Clones in the Chick Diencephalon Contain Multiple Cell Types and Siblings Are Widely Dispersed

Total Page:16

File Type:pdf, Size:1020Kb

Clones in the Chick Diencephalon Contain Multiple Cell Types and Siblings Are Widely Dispersed Development 122, 65-78 (1996) 65 Printed in Great Britain © The Company of Biologists Limited 1996 DEV8292 Clones in the chick diencephalon contain multiple cell types and siblings are widely dispersed Jeffrey A. Golden1,2 and Constance L. Cepko1,3 1Department of Genetics, Harvard Medical School, 2Department of Pathology, Brigham and Women’s Hospital, and 3Howard Hughes Medical Institute, 200 Longwood Avenue, Boston, MA 02115, USA SUMMARY The thalamus, hypothalamus and epithalamus of the ver- clones dispersed in all directions, resulting in sibling cells tebrate central nervous system are derived from the populating multiple nuclei within the diencephalon. In embryonic diencephalon. These regions of the nervous addition, several distinctive patterns of dispersion were system function as major relays between the telencephalon observed. These included clones with siblings distributed and more caudal regions of the brain. Early in develop- bilaterally across the third ventricle, clones that originated ment, the diencephalon morphologically comprises distinct in the lateral ventricle, clones that crossed neuromeric units known as neuromeres or prosomeres. As development boundaries, and clones that crossed major boundaries of proceeds, multiple nuclei, the functional and anatomical the developing nervous system, such as the diencephalon units of the diencephalon, derive from the neuromeres. It and mesencephalon. These findings demonstrate that prog- was of interest to determine whether progenitors in the enitor cells in the diencephalon are multipotent and that diencephalon give rise to daughters that cross nuclear or their daughters can become widely dispersed. neuromeric boundaries. To this end, a highly complex retroviral library was used to infect diencephalic progeni- tors. Retrovirally marked clones were found to contain Key words: cell lineage, central nervous system, diencephalon, neurons, glia and occasionally radial glia. The majority of thalamus, chick, thalamus, hypothalamus INTRODUCTION of the diencephalon resembles the more caudal mesencephalon (midbrain) and rhombencephalon (hindbrain), which are One of the hallmarks of the adult nervous system is the parceled into discrete nuclei with mostly discrete projections. exquisite complexity of its cell types and synaptic connections. How the intermediate structure of the diencephalon develops The mechanisms that generate complexity during development is not clear. The development of some of the more rostral and remain largely unknown. Early in development, the neural tube caudal regions of the brain have been relatively well described is thought to be parceled into unique units or segments such that we can now appreciate that these areas follow (Lumsden, 1990; Puelles and Rubenstein, 1993; Rubenstein et different rules in key aspects of their development. al., 1994; Rubenstein and Puelles, 1994). Distinct morphologi- The rhombencephalon is transiently parceled into 8 mor- cal units first appear shortly before neural tube closure when phologically identifiable units known as rhombomeres. The multiple vesicular outpouchings develop rostrally. The primary neurons in each rhombomere comprise groups of nuclei, each vesicles are termed the prosencephalon, the mesencephalon with defined functions and a stereotypical pattern of axonal and the rhombencephalon. The prosencephalon gives rise to projections (Lumsden and Keynes, 1989; Keynes and the telencephalon (cerebral hemispheres) and the dien- Lumsden, 1990; Lumsden, 1990). A molecular basis for the cephalon. The diencephalon is the embryonic precursor to the morphological and functional specification of rhombomeres hypothalamus, thalamus and epithalamus, and is anatomically has been established through studies of the expression and mis- situated between the cerebral hemispheres and more caudal expression of Hox genes and other transcription factors areas of the brain. The diencephalon appears to be conserved (Guthrie and Lumsden, 1991, 1992; Hunt et al., 1991; Guthrie structurally and functionally throughout evolution, although et al., 1992). Lineage analysis conducted in the hindbrain of there is some debate about whether the organization within the chicks has shown that once the boundaries of the rhombomeres diencephalon, and the thalamus in particular, is similar across are established, the majority of clones appear to be restricted species (Kappers et al., 1960; Jones, 1985). The embryologi- to a single rhombomere (Fraser et al., 1990; Birgbauer and cal origin of the diencephalon appears to be conserved in Fraser, 1994) during the next 48 hours of development. Clones disparate species (Kappers et al., 1960). also appear restricted in cell fate in that most clones comprise While functional aspects of the diencephalon appear to siblings that adopt the same or a related neuronal cell fate mimic the rostral telencephalon, the anatomical organization (Lumsden et al., 1994). 66 J. A. Golden and C. L. Cepko The telencephalon, the most rostral part of the central neuromeric units (Bulfone et al., 1993a,b; Rubenstein et al., nervous system (CNS), is not separated into morphologically 1994; Rubenstein and Puelles, 1994), similar to the correlation defined, repeated units. Rather, the cerebral cortex, the largest noted in the hindbrain. Short-term lineal relationships in the component of the telencephalon, is organized into a diffuse diencephalon have been analyzed using the method of single laminated sheet of cells. Although the cortex can be parceled cell microinjection of a fluorescent dye (Figdor and Stern, into functional domains, there is no discrete nuclear organiz- 1993). The results indicated that the morphological neuromeres ation as is found in the hindbrain and diencephalon. Studies of the diencephalon are akin to the hindbrain rhombomeres in investigating the expression pattern of a variety of genes, that clones were restricted to a single neuromere up to 48 hours mostly transcription factors, have uncovered several genes after injection, the latest time point analyzed. However, this with nested (Simeone et al., 1992; Bulfone et al., 1993a,b) or technique precludes analysis of the final patterns of clonal dis- lamina-specific (Frantz et al., 1994a,b; Leifer et al., 1994) persion or the mature cell types within any one clone. patterns of expression. However, genes investigated thus far Chick/quail chimera studies have also been performed in the are generally not expressed within morphologically or physio- diencephalon (Martinez and Alvarado-Mallart, 1989). In these logically defined areas. Lineage analysis in the telencephalon studies, quail mesencephalon was transplanted into chick dien- has demonstrated that siblings spread over great distances to cephalon, and thus the potential of diencephalic progenitors give rise to neurons in functionally and anatomically unrelated was not tested. Nonetheless, these studies indicated that mes- parts of the cerebral cortex (Walsh and Cepko, 1992, 1993; encephalic progenitors dispersed to populate several, but not Reid et al., 1995). Lineage analysis in the telencephalon has all, nuclei in the diencephalon. One interesting pattern of shown that individual progenitor cells are capable of generat- spread for the mesencephalic progenitors in these studies was ing neurons and glia (Price and Thurlow, 1988; Walsh and that they selectively populated primary visual nuclei, suggest- Cepko, 1992; Levison et al., 1993; Reid et al., 1995). In the ing a relationship with the tectum, the normal derivative of the retina (an outgrowth of the diencephalon) and the chick tectum mesencephalon. (a derivative of the mesencephalon), lineage analysis has also Using a complex retroviral library comprising DNA tags as shown that neurons and glia arise from a common progenitor lineage markers (Golden et al., 1995), we have evaluated 275 cell (Turner and Cepko, 1987; Galileo et al., 1990; Turner et clones in the chick diencephalon. This technique allows al., 1990; Gray and Sanes, 1992; Fekete et al., 1995). analysis of clones in the mature diencephalon, after clonal dis- The diencephalon is organized into individual nuclei (col- persion is complete. We found that sibling cells can spread lections of neurons with a specific projection or defined set of extensively within the diencephalon, sometimes occupying projections) with some groups of nuclei having similar func- nuclei derived from more than one neuromere. Dispersion tional properties and other neighboring nuclei having distinct occasionally led to cells being located in both the diencephalon functions. Functionally, however, the diencephalon and, par- and the mesencephalon. Furthermore, siblings were found on ticularly, the thalamus closely resemble the telencephalon both the left and right sides of the third ventricle in approxi- (cerebral cortex and basal ganglia). The thalamus functions as mately 16% of the clones. We also found that progenitors of the major integration and projection region to the cerebral diencephalic cells were located in the ventricular zone of the cortex from more caudal structures, including the spinal cord, third ventricle, as well as in the ventricular zone of the lateral cerebellum, hindbrain and midbrain (Jones, 1985). The ventricle. Clones frequently contained neurons, glia and radial neurons of the thalamic nuclei project to different cortical areas glia, supporting the existence of multipotent progenitor cells. with many thalamic nuclei projecting to overlapping cortical regions. Furthermore, the thalamocortical projections to
Recommended publications
  • Lecture 12 Notes
    Somatic regions Limbic regions These functionally distinct regions continue rostrally into the ‘tweenbrain. Fig 11-4 Courtesy of MIT Press. Used with permission. Schneider, G. E. Brain structure and its Origins: In the Development and in Evolution of Behavior and the Mind. MIT Press, 2014. ISBN: 9780262026734. 1 Chapter 11, questions about the somatic regions: 4) There are motor neurons located in the midbrain. What movements do those motor neurons control? (These direct outputs of the midbrain are not a subject of much discussion in the chapter.) 5) At the base of the midbrain (ventral side) one finds a fiber bundle that shows great differences in relative size in different species. Give examples. What are the fibers called and where do they originate? 8) A decussating group of axons called the brachium conjunctivum also varies greatly in size in different species. It is largest in species with the largest neocortex but does not come from the neocortex. From which structure does it come? Where does it terminate? (Try to guess before you look it up.) 2 Motor neurons of the midbrain that control somatic muscles: the oculomotor nuclei of cranial nerves III and IV. At this level, the oculomotor nucleus of nerve III is present. Fibers from retina to Superior Colliculus Brachium of Inferior Colliculus (auditory pathway to thalamus, also to SC) Oculomotor nucleus Spinothalamic tract (somatosensory; some fibers terminate in SC) Medial lemniscus Cerebral peduncle: contains Red corticospinal + corticopontine fibers, + cortex to hindbrain fibers nucleus (n. ruber) Tectospinal tract Rubrospinal tract Courtesy of MIT Press. Used with permission. Schneider, G.
    [Show full text]
  • Diencephalon Sists of the Midbrain, Pons, and Medulla
    Diencephalon The brain lies within the cranial cavity of the skull and is made up of billions of nerve cells (neu - rons) and supporting cells (glia) . Neuronal cell bodies group together as gray matter, and their processes group together as white matter. The brain can be divided into four main parts: the cerebrum, diencephalon, brain stem, and cere - bellum. • The cerebrum is the largest part of the brain and consists of the four paired lobes with the two cerebral hemispheres, connected by a mass of white matter called the corpus callosum. The cerebrum accounts for about 80% of the brain’s mass and is concerned with higher functions, including perception of sensory impulses, instigation of voluntary movement, memory, thought, and reasoning. There are two layers of the cerebrum: - The cerebral cortex is the thin, wrinkled gray matter covering each hemisphere - The cerebral medulla is a thicker core of white matter • The diencephalon lies beneath the cerebral hemispheres and has two main structures ¾ the thalamus and the hypothalamus. The walnut-sized thalamus is a large mass of gray matter that lies on either side of the third ventricle. The thalamus is a great relay station on the afferent sen - sory pathway to the cerebral cortex. The tiny hypothalamus forms the lower part of the lateral wall and floor of the third ventricle. The hypothalamus exerts an influence on a wide range of body functions. • The cerebellum is attached to the brain and features a highly folded surface. It is important in the control of movement and balance. • The brainstem is the lower extension of the brain where it connects to the spinal cord.
    [Show full text]
  • Chapter 128: Basic Mechanisms of Sleep: New Evidence On
    128 BASIC MECHANISMS OF SLEEP: NEW EVIDENCE ON THE NEUROANATOMY AND NEUROMODULATION OF THE NREM-REM CYCLE EDWARD F. PACE-SCHOTT J. ALLAN HOBSON The 1990s brought a wealth of new detail to our knowledge NREM sleep (noradrenergic, serotonergic, and cholinergic of the brain structures involved in the control of sleep and systems damped), and REM sleep (noradrenergic and sero- waking and in the cellular level mechanisms that orchestrate tonergic systems off, cholinergic system undamped) (1–4). the sleep cycle through neuromodulation. This chapter pre- sents these new findings in the context of the general history Original Reciprocal Interaction Model: An of research on the brainstem neuromodulatory systems and Aminergic-Cholinergic Interplay the more specific organization of those systems in the con- trol of the alternation of wake, non–rapid eye movement The model of reciprocal interaction (5) provided a theoretic (NREM), and REM sleep. framework for experimental interventions at the cellular and Although the main focus of the chapter is on the our molecular level that has vindicated the notion that waking own model of reciprocal aminergic-cholinergic interaction, and REM sleep are at opposite ends of an aminergically we review new data suggesting the involvement of many dominant to cholinergically dominant neuromodulatory more chemically specific neuronal groups than can be ac- continuum, with NREM sleep holding an intermediate po- commodated by that model. We also extend our purview to sition (Fig. 128.1). The reciprocal interaction hypothesis the way in which the brainstem interacts with the forebrain. (5) provided a description of the aminergic-cholinergic in- These considerations inform not only sleep-cycle control terplay at the synaptic level and a mathematic analysis of per se, but also the way that circadian and ultradian rhythms the dynamics of the neurobiological control system.
    [Show full text]
  • Brain Anatomy
    BRAIN ANATOMY Adapted from Human Anatomy & Physiology by Marieb and Hoehn (9th ed.) The anatomy of the brain is often discussed in terms of either the embryonic scheme or the medical scheme. The embryonic scheme focuses on developmental pathways and names regions based on embryonic origins. The medical scheme focuses on the layout of the adult brain and names regions based on location and functionality. For this laboratory, we will consider the brain in terms of the medical scheme (Figure 1): Figure 1: General anatomy of the human brain Marieb & Hoehn (Human Anatomy and Physiology, 9th ed.) – Figure 12.2 CEREBRUM: Divided into two hemispheres, the cerebrum is the largest region of the human brain – the two hemispheres together account for ~ 85% of total brain mass. The cerebrum forms the superior part of the brain, covering and obscuring the diencephalon and brain stem similar to the way a mushroom cap covers the top of its stalk. Elevated ridges of tissue, called gyri (singular: gyrus), separated by shallow groves called sulci (singular: sulcus) mark nearly the entire surface of the cerebral hemispheres. Deeper groves, called fissures, separate large regions of the brain. Much of the cerebrum is involved in the processing of somatic sensory and motor information as well as all conscious thoughts and intellectual functions. The outer cortex of the cerebrum is composed of gray matter – billions of neuron cell bodies and unmyelinated axons arranged in six discrete layers. Although only 2 – 4 mm thick, this region accounts for ~ 40% of total brain mass. The inner region is composed of white matter – tracts of myelinated axons.
    [Show full text]
  • BRAINSTEM,CEREBELLUM, DIENCEPHALON-Dr. Kibe INTRODUCTION the Brain Is One of the Largest Organs in Adults
    THE CENTRAL NERVOUS SYSTEM BRAINSTEM,CEREBELLUM, DIENCEPHALON-Dr. Kibe INTRODUCTION The brain is one of the largest organs in adults. It consists approximately 100 billion neurons and 900 billion glia . And it weighs about 1.4 kg in adults Neurons of the brain undergo mitotic cell division only during the prenatal period and the first few months of postnatal life. No increase in number after that. Malnutrition during the crucial prenatal months of neuron multiplication is reported to hinder the process and result in fewer brain cells. The brain attains full size by about the eighteenth year but grows rapidly only during the first 9 years or so. BRAINSTEM • Three divisions of the brain make up the brainstem . • The medulla oblongata forms the lowest part of the brainstem, • The midbrain forms the uppermost part, • The pons lies between them, that is, above the medulla and below the midbrain. BRAIN STEM AND DIENCEPHALON Medulla Oblongata • The medulla oblongata is the part of the brain that attaches to the spinal cord. • It measures only a few centimeters (about 1 inch) in length and is separated from the pons above by a horizontal groove. • It is composed of white matter and a network of gray and white matter called the reticular formation • The pyramids are two bulges of white matter located on the ventral surface of the medulla. Fibers of the so-called pyramidal tracts form the pyramids. • The olive of the medulla is an oval projection appearing one on each side of the ventral surface of the medulla, lateral to the pyramids.
    [Show full text]
  • Diencephalon and Hypothalamus
    Diencephalon and Hypothalamus Objectives: 1) To become familiar with the four major divisions of the diencephalon 2) To understand the major anatomical divisions and functions of the hypothalamus. 3) To appreciate the relationship of the hypothalamus to the pituitary gland Four Subdivisions of the Diencephalon: Epithalamus, Subthalamus Thalamus & Hypothalamus Epithalamus 1. Epithalamus — (“epi” means upon) the most dorsal part of the diencephalon; it forms a caplike covering over the thalamus. a. The smallest and oldest part of the diencephalon b. Composed of: pineal body, habenular nuclei and the caudal commissure c. Function: It is functionally and anatomically linked to the limbic system; implicated in a number of autonomic (ie. respiratory, cardio- vascular), endocrine (thyroid function) and reproductive (mating behavior; responsible for postpartum maternal behavior) functions. Melatonin is secreted by the pineal gland at night and is concerned with biological timing including sleep induction. 2. Subthalamus — (“sub” = below), located ventral to the thalamus and lateral to the hypothalamus (only present in mammals). a. Plays a role in the generation of rhythmic movements b. Recent work indicates that stimulation of the subthalamus in cats inhibits the micturition reflex and thus this nucleus may also be involved in neural control of micturition. c. Stimulation of the subthalamus provides the most effective treatment for late-stage Parkinson’s disease in humans. Subthalamus 3. Thalamus — largest component of the diencephalon a. comprised of a large number of nuclei; -->lateral geniculate (vision) and the medial geniculate (hearing). b. serves as the great sensory receiving area (receives sensory input from all sensory pathways except olfaction) and relays sensory information to the cerebral cortex.
    [Show full text]
  • Diencephalon Diencephalon
    Diencephalon Diencephalon • Thalamus dorsal thalamus • Hypothalamus pituitary gland • Epithalamus habenular nucleus and commissure pineal gland • Subthalamus ventral thalamus subthalamic nucleus (STN) field of Forel Diencephalon dorsal surface Diencephalon ventral surface Diencephalon Medial Surface THALAMUS Function of the Thalamus • Sensory relay – ALL sensory information (except smell) • Motor integration – Input from cortex, cerebellum and basal ganglia • Arousal – Part of reticular activating system • Pain modulation – All nociceptive information • Memory & behavior – Lesions are disruptive Classification of Thalamic Nuclei I. Lateral Nuclear Group II. Medial Nuclear Group III. Anterior Nuclear Group IV. Posterior Nuclear Group V. Metathalamic Nuclear Group VI. Intralaminar Nuclear Group VII. Thalamic Reticular Nucleus Classification of Thalamic Nuclei LATERAL NUCLEAR GROUP Ventral Nuclear Group Ventral Posterior Nucleus (VP) ventral posterolateral nucleus (VPL) ventral posteromedial nucleus (VPM) Input to the Thalamus Sensory relay - Ventral posterior group all sensation from body and head, including pain Projections from the Thalamus Sensory relay Ventral posterior group all sensation from body and head, including pain LATERAL NUCLEAR GROUP Ventral Lateral Nucleus Ventral Anterior Nucleus Input to the Thalamus Motor control and integration Projections from the Thalamus Motor control and integration LATERAL NUCLEAR GROUP Prefrontal SMA MI, PM SI Ventral Nuclear Group SNr TTT GPi Cbll ML, STT Lateral Dorsal Nuclear Group Lateral
    [Show full text]
  • The Walls of the Diencephalon Form The
    The Walls Of The Diencephalon Form The Dmitri usually tiptoe brutishly or benaming puristically when confiscable Gershon overlays insatiately and unremittently. Leisure Keene still incusing: half-witted and on-line Gerri holystoning quite far but gumshoes her proposition molecularly. Homologous Mike bale bene. When this changes, water of small molecules are filtered through capillaries as their major contributor to the interstitial fluid. The diencephalon forming two lateral dorsal bulge caused by bacteria most inferiorly. The floor consists of collateral eminence produced by the collateral sulcus laterally and the hippocampus medially. Toward the neuraxis, and the connections that problem may cause arbitrary. What is formed by cavities within a tough outer layer during more. Can usually found near or sheets of medicine, and interpreted as we discussed previously stated, a practicing physical activity. The hypothalamic sulcus serves as a demarcation between the thalamic and hypothalamic portions of the walls. The protrusion at after end road the olfactory nerve; receives input do the olfactory receptors. The diencephalon forms a base on rehearsal limitations. The meninges of the treaty differ across those watching the spinal cord one that the dura mater of other brain splits into two layers and nose there does no epidural space. This chapter describes the csf circulates to the cerebrum from its embryonic diencephalon that encase the cells is the walls of diencephalon form the lateral sulcus limitans descends through the brain? The brainstem comprises three regions: the midbrain, a glossary, lamina is recognized. Axial histologic sections of refrigerator lower medulla. The inferior aspect of gray matter atrophy with memory are applied to groups, but symptoms due to migrate to process is neural function.
    [Show full text]
  • Habenula and Thalamus Cell Transplants Mediate Different Specific Patterns of Innervation in the Lnterpeduncular Nucleus
    The Journal of Neuroscience, August 1992, 12(8): 32723281 Habenula and Thalamus Cell Transplants Mediate Different Specific Patterns of Innervation in the lnterpeduncular Nucleus Theresa C. Eckenrode, Marion Murray, and Forrest Haun Department of Anatomy and Neurobiology, Medical College of Pennsylvania, Philadelphia, Pennsylvania 19129 Innervation of specific peptidergic and cholinergic com- the patterns of reinnervation are examined. The value of this partments of the interpeduncular nucleus (IPN) was inves- method dependsto a great extent on the degreeto which specific tigated using embryonic cell suspension transplants im- projections can be delineated in the model system chosen. For munoreactive for substance P (SP) and ChAT. In both neonatal that reason, the habenulo-interpeduncular system, with its and adult host rats, the IPN was first denervated of its normal sharply compartmentalized pattern of normal innervation, seems SP and cholinergic input from the medial habenula by bilat- an especially useful model for using transplants to investigate eral lesions of the fasciculi retroflexi (FR). In adult hosts, mechanismsresponsible for afferent specificity. transplants of embryonic habenular cells placed near the The habenulo-interpeduncular system is simply organized. denervated IPN mediated a return of the normal pattern of The paired medial habenulae project through the fasciculi re- SP staining restricted to habenula-target subnuclei, plus an troflexi (FR) to terminate in the unpaired interpeduncular nu- increase in staining intensity
    [Show full text]
  • Thalamic Neuromodulation and Its Implications for Executive Networks
    Thalamic neuromodulation and its implications for executive networks The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Varela, Carmen. “Thalamic Neuromodulation and Its Implications for Executive Networks.” Front. Neural Circuits 8 (June 24, 2014). As Published http://dx.doi.org/10.3389/fncir.2014.00069 Publisher Frontiers Research Foundation Version Final published version Citable link http://hdl.handle.net/1721.1/89204 Terms of Use Creative Commons Attribution Detailed Terms http://creativecommons.org/licenses/by/4.0/ REVIEW ARTICLE published: 24 June 2014 doi: 10.3389/fncir.2014.00069 Thalamic neuromodulation and its implications for executive networks Carmen Varela* Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA Edited by: The thalamus is a key structure that controls the routing of information in the brain. Guillermo Gonzalez-Burgos, Understanding modulation at the thalamic level is critical to understanding the flow of University of Pittsburgh, USA information to brain regions involved in cognitive functions, such as the neocortex, the Reviewed by: hippocampus, and the basal ganglia. Modulators contribute the majority of synapses Robert P.Vertes, Florida Atlantic University, USA that thalamic cells receive, and the highest fraction of modulator synapses is found in Randy M. Bruno, Columbia University, thalamic nuclei interconnected with higher order cortical regions. In addition, disruption USA of modulators often translates into disabling disorders of executive behavior. However, *Correspondence: modulation in thalamic nuclei such as the midline and intralaminar groups, which are Carmen Varela, Picower Institute for interconnected with forebrain executive regions, has received little attention compared Learning and Memory, Massachusetts Institute of Technology, Building 46, to sensory nuclei.
    [Show full text]
  • A STUDY of the ANURAN DIENCEPHALON the Group Of
    A STUDY OF THE ANURAN DIENCEPHALON JOSE GUILLERMO FRONTERA Laboratory of Comparative Neurology, Department of Anatomy, University of Michigan, Ann Arbor, and Department of Anatomy, School of Medicine, San Juan, Puerto Icico TWENTY FIGURES The group of vertebrates on which the present study is based has profoundly influenced, directly or indirectly, the prbgress of the biological sciences. The word-wide distribu- tion and abundance of the group, and the ease with which its members are managed, have made these animals especially useful as laboratory specimens. The present research deals primarily with the diencephalon. Even in such a rather limited area the intricacies of the cellu- lar pattern and fiber connections make it extremely hazardous to reach definite, undisputed conclusions. This paper would not be complete without an expression of the heartfelt gratitude of the author for the patient guid- ance, constant encouragement and assistance given to him by Professor E. C. Crosby. To the University of Puerto Rico and to the Horace H. Rackharn School of Graduate Studies, the author will be ever grateful for the financial aid which permitted the completion of this study. MATERIALS The author has been very fortunate to have at his disposal all the amphibian material contained in the extremely valu- able Huber Neurological Collection of the University of Michi- A dissertation submitted in partial fulfillment of the requirements for the de- gree of Doctor of Philosophy in the University of Michigan. At present t5e author is associated with the Department of Anatomy, School of Medicine, San Juan, Puerto Rico. 1 THB JOURNAL OF OOlfPARgTIVE N&IIIROLOGY, VOL.
    [Show full text]
  • Pt 311 Neuroscience
    Internal Capsule and Deep Gray Matter Medical Neuroscience | Tutorial Notes Internal Capsule and Deep Gray Matter 1 MAP TO NEUROSCIENCE CORE CONCEPTS NCC1. The brain is the body's most complex organ. NCC3. Genetically determined circuits are the foundation of the nervous system. LEARNING OBJECTIVES After study of the assigned learning materials, the student will: 1. Identify major white matter and gray matter structures that are apparent in sectional views of the forebrain, including the structures listed in the chart and figures in this tutorial. 2. Describe and sketch the relations of the deep gray matter structures to the internal capsule in coronal and axial sections of the forebrain. 3. Describe the distribution of the ventricular spaces in the forebrain and brainstem. NARRATIVE by Leonard E. WHITE and Nell B. CANT Duke Institute for Brain Sciences Department of Neurobiology Duke University School of Medicine Overview Now that you have acquired a framework for understanding the regional anatomy of the human brain, as viewed from the surface, and some understanding of the blood supply to both superficial and deep brain structures, you are ready to explore the internal organization of the brain. This tutorial will focus on the sectional anatomy of the forebrain (recall that the forebrain includes the derivatives of the embryonic prosencephalon). As you will discover, much of our framework for exploring the sectional anatomy of the forebrain is provided by the internal capsule and the deep gray matter, including the basal ganglia and the thalamus. But before beginning to study this internal anatomy, it will be helpful to familiarize yourself with some common conventions that are used to describe the deep structures of the central nervous system.
    [Show full text]