sets of cranial nerves come from the brainstem. Other parts incorporate the direction of the central apprehensive Copyright: 2021 Rupani K. This is an open-access article distributed under the framework and the body's sleep cycle. It is additionally of prime significance terms of the Creative Commons Attribution License, which permits unrestricted within the movement of engine and tangible pathways from the rest of the use, distribution, and reproduction in any medium, provided the original author brain to the body, and from the body back to the brain. These pathways and source are credited. incorporate the corticospinal tract (engine work), the dorsal column-medial lemniscus pathway and the spinothalamic tract [3]. The primary part of the brainstem we'll consider is the midbrain. The midbrain Received 01 March 2021; Accepted 15 March 2021; Published 22 March 2021 (too known as the mesencephalon) is the foremost prevalent of the three districts of the brainstem. It acts as a conduit between the forebrain over and the pons and cerebellum underneath. -
Thalamus and Limbic System
Prof. Saeed Abuel Makarem 1 Objectives By the end of the lecture, you should be able to: Describe the anatomy and main functions of the thalamus. Name and identify different nuclei of the thalamus. Describe the main connections and functions of thalamic nuclei. Name and identify different parts of the limbic system. Describe main functions of the limbic system. Describe the effects of lesions of the limbic system. It is the largest nuclear mass of Thalamus the whole body. It is the largest part of the THALAMUS diencephalon It is formed of two oval masses Corpus callosum of grey matter. It is the gateway to the Midbrain cortex. Resemble a PONS small hen. Together with the hypothalamus they form the lateral wall of the 3rd ventricle. 3 It sends received Thalamus information to the cerebral cortex from different brain regions. Axons from every sensory system (except olfaction) synapse in the thalamus as the last relay site 'last pit stop' before the information reaches the cerebral cortex. There are some thalamic nuclei that receive input from: 1. Cerebellar nuclei, 2. Basal ganglia- and 3. Limbic-related brain regions. 4 It has 4 surfaces & 2 ends. Relations Surfaces Lateral:(L) Posterior limb of the internal capsule. Medial: (3) The 3rd ventricle. In some people the 2 thalami are connected to ach other by interthalamic adhesion S (connexus,) or Massa intermedia, which crosses L through the 3rd ventricle. 3 Superior: (s) I Lateral ventricle and fornix. Inferior: Hypothalamus, anteriorly & Subthalamus posteriorly. 5 Anterior end: Forms a projection, called the anterior tubercle. It lies just behind the interventricular foramen. -
Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans Ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai
Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai To cite this version: Hans ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai. Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex. Frontiers in Neuroanatomy, Frontiers, 2018, 12, pp.93. 10.3389/fnana.2018.00093. hal-01929541 HAL Id: hal-01929541 https://hal.archives-ouvertes.fr/hal-01929541 Submitted on 21 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REVIEW published: 19 November 2018 doi: 10.3389/fnana.2018.00093 Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans J. ten Donkelaar 1*†, Nathalie Tzourio-Mazoyer 2† and Jürgen K. Mai 3† 1 Department of Neurology, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands, 2 IMN Institut des Maladies Neurodégénératives UMR 5293, Université de Bordeaux, Bordeaux, France, 3 Institute for Anatomy, Heinrich Heine University, Düsseldorf, Germany The gyri and sulci of the human brain were defined by pioneers such as Louis-Pierre Gratiolet and Alexander Ecker, and extensified by, among others, Dejerine (1895) and von Economo and Koskinas (1925). -
Fenestration of the Lamina Terminalis
DORIS DUKE MEDICAL STUDENTS’ JOURNAL Volume IV, 2004-2005 A Prospective, Randomized, Single-Surgeon Trial of Fenestration of the Lamina Terminalis Evan R. Ransom A. Abstract Aneurysmal subarachnoid hemorrhage (aSAH) following ruptured intracranial aneurysm affects approximately 25,000 to 30, 000 people each year. Despite advances in early diagnosis and management, aSAH remains a frequent cause of death and disability. A common complication of this disease is hydrocephalus, a condition where the fluid surrounding the brain does not drain properly, causing an increase in pressure. In order to prevent damage to the brain from hydrocephalus it is often necessary to place a device (shunt) that drains cerebrospinal fluid from around the brain into the abdomen where it can be absorbed. Recent scientific investigations have shown that a procedure performed at the time of surgery for aSAH can decrease the likelihood of developing hydrocephalus requiring a shunt. This procedure involves making a very small connection between one of the fluid spaces in the brain (ventricle) and the fluid surrounding the brain (subarachnoid space). Though the procedure decreases the incidence of shunt-dependent hydrocephalus, its neuropsychological sequellae remain poorly defined. Reducing the incidence of hydrocephalus requiring a shunt is likely to improve patients' quality of life. However, it remains possible that this procedure, which is now widely used, may have unknown adverse effects on emotional or cognitive function. This is a particularly relevant concern given the proximity of the lamina terminalis to important functional regions of the brainstem, forebrain, thalamus, and hypothalamus. We propose to assign patients requiring surgery for aSAH by chance (like a coin-toss) to either: 1) receive this procedure (lamina terminalis fenestration) as part of their surgery; or, 2) undergo surgery without lamina terminalis fenestration. -
Clones in the Chick Diencephalon Contain Multiple Cell Types and Siblings Are Widely Dispersed
Development 122, 65-78 (1996) 65 Printed in Great Britain © The Company of Biologists Limited 1996 DEV8292 Clones in the chick diencephalon contain multiple cell types and siblings are widely dispersed Jeffrey A. Golden1,2 and Constance L. Cepko1,3 1Department of Genetics, Harvard Medical School, 2Department of Pathology, Brigham and Women’s Hospital, and 3Howard Hughes Medical Institute, 200 Longwood Avenue, Boston, MA 02115, USA SUMMARY The thalamus, hypothalamus and epithalamus of the ver- clones dispersed in all directions, resulting in sibling cells tebrate central nervous system are derived from the populating multiple nuclei within the diencephalon. In embryonic diencephalon. These regions of the nervous addition, several distinctive patterns of dispersion were system function as major relays between the telencephalon observed. These included clones with siblings distributed and more caudal regions of the brain. Early in develop- bilaterally across the third ventricle, clones that originated ment, the diencephalon morphologically comprises distinct in the lateral ventricle, clones that crossed neuromeric units known as neuromeres or prosomeres. As development boundaries, and clones that crossed major boundaries of proceeds, multiple nuclei, the functional and anatomical the developing nervous system, such as the diencephalon units of the diencephalon, derive from the neuromeres. It and mesencephalon. These findings demonstrate that prog- was of interest to determine whether progenitors in the enitor cells in the diencephalon are multipotent and that diencephalon give rise to daughters that cross nuclear or their daughters can become widely dispersed. neuromeric boundaries. To this end, a highly complex retroviral library was used to infect diencephalic progeni- tors. Retrovirally marked clones were found to contain Key words: cell lineage, central nervous system, diencephalon, neurons, glia and occasionally radial glia. -
Studies of Oculomotor-System Neural Connections Ronald S
Journal of the Arkansas Academy of Science Volume 34 Article 26 1980 How We Look: Studies of Oculomotor-System Neural Connections Ronald S. Remmel University of Arkansas for Medical Sciences Robert D. Skinner University of Arkansas for Medical Sciences Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Sense Organs Commons Recommended Citation Remmel, Ronald S. and Skinner, Robert D. (1980) "How We Look: Studies of Oculomotor-System Neural Connections," Journal of the Arkansas Academy of Science: Vol. 34 , Article 26. Available at: http://scholarworks.uark.edu/jaas/vol34/iss1/26 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Journal of the Arkansas Academy of Science, Vol. 34 [1980], Art. 26 HOW WE LOOK: STUDIES OF OCULOMOTOR-SYSTEM NEURAL CONNECTIONS . R. S. REMMELandR. D. SKINNER i Department of Physiology and Biophysics and Department of Anatomy University of Arkansas forMedical Sciences Little Rock, Arkansas 72205 ABSTRACT The neural connections of the reticular formation (RF) withthe vestibular nuclei (8V)and the ascending medial longitudinal fasciculus (MLF) were studied, because many neurons in these structures carry eye-movement and head-movement (vestibular) signals and are only one or two synaptic connections removed from eye motorneurons. -
Sylvian Aqueduct Syndrome and Global Rostral Midbrain Dysfunction Associated with Shunt Malfunction
Sylvian aqueduct syndrome and global rostral midbrain dysfunction associated with shunt malfunction Giuseppe Cinalli, M.D., Christian Sainte-Rose, M.D., Isabelle Simon, M.D., Guillaume Lot, M.D., and Spiros Sgouros, M.D. Department of Pediatric Neurosurgery and Pediatric Radiology, Hôpital Necker•Enfants Malades, Université René Decartes; and Department of Neurosurgery, Hôpital Lariboisiere, Paris, France Object. This study is a retrospective analysis of clinical data obtained in 28 patients affected by obstructive hydrocephalus who presented with signs of midbrain dysfunction during episodes of shunt malfunction. Methods. All patients presented with an upward gaze palsy, sometimes associated with other signs of oculomotor dysfunction. In seven cases the ocular signs remained isolated and resolved rapidly after shunt revision. In 21 cases the ocular signs were variably associated with other clinical manifestations such as pyramidal and extrapyramidal deficits, memory disturbances, mutism, or alterations in consciousness. Resolution of these symptoms after shunt revision was usually slow. In four cases a transient paradoxical aggravation was observed at the time of shunt revision. In 11 cases ventriculocisternostomy allowed resolution of the symptoms and withdrawal of the shunt. Simultaneous supratentorial and infratentorial intracranial pressure recordings performed in seven of the patients showed a pressure gradient between the supratentorial and infratentorial compartments with a higher supratentorial pressure before shunt revision. Inversion of this pressure gradient was observed after shunt revision and resolution of the gradient was observed in one case after third ventriculostomy. In six recent cases, a focal midbrain hyperintensity was evidenced on T2-weighted magnetic resonance imaging sequences at the time of shunt malfunction. This rapidly resolved after the patient underwent third ventriculostomy. -
Lecture 12 Notes
Somatic regions Limbic regions These functionally distinct regions continue rostrally into the ‘tweenbrain. Fig 11-4 Courtesy of MIT Press. Used with permission. Schneider, G. E. Brain structure and its Origins: In the Development and in Evolution of Behavior and the Mind. MIT Press, 2014. ISBN: 9780262026734. 1 Chapter 11, questions about the somatic regions: 4) There are motor neurons located in the midbrain. What movements do those motor neurons control? (These direct outputs of the midbrain are not a subject of much discussion in the chapter.) 5) At the base of the midbrain (ventral side) one finds a fiber bundle that shows great differences in relative size in different species. Give examples. What are the fibers called and where do they originate? 8) A decussating group of axons called the brachium conjunctivum also varies greatly in size in different species. It is largest in species with the largest neocortex but does not come from the neocortex. From which structure does it come? Where does it terminate? (Try to guess before you look it up.) 2 Motor neurons of the midbrain that control somatic muscles: the oculomotor nuclei of cranial nerves III and IV. At this level, the oculomotor nucleus of nerve III is present. Fibers from retina to Superior Colliculus Brachium of Inferior Colliculus (auditory pathway to thalamus, also to SC) Oculomotor nucleus Spinothalamic tract (somatosensory; some fibers terminate in SC) Medial lemniscus Cerebral peduncle: contains Red corticospinal + corticopontine fibers, + cortex to hindbrain fibers nucleus (n. ruber) Tectospinal tract Rubrospinal tract Courtesy of MIT Press. Used with permission. Schneider, G. -
Brain Structure and Function Related to Headache
Review Cephalalgia 0(0) 1–26 ! International Headache Society 2018 Brain structure and function related Reprints and permissions: sagepub.co.uk/journalsPermissions.nav to headache: Brainstem structure and DOI: 10.1177/0333102418784698 function in headache journals.sagepub.com/home/cep Marta Vila-Pueyo1 , Jan Hoffmann2 , Marcela Romero-Reyes3 and Simon Akerman3 Abstract Objective: To review and discuss the literature relevant to the role of brainstem structure and function in headache. Background: Primary headache disorders, such as migraine and cluster headache, are considered disorders of the brain. As well as head-related pain, these headache disorders are also associated with other neurological symptoms, such as those related to sensory, homeostatic, autonomic, cognitive and affective processing that can all occur before, during or even after headache has ceased. Many imaging studies demonstrate activation in brainstem areas that appear specifically associated with headache disorders, especially migraine, which may be related to the mechanisms of many of these symptoms. This is further supported by preclinical studies, which demonstrate that modulation of specific brainstem nuclei alters sensory processing relevant to these symptoms, including headache, cranial autonomic responses and homeostatic mechanisms. Review focus: This review will specifically focus on the role of brainstem structures relevant to primary headaches, including medullary, pontine, and midbrain, and describe their functional role and how they relate to mechanisms -
Brainstem Dysfunction in Critically Ill Patients
Benghanem et al. Critical Care (2020) 24:5 https://doi.org/10.1186/s13054-019-2718-9 REVIEW Open Access Brainstem dysfunction in critically ill patients Sarah Benghanem1,2 , Aurélien Mazeraud3,4, Eric Azabou5, Vibol Chhor6, Cassia Righy Shinotsuka7,8, Jan Claassen9, Benjamin Rohaut1,9,10† and Tarek Sharshar3,4*† Abstract The brainstem conveys sensory and motor inputs between the spinal cord and the brain, and contains nuclei of the cranial nerves. It controls the sleep-wake cycle and vital functions via the ascending reticular activating system and the autonomic nuclei, respectively. Brainstem dysfunction may lead to sensory and motor deficits, cranial nerve palsies, impairment of consciousness, dysautonomia, and respiratory failure. The brainstem is prone to various primary and secondary insults, resulting in acute or chronic dysfunction. Of particular importance for characterizing brainstem dysfunction and identifying the underlying etiology are a detailed clinical examination, MRI, neurophysiologic tests such as brainstem auditory evoked potentials, and an analysis of the cerebrospinal fluid. Detection of brainstem dysfunction is challenging but of utmost importance in comatose and deeply sedated patients both to guide therapy and to support outcome prediction. In the present review, we summarize the neuroanatomy, clinical syndromes, and diagnostic techniques of critical illness-associated brainstem dysfunction for the critical care setting. Keywords: Brainstem dysfunction, Brain injured patients, Intensive care unit, Sedation, Brainstem -
Advanced Sectioned Images of a Cadaver Head with Voxel Size Of
J Korean Med Sci. 2019 Sep 2;34(34):e218 https://doi.org/10.3346/jkms.2019.34.e218 eISSN 1598-6357·pISSN 1011-8934 Original Article Advanced Sectioned Images of a Cadaver Basic Medical Sciences Head with Voxel Size of 0.04 mm Beom Sun Chung ,1 Miran Han ,2 Donghwan Har ,3 and Jin Seo Park 4 1Department of Anatomy, Ajou University School of Medicine, Suwon, Korea 2Department of Radiology, Ajou University School of Medicine, Suwon, Korea 3College of ICT Engineering, Chung Ang University, Seoul, Korea 4Department of Anatomy, Dongguk University School of Medicine, Gyeongju, Korea Received: Jun 14, 2019 Accepted: Jul 22, 2019 ABSTRACT Address for Correspondence: Background: The sectioned images of a cadaver head made from the Visible Korean project Jin Seo Park, PhD have been used for research and educational purposes. However, the image resolution Department of Anatomy, Dongguk University is insufficient to observe detailed structures suitable for experts. In this study, advanced School of Medicine, 87 Dongdae-ro, Gyeongju sectioned images with higher resolution were produced for the identification of more 38067, Republic of Korea. E-mail: [email protected] detailed structures. Methods: The head of a donated female cadaver was scanned for 3 Tesla magnetic resonance © 2019 The Korean Academy of Medical images and diffusion tensor images (DTIs). After the head was frozen, the head was Sciences. sectioned serially at 0.04-mm intervals and photographed repeatedly using a digital camera. This is an Open Access article distributed Results: On the resulting 4,000 sectioned images (intervals and pixel size, 0.04 mm3; color under the terms of the Creative Commons Attribution Non-Commercial License (https:// depth, 48 bits color; a file size, 288 Mbytes), minute brain structures, which can be observed creativecommons.org/licenses/by-nc/4.0/) not on previous sectioned images but on microscopic slides, were observed. -
Graduate Neuroanatomy GSBS GS141181
Page 1 Graduate Neuroanatomy GSBS GS141181 Laboratory Guide Offered and Coordinated by the Department of Neurobiology and Anatomy The University of Texas Health Science Center at Houston. This course guide was adatped from the Medical Neuroscience Laboratory Guide. Nachum Dafny, Ph.D., Course Director; Michael Beierlein, Ph.D., Laboratory Coordinator. Online teaching materials are available at https://oac22.hsc.uth.tmc.edu/courses/neuroanatomy/ Other course information available at http://openwetware.org/wiki/Beauchamp:GraduateNeuroanatomy Contents © 2000-Present University of Texas Health Science Center at Houston. All Rights Reserved. Unauthorized use of contents subject to civil and/or criminal prosecution. Graduate Neuroanatomy : Laboratory Guide Page 2 Table of Contents Overview of the Nervous System ................................................................................................................ 3 Laboratory Exercise #1: External Anatomy of the Brain ......................................................................... 19 Laboratory Exercise #2: Internal Organization of the Brain ..................................................................... 35 Graduate Neuroanatomy : Laboratory Guide Page 3 Overview of the Nervous System Nachum Dafny, Ph.D. The human nervous system is divided into the central nervous system (CNS) and the peripheral nervous system (PNS). The CNS, in turn, is divided into the brain and the spinal cord, which lie in the cranial cavity of the skull and the vertebral canal, respectively. The CNS and the PNS, acting in concert, integrate sensory information and control motor and cognitive functions. The Central Nervous System (CNS) The adult human brain weighs between 1200 to 1500g and contains about one trillion cells. It occupies a volume of about 1400cc - approximately 2% of the total body weight, and receives 20% of the blood, oxygen, and calories supplied to the body. The adult spinal cord is approximately 40 to 50cm long and occupies about 150cc.