Insecticide Recommendations for Arkansas

Total Page:16

File Type:pdf, Size:1020Kb

Insecticide Recommendations for Arkansas MP144 2020 TABLE OF CONTENTS Page Page Introduction Fruits and Nuts Poison Control Centers in Arkansas ...................................................................... 4 Apple and Pear ............................................................................................. 135 Blackberry and Raspberry ............................................................................ 140 Insecticide Application ............................................................................................. 4 Blueberry....................................................................................................... 143 Cherry, Peach and Plum ............................................................................... 145 General Information About Insecticides Grape ............................................................................................................ 149 Formulations and Concentrations .................................................................... 9 Home Orchard .............................................................................................. 153 Table of Weights, Measures and Dilutions ..................................................... 10 Pecan ............................................................................................................. 156 Common and Trade Names of Chemicals ...................................................... 13 Strawberry ..................................................................................................... 158 Toxicity of Certain Insecticides ....................................................................... 18 Hemp.............................................................................................................. 159 Trade Names of Generic Insecticides .............................................................. 25 Vegetables Protecting Pollinators From Pesticides ................................................................ 26 Commercial Growers .................................................................................... 160 Relative Toxicity of Pesticides to Honeybees .................................................. 27 Home Gardeners .......................................................................................... 186 Recreation Areas .................................................................................................. 230 Animals Barns and Stables (fly control) ........................................................................ 29 Mosquito Control by Commercial and Government Agencies ......................... 237 Beef Cattle ...................................................................................................... 32 Ornamentals Grown in Nurseries or Landscapes ............................................. 242 Dairy Cattle ..................................................................................................... 38 Premises, Dogs, Cats, Canaries, Parakeets, Rabbits .................................... 46 Ornamentals Grown in Commercial Greenhouses ............................................ 252 Horses ............................................................................................................. 51 Ornamentals Grown in Interior Plantscapes....................................................... 266 Poultry ............................................................................................................. 56 Sheep and Goats ............................................................................................ 62 Ornamental Insect Control for Homeowners Swine .............................................................................................................. 63 Outdoor Ornamentals ................................................................................... 271 Field Crops Indoor Ornamentals ...................................................................................... 276 Corn (field) ...................................................................................................... 66 Home Lawns ......................................................................................................... 277 Cotton ............................................................................................................. 74 Commercial Turf and Golf Courses .................................................................... 285 Forages (alfalfa and pasture) .......................................................................... 85 Peanut............................................................................................................. 90 Commercial Christmas Trees .............................................................................. 296 Rice ................................................................................................................. 95 Household and Structural Pests ......................................................................... 302 Small Grain ..................................................................................................... 99 Grain Sorghum.............................................................................................. 102 Homeowner Insecticide Product List ................................................................. 324 Soybean ........................................................................................................ 107 Sunflower ...................................................................................................... 127 Stored Grain.................................................................................................. 128 R = Restricted Use Pesticide Honey Bee Hive Management ...................................................................... 130 Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperation The information given herein is supplied with the understanding that no discrimination with the U.S. Department of Agriculture, Director, Cooperative Extension Service, University of Arkansas. is intended and no endorsement by the University of Arkansas System Division of The University of Arkansas System Division of Agriculture offers all its Extension and Research programs Agriculture is implied. The agrichemical recommendations herein are consistent with and services without regard to race, color, sex, gender identity, sexual orientation, national origin, religion, current federal and state pesticide labeling as of the date of publi cation. Revisions in labels age, disability, marital or veteran status, genetic information, or any other legally protected status, and is can occur at any time. For your safety before using any recommended pesticide, always an Affirmative Action/Equal Opportunity Employer. read the product label. MP144-6.5M-1-2020RV 2 INSECTICIDE RECOMMENDATIONS FOR ARKANSAS INTRODUCTION Ples Spradley Jon Zawislak Associate Professor/Extension Pesticide Instructor/Extension Recommendations and products listed in this publication are reviewed annually by Assessment Specialist Entomologist - Apiculture the contributing authors. Research on chemical control of insect pests is ongoing as new 2301 South University Avenue 2301 South University Avenue products are developed and registered for use in the crops and situations presented. Little Rock, AR 72204 Little Rock, AR 72204 The information presented in this publication is taken from tests conducted and recom- Phone - (501) 671-2234 Phone - (501) 671-2222 mendations developed in Arkansas and is supplemented by published information from surrounding states. The use of any chemical suggested in this guide should always be Glenn Studebaker Aaron Cato preceded by a careful examination of the container label for directions and precautions. Professor/Extension Entomologist - Assistant Professor/Extension Many insecticides have registrations for uses not listed in this publication. They are not Row Crops/IPM Coordinator Hort. IPM Specialist included here because of either a lack of space in the publication, their lack of availability NE Research and Extension Center 2301 South University Avenue for purchase in the state, their inefficiency for the purpose intended or their extremely P. O. Box 48 Little Rock, AR 72204 hazardous nature when a less hazardous chemical will do the job just as well. Rates of Keiser, AR 72351 Phone - (501) 671-2191 insecticides in this publication are presented as recommended rate ranges to provide a Phone - (870) 526-2199, ext. 114 flexible guide for product use. Insecticide performance charts in this guide are intended to indicate relative performance of products and not percent control. Edited by Glenn Studebaker, Professor/Extension Contributing Authors Entomologist - Row Crops/IPM Coordinator University of Arkansas System Division of Agriculture, Contributing Authors Department of Entomology Research Personnel University of Arkansas System Division of Agriculture The mailing address for the following staff members is Department of Entomology, Nick Bateman Jackie Lee AGRI 319, University of Arkansas, Fayetteville, Arkansas 72701. The locations below Assistant Professor/Extension Associate Professor/Extension indicate where each person is located on the campus. Each one is a project leader in the Entomologist - Row Crops Horticulture IPM Specialist areas indicated. Rice Research and Extension Center 2301 South University Avenue 2900 Highway 130 East Little Rock, AR 72204 Neelendra Joshi T. Teague, Professor Stuttgart,
Recommended publications
  • Evaluation of Fluralaner and Afoxolaner Treatments to Control Flea
    Dryden et al. Parasites & Vectors (2016) 9:365 DOI 10.1186/s13071-016-1654-7 RESEARCH Open Access Evaluation of fluralaner and afoxolaner treatments to control flea populations, reduce pruritus and minimize dermatologic lesions in naturally infested dogs in private residences in west central Florida USA Michael W. Dryden1*, Michael S. Canfield2, Kimberly Kalosy1, Amber Smith1, Lisa Crevoiserat1, Jennifer C. McGrady1, Kaitlin M. Foley1, Kathryn Green2, Chantelle Tebaldi2, Vicki Smith1, Tashina Bennett1, Kathleen Heaney3, Lisa Math3, Christine Royal3 and Fangshi Sun3 Abstract Background: A study was conducted to evaluate and compare the effectiveness of two different oral flea and tick products to control flea infestations, reduce pruritus and minimize dermatologic lesions over a 12 week period on naturally infested dogs in west central FL USA. Methods: Thirty-four dogs with natural flea infestations living in 17 homes were treated once with a fluralaner chew on study day 0. Another 27 dogs living in 17 different homes were treated orally with an afoxolaner chewable on day 0, once between days 28–30 and once again between days 54–60. All products were administered according to label directions by study investigators. Flea populations on pets were assessed using visual area counts and premise flea infestations were assessed using intermittent-light flea traps on days 0, 7, 14, 21, and once between days 28–30, 40–45, 54–60 and 82–86. Dermatologic assessments were conducted on day 0 and once monthly. Pruritus assessments were conducted by owners throughout the study. No concurrent treatments for existing skin disease (antibiotics, anti-inflammatories, anti-fungals) were allowed.
    [Show full text]
  • Historical Perspectives on Apple Production: Fruit Tree Pest Management, Regulation and New Insecticidal Chemistries
    Historical Perspectives on Apple Production: Fruit Tree Pest Management, Regulation and New Insecticidal Chemistries. Peter Jentsch Extension Associate Department of Entomology Cornell University's Hudson Valley Lab 3357 Rt. 9W; PO box 727 Highland, NY 12528 email: [email protected] Phone 845-691-7151 Mobile: 845-417-7465 http://www.nysaes.cornell.edu/ent/faculty/jentsch/ 2 Historical Perspectives on Fruit Production: Fruit Tree Pest Management, Regulation and New Chemistries. by Peter Jentsch I. Historical Use of Pesticides in Apple Production Overview of Apple Production and Pest Management Prior to 1940 Synthetic Pesticide Development and Use II. Influences Changing the Pest Management Profile in Apple Production Chemical Residues in Early Insect Management Historical Chemical Regulation Recent Regulation Developments Changing Pest Management Food Quality Protection Act of 1996 The Science Behind The Methodology Pesticide Revisions – Requirements For New Registrations III. Resistance of Insect Pests to Insecticides Resistance Pest Management Strategies IV. Reduced Risk Chemistries: New Modes of Action and the Insecticide Treadmill Fermentation Microbial Products Bt’s, Abamectins, Spinosads Juvenile Hormone Analogs Formamidines, Juvenile Hormone Analogs And Mimics Insect Growth Regulators Azadirachtin, Thiadiazine Neonicotinyls Major Reduced Risk Materials: Carboxamides, Carboxylic Acid Esters, Granulosis Viruses, Diphenyloxazolines, Insecticidal Soaps, Benzoyl Urea Growth Regulators, Tetronic Acids, Oxadiazenes , Particle Films, Phenoxypyrazoles, Pyridazinones, Spinosads, Tetrazines , Organotins, Quinolines. 3 I Historical Use of Pesticides in Apple Production Overview of Apple Production and Pest Management Prior to 1940 The apple has a rather ominous origin. Its inception is framed in the biblical text regarding the genesis of mankind. The backdrop appears to be the turbulent setting of what many scholars believe to be present day Iraq.
    [Show full text]
  • Federal Register/Vol. 86, No. 161/Tuesday, August 24, 2021
    Federal Register / Vol. 86, No. 161 / Tuesday, August 24, 2021 / Rules and Regulations 47221 EPA–APPROVED MISSOURI REGULATIONS State effective Missouri citation Title date EPA approval date Explanation Missouri Department of Natural Resources ******* Chapter 6—Air Quality Standards, Definitions, Sampling and Reference Methods, and Air Pollution Control Regulations for the State of Missouri ******* 10–6.110 ........... Reporting Emission Data, Emis- 3/30/2021 8/24/2021, [Insert Federal Reg- Section (3)(A), Emission Fees, sion Fees, and Process Infor- ister citation]. has not been approved as part mation. of the SIP. ******* * * * * * ACTION: Final rule. year. To the maximum extent prudent and determinable, we must designate PART 70—STATE OPERATING PERMIT SUMMARY: We, the U.S. Fish and critical habitat for any species that we PROGRAMS Wildlife Service (Service), are listing the determine to be an endangered or Franklin’s bumble bee (Bombus threatened species under the Act. ■ 3. The authority citation for part 70 franklini), an invertebrate species from Listing a species as an endangered or continues to read as follows: Douglas, Jackson, and Josephine threatened species and designation of Authority: 42 U.S.C. 7401, et seq. Counties in Oregon, and Siskiyou and critical habitat can only be completed Trinity Counties in California, as an ■ 4. In appendix A to part 70 the entry by issuing a rule. endangered species under the What this document does. This rule for ‘‘Missouri’’ is amended by adding Endangered Species Act of 1973, as paragraph (jj) to read as follows: lists Franklin’s bumble bee (Bombus amended (Act). This rule adds this franklini) as an endangered species Appendix A to Part 70—Approval species to the Federal List of under the Act.
    [Show full text]
  • Neonicotinoid Insecticide Hydrolysis and Photolysis: Rates and Residual Toxicity
    Neonicotinoid Insecticide Hydrolysis and Photolysis: Rates and Residual Toxicity A THESIS SUBMITTED TO THE FACULTY OF THE UNIVERSITY OF MINNESOTA BY Stephen Anthony Todey IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE William Arnold May 2018 © Stephen Todey, 2018 ii Acknowledgements I would like to thank Bill for all his help and guidance throughout this project, and Ann Fallon, who completed all the parent and product toxicity experiments. Thank you to Xun Ming at the Masonic Cancer Center (University of Minnesota – Twin Cities) who helped to develop the UPLC – MS/MS method used for this research and helped to operate the Orbitrap Velos. Thanks to undergraduates Josh and Amit for the work they helped to complete in the lab, and for all the dishes they washed. Thank you to all the members of the Arnold Lab Group for making me feel welcome and helping me throughout the process of completing my masters. Extra special thanks to Jill Kerrigan, Andrew McCabe, and Sarah Pati for their guidance in experimental design and data analysis. Finally, thank you to my parents, Francis and Marianne Todey, and Jennifer Anderson. I would not have gone this far without your help and support. Funding for this project was provided by the Legislative-Citizen Commission on Minnesota Resources (LCCMR). i Abstract Neonicotinoid insecticides are currently the most widely used class of insecticides worldwide, accounting for 25% of total insecticide use. They are registered in 120 countries for use on more than 140 crops. Concern has grown, however, over their widespread detection in global surface waters, soil, finished drinking water, and wastewater, and for their potential role in colony collapse disorder in honey bees.
    [Show full text]
  • NEXGARD SPECTRA, INN-Afoxolaner-Milbemycin Oxime
    EMA/704200/2014 EMEA/V/C/003842 Nexgard Spectra (afoxolaner/milbemycin oxime) An overview of Nexgard Spectra and why it is authorised in the EU What is Nexgard Spectra and what is it used for? Nexgard Spectra is a veterinary medicine used to treat infestations with fleas, ticks, as well as demodectic and sarcoptic mange (skin infestations caused by two different types of mites) in dogs when prevention of heartworm disease (caused by a worm that infects the heart and blood vessels and is transmitted by mosquitoes), lungworm disease, eye worm and/or treatment of gut worms (hookworms, roundworms and whipworm) is also required. Nexgard Spectra contains the active substances afoxolaner and milbemycin oxime. How is Nexgard Spectra used? Nexgard Spectra is available as chewable tablets in five different strengths for use in dogs of different weights. It can only be obtained with a prescription. The appropriate strength of tablets should be used according to the dog’s weight. Treatment for fleas and ticks should be repeated at monthly intervals during the flea or tick seasons; Nexgard Spectra can be used as part of the seasonal treatment of fleas and ticks in dogs infected with gut worms. A single dose of Nexgard Spectra is given to treat gut worms. After which, further flea and tick treatment should be continued with a monovalent product containing a single active substance. For demodectic mange, treatment should be repeated monthly until the mange is successfully treated (as confirmed by two negative skin scrapings one month apart) whereas for sarcoptic mange treatment is given monthly for two months, or longer based on clinical signs and skin scrapings.
    [Show full text]
  • Toxicity, Sublethal and Low Dose Effects of Imidacloprid and Deltamethrin on the Aphidophagous Predator Ceratomegilla Undecimnotata (Coleoptera: Coccinellidae)
    insects Article Toxicity, Sublethal and Low Dose Effects of Imidacloprid and Deltamethrin on the Aphidophagous Predator Ceratomegilla undecimnotata (Coleoptera: Coccinellidae) Panagiotis J. Skouras 1,* , Anastasios I. Darras 2 , Marina Mprokaki 1, Vasilios Demopoulos 3, John T. Margaritopoulos 4 , Costas Delis 2 and George J. Stathas 1 1 Laboratory of Agricultural Entomology and Zoology, Department of Agriculture, Kalamata Campus, University of the Peloponnese, 24100 Antikalamos, Greece; [email protected] (M.M.); [email protected] (G.J.S.) 2 Department of Agriculture, Kalamata Campus, University of the Peloponnese, 24100 Antikalamos, Greece; [email protected] (A.I.D.); [email protected] (C.D.) 3 Laboratory of Plant Protection, Department of Agriculture, Kalamata Campus, University of the Peloponnese, 24100 Antikalamos, Greece; [email protected] 4 Department of Plant Protection, Institute of Industrial and Fodder Crops, Hellenic Agricultural Organization “DEMETER”—NAGREF, 38446 Volos, Greece; [email protected] * Correspondence: [email protected]; Tel.: +30-27210-45277 Simple Summary: Chemical insecticides are used to control agricultural pests all over the world. However, extensive use of chemical insecticides can be harmful to human health and negatively Citation: Skouras, P.J.; Darras, A.I.; impact the environment and biological control agents. We studied the toxicity and sublethal effects Mprokaki, M.; Demopoulos, V.; of imidacloprid and deltamethrin on the aphidophagous coccinellid predator Ceratomegilla
    [Show full text]
  • Cover Memo Isoxazolines Inquires
    Name: Isoxazoline inquiries DATE:10/1/2018 This serves as the response to your Freedom of Information Act (FOIA) request for records regarding adverse event reports received for afoxolaner, fluralaner, lotilaner and sarolaner. A search of CVM’s Adverse Drug Event (ADE) database was performed on 10-01-2018. The search parameters were: Active ingredient(s): afoxolaner, fluralaner, lotilaner and sarolaner Reports received: From 09-04-2013 through 07-31-2018 Case type: Spontaneous ADE report Species: All Route of administration: All For each drug (active ingredient), we have provided the ‘CVM ADE Comprehensive Clinical Detail Report Listing’, which is a cumulative listing of adverse experiences in reports submitted to CVM. General Information about CVM’s ADE Database The primary purpose for maintaining the CVM ADE database is to provide an early warning or signaling system to CVM for adverse effects not detected during pre-market testing of FDA- approved animal drugs and for monitoring the performance of drugs not approved for use in animals. Information from these ADE reports is received and coded in an electronic FDA/CVM ADE database. CVM scientists use the ADE database to make decisions about product safety which may include changes to the label or other regulatory action. CVM’s ADE reporting system depends on detection and voluntary reporting of adverse clinical events by veterinarians and animal owners. The Center's ADE review process is complex, and for each report takes into consideration confounding factors such as: Dosage Concomitant drug use The medical and physical condition of animals at the time of treatment Environmental and management information Product defects Name: Isoxazoline inquiries DATE:10/1/2018 Extra-label (off label) uses The specifics of these complex factors cannot be addressed in the CVM ADE Comprehensive Clinical Detail Report Listing.
    [Show full text]
  • Nexgard, Afoxolaner
    13 September 2018 EMA/665923/2018 Veterinary Medicines Division CVMP assessment report for a worksharing grouped type II variation for NEXGARD SPECTRA and NexGard (EMEA/V/C/WS1338/G) International non-proprietary name: afoxolaner / milbemycin oxime; afoxolaner Assessment report as adopted by the CVMP with all information of a commercially confidential nature deleted. Rapporteur: Jeremiah Gabriel Beechinor Co-Rapporteur: Peter Hekman 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5545 Send a question via our website www.ema.europa.eu/contact An agency of the European Union © European Medicines Agency, 2018. Reproduction is authorised provided the source is acknowledged. Table of contents 1. Introduction ............................................................................................ 3 1.1. Submission of the variation application ................................................................... 3 1.2. Scope of the variation ........................................................................................... 3 1.3. Changes to the dossier held by the European Medicines Agency ................................. 3 1.4. Scientific advice ................................................................................................... 3 1.5. MUMS/limited market status .................................................................................. 3 2. Scientific Overview .................................................................................
    [Show full text]
  • Pesticide Resistance in Bed Bugs Everywhere!!!!!
    2/24/2018 Pesticide Resistance in Bed bugs were virtually eradicated from the U.S. in Bed Bugs the post WWII era due to DDT and other powerful Shujuan (Lucy) Li insecticides. University of Arizona Alvaro Romero New Mexico State University 2 By the 1960s, bed bugs had developed resistance Public housing Apartments to DDT, methoxychlor and analogues, BHC, Schools dieldrin and analogues , and pyrethrins ( Busvine 1958, Hospitals Nursing homes Cwilich & Mer 1957, Mallis and Miller 1964 ) . Homes Transportation Child care Medical facilities Hotels & motels Health care facilities Airports Movie theaters Department stores Products, vendors, or commercial services mentioned or pictured in this seminar are for Everywhere!!!!! illustrative purposes only and are not meant to be endorsements. 3 4 University of Arizona; Arizona Pest Management Center 1 2/24/2018 Possible reasons for treatment failure? Missed some Clutter Reintroduction Have you seen these after treatments? 5 6 Dose - response assays for field - collected strains Bed bugs survived direct insecticide sprays 99 deltamethrin 90 Ft. Dix F1 50 ) e l a c 10 s t CIN1 i b o 1.0 r p ( y t i l a t r 99 - cyhalothrin o m e 90 g a t n Resistance ratio (RR) at least 6,000 !!! e c Ft. Dix r 50 e P 10 CIN1 Suspend® ( Deltamethrin ) 1.0 10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 3 10 4 Treatment (mg active ingredient/cm 2 ) Products, vendors, or commercial services mentioned or pictured in this seminar are for illustrative purposes only and are not meant Romero et al.
    [Show full text]
  • Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019 Theinternational Programme on Chemical Safety (IPCS) Was Established in 1980
    The WHO Recommended Classi cation of Pesticides by Hazard and Guidelines to Classi cation 2019 cation Hazard of Pesticides by and Guidelines to Classi The WHO Recommended Classi The WHO Recommended Classi cation of Pesticides by Hazard and Guidelines to Classi cation 2019 The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019 TheInternational Programme on Chemical Safety (IPCS) was established in 1980. The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management of chemicals. This publication was developed in the IOMC context. The contents do not necessarily reflect the views or stated policies of individual IOMC Participating Organizations. The Inter-Organization Programme for the Sound Management of Chemicals (IOMC) was established in 1995 following recommendations made by the 1992 UN Conference on Environment and Development to strengthen cooperation and increase international coordination in the field of chemical safety. The Participating Organizations are: FAO, ILO, UNDP, UNEP, UNIDO, UNITAR, WHO, World Bank and OECD. The purpose of the IOMC is to promote coordination of the policies and activities pursued by the Participating Organizations, jointly or separately, to achieve the sound management of chemicals in relation to human health and the environment. WHO recommended classification of pesticides by hazard and guidelines to classification, 2019 edition ISBN 978-92-4-000566-2 (electronic version) ISBN 978-92-4-000567-9 (print version) ISSN 1684-1042 © World Health Organization 2020 Some rights reserved.
    [Show full text]
  • Top 5 Cytologic Findings in Aspirates of Enlarged
    May 2019 A Peer-Reviewed Journal | cliniciansbrief.com TOP 5 CYTOLOGIC FINDINGS IN ASPIRATES OF ENLARGED IN THIS ISSUE LYMPH NODES Top 5 Radiographic Variants Respiratory Distress & Inappetence Case Management Algorithm: Snake Envenomation Managing Aggressive & Fearful Dogs Neutropenia: A Differential Diagnosis List Volume 17 Number 5 THE OFFICIAL CLINICAL PRACTICE JOURNAL OF THE WSAVA Advantage Multi® for Dogs and for Cats (imidacloprid + moxidectin) BRIEF SUMMARY: Before using Advantage Multi ® for Dogs (imidacloprid+moxidectin) or Advantage Multi ® for Cats (imidacloprid +moxidectin), please consult the product insert, a summary of which follows: CAUTION: Federal (U.S.A.) Law restricts this drug to use by or on the order of a licensed veterinarian. Advantage Multi for Dogs: WARNING • DO NOT ADMINISTER THIS PRODUCT ORALLY. • For the first 30 minutes after application ensure that dogs cannot lick the product from application sites on themselves or other treated animals. • Children should not come in contact with the application sites for two (2) hours after application. (See Contraindications, Warnings, Human Warnings, and Adverse Reactions for more information.) INDICATIONS: Advantage Multi for Dogs is indicated for the prevention of heartworm disease caused by Dirofilaria immitis and the treatment of Dirofilaria immitis circulating microfilariae in heartworm-positive dogs. Treats and controls Advantage Multi for Dogs kills adult fleas and is indicated for the treatment of flea infestations (Ctenocephalides felis). Advantage Multi for Dogs is indicated for the treatment and control of sarcoptic mange caused by Sarcoptes scabiei var.canis. Advantage Multi for Dogs is also indicated sarcoptic mange in dogs for the treatment and control of the following intestinal parasites species: Hookworms (Ancylostoma caninum) (Uncinaria stenocephala), Roundworms (Toxocara canis) (Toxascaris leonina) and Whipworms (Trichuris vulpis).
    [Show full text]
  • AAVP 2020 Annual Meeting Proceedings
    Proceedings AAVP American Association of Veterinary Parasitologists Progressive Solutions for Age-Old Problems Membership Directory 65th Annual Meeting Virtual Meeting June 20–23, 2020 Reproduced with permission from Dr. Russell Avramenko and Dr. John Gilleard and cover of International Journal for Parasitology 49,1 6/18/2020 7:35:12 AM American Association of Veterinary Parasitologists 65th Annual Meeting, June 20th – 23rd 2020, Virtual Meeting 2020 AAVP-Boehringer Ingelheim Distinguished Veterinary Parasitologist Sharon Patton, MS, PhD Sharon Patton was born on a farm in Watertown, TN to Virginia Bland and Charles Patton. She was the middle child with an older brother and two younger sisters. Her father was an “egg peddler” and sold eggs door to door in what is now considered the “greater Nashville” area. In the summer, Sharon went with her father to sell eggs 2 days/week – leaving at 4 am and returning around 7 pm. It was hard work for a little girl carrying buckets full of eggs door to door, but she loved it and gradually began to deliver more eggs than her father (although she always slept during the 50-mile drive home). The family moved from the farm where they were living with her grandparents to the small town of Watertown, but the egg peddling continued as did raising Black Angus cattle, and her father tending to 10,000 chickens that he managed in chicken houses on the farm. Later the family returned to the farm and built a house across the road from the grandparents’ house. Her father died while she was in college.
    [Show full text]