Laser-Plasma Sources for Extreme-Ultraviolet Lithography

Total Page:16

File Type:pdf, Size:1020Kb

Laser-Plasma Sources for Extreme-Ultraviolet Lithography Laser-Plasma Sources for Extreme-Ultraviolet Lithography BJÖRN A. M. HANSSON Doctoral Thesis Stockholm, Sweden 2003 TRITA FYS 2003-56 ISSN 0280-316X KTH ISRN KTH/FYS/--03:56--SE SE-100 44 Stockholm ISBN 91-7283-658-X SWEDEN Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges till offentlig granskning för avläggande av teknologie doktorsexamen fredagen den 19 december 2003 kl. 10.00 i Kollegiesalen, Administrationsbyggnaden, Kungl Tekniska högskolan, Valhallavägen 79, Stockholm. °c Björn A. M. Hansson, november 2003 Tryck: Universitetsservice US AB iii Abstract This thesis describes the development and characterization of a liquid- xenon-jet laser-plasma source for extreme-ultraviolet (EUV) radiation. It is shown how this source may be suitable for production-scale EUV lithography (EUVL). EUVL is one of the main candidates to succeed deep-ultraviolet (DUV) lithography for large-scale manufacturing of integrated circuits (IC). However, a major obstacle towards the realization of EUVL is the current unavailability of a source meeting the tough requirements on especially power and clean- liness for operation in an EUVL stepper. The liquid-xenon-jet laser-plasma concept has key advantages that may make it suitable for EUVL since, e.g., its plasma consists only of the inert noble gas xenon and since the liquid- jet target technology enables plasma operation at large distances from the source-hardware thereby reducing sputtering and to allowing for high-power operation. At the beginning of the work described in this thesis, a spatial insta- bility of the liquid-xenon-jet made stable operation of a plasma at practical distances from the nozzle orifice difficult. However, an invention of a stabiliza- tion method based on applying localized heating to the tip of the jet-forming nozzle, resulted in stable jet operation. The longitudinal droplet stability of a liquid-droplet laser-plasma source has also been investigated and improved. Continuous improvements of especially the laser-power to EUV-radiation conversion efficiency (CE) and the stability of laser-plasma operation at large distances (several centimeter) from the nozzle are reported for the liquid- xenon-jet laser plasma source. Furthermore, this source is characterized re- garding many parameters relevant for EUVL operation including, ion emission from the plasma and related sputtering of nearby components, source size and shape, the repetition-rate limit of the source and non-EUV emission from the plasma. Although the main focus of the thesis has been the development and characterization of a liquid-xenon-jet laser-plasma source for production-scale EUVL, the source may also be suitable for small field applications that ben- efit from the high potential brightness of the source. A method to scan the plasma and thus minimize the photon losses while maintaining the object plane uniformity was developed. Furthermore, the first operation of a liquid- tin-jet laser plasma is reported. Quantitative EUV flux measurements yield record CE, but quantitative contamination measurements also indicate that a liquid-tin-jet laser plasma is not likely to be applicable as a source for EUVL. iv Contents Contents v List of papers vii Other publications ix List of acronyms xi 1 Introduction 1 1.1 Background . 1 1.2 Extreme-ultraviolet radiation . 2 1.3 Semiconductor technology . 3 2 Microlithography 5 2.1 Overview of microlithography . 5 2.2 The limitations of present microlithography . 7 2.3 Next-generation lithography . 8 3 EUV lithography 11 3.1 Introduction . 11 3.2 Multilayer optics . 11 3.3 A brief history of EUV lithography . 13 3.4 Overview of an EUV-lithograpy stepper . 14 3.5 Main challenges for EUV lithography . 15 3.6 The wafer level - the resist . 15 3.7 The projection optics . 16 3.8 The mask . 16 3.9 The collector/illuminator . 17 3.10 Contamination issues . 21 4 EUV sources 23 4.1 Introduction . 23 4.2 Gas-discharge plasma . 24 v vi CONTENTS 4.3 Laser plasma . 25 4.4 Synchrotron radiation . 25 4.5 Other sources . 28 4.6 Source-generated contamination . 28 4.7 Debris mitigation . 29 5 Laser plasma 31 5.1 Plasma physics . 31 5.2 Choice of target material . 32 5.3 Target geometry . 33 6 Liquid-xenon-jet laser plasma 37 6.1 Introduction . 37 6.2 Liquid-xenon-jet operation . 39 6.3 Laser-plasma operation . 40 6.4 A suitable source for EUV lithography? . 41 7 Summary of the papers 43 Acknowledgments 45 Bibliography 47 List of papers Paper 1 B. A. M. Hansson, L. Rymell, M. Berglund, and H. M. Hertz, “A Liquid- Xenon-Jet Laser-Plasma X-Ray and EUV Source”, Microel. Engin. 53, 667– 670 (2000). Paper 2 O. Hemberg, B. A. M. Hansson, M. Berglund and H. M. Hertz, “Stability of droplet-target laser-plasma soft x-ray sources”, J. Appl. Phys. 88, 5421–5425 (2000). Paper 3 B. A. M. Hansson, L. Rymell, M. Berglund, O. Hemberg, E. Janin, J. Thore- sen, and H. M. Hertz, “Liquid-Xenon-Jet Laser-Plasma Source for EUV Lithog- raphy”, SPIE 4506, 1–8 (2001). Paper 4 B. A. M. Hansson, M. Berglund, O. Hemberg, and H. M. Hertz, “Stabi- lization of liquefied-inert-gas jets for laser-plasma generation”, submitted to J. Appl. Phys. Paper 5 B. A. M. Hansson, S. Mosesson, and H. M. Hertz, “Improved emission unifor- mity from a liquid-jet laser-plasma EUV source”, submitted to Appl. Opt. Paper 6 P. A. C. Jansson, B. A. M. Hansson, O. Hemberg, M. Otendal, A. Holm- berg, J. de Groot, and H. M. Hertz, “Liquid-metal-jet laser-plasma extreme ultraviolet generation”, submitted to Appl. Phys. Lett. Paper 7 B. A. M. Hansson, O. Hemberg, H. M. Hertz, M. Berglund, B. Jacobsson, E. Janin, S. Mosesson, L. Rymell, J. Thoresen, and M. Wilner, “Characteriza- tion of a liquid-xenon-jet laser-plasma EUV source”, submitted to Rev. Sci. In- strum. vii Other publications The following papers and patents are related to the work in the thesis but have not been included in this thesis. Papers ² L. Rymell, M. Berglund, B. A. M. Hansson, and H. M. Hertz,"X-ray and EUV laser-plasma sources based on cryogenic liquid-jettarget", Proc. SPIE 3676, 421 (1999). ² H. M. Hertz, B. A. M. Hansson, M. Berglund, and L. Rymell,"Liquid-jet tar- get laser-plasma sources for EUV and x-ray lithography", Proc. SPIE 3767, 2 (1999) (invited). ² B. A. M. Hansson, M. Berglund, O. Hemberg, and H. M. Hertz, “Xenon liquid-jet laser-plasma source for EUV lithography”, Proc. SPIE 3997, 729 (2000). ² O. Hemberg, B. A. M. Hansson, M. Berglund, and H. M. Hertz, "Drift analysis and stabilization of laser-plasma droplet-target system", Proc. SPIE 4144, 38 (2000). ² H. M. Hertz, M. Berglund, B. A. M. Hansson, O. Hemberg, and G. A. Jo- hansson, "Liquid-jet laser-plasma source for microscopy and lithography", J. Phys. IV France 11, 389 (2001) (invited). ² B. A. M. Hansson, L. Rymell, M. Berglund, O. Hemberg, E. Janin, S. Moses- son, J. Thoresen, and H. M. Hertz, "Status of the Liquid-Xenon-Jet Laser- Plasma Source for EUV Lithography", Proc. SPIE 4688, 102 (2002) Patent and patent application ² Hans M. Hertz, Oscar Hemberg, Lars Rymell, Magnus Berglund ,Björn A. M. Hansson, "Method and apparatus for generating x-ray or EUV radiation", ix x OTHER PUBLICATIONS Swedish patent SE 520 087 (2003). Published international patent application WO 02/32197. ² European Patent Application No. EP 1 365 635 List of acronyms BW Bandwidth CoO Cost of Ownership CD Critical Dimension CE Conversion Efficiency CW continuous wave DUV Deep Ultraviolet EPL electron projection lithography ETS Engineering Test Stand EUV Extreme Ultraviolet EUV LLC Extreme Ultraviolet Limited Liability Company EUVL Extreme Ultraviolet Lithography FCII Flying Circus II FEL Free Electron Laser HCT Hollow-Cathode Triggered gas discharge IC Integrated Circuit IF Intermediate Focus ITRS International Technology Roadmap for Semiconductors IR Infrared LWR Line Width Roughness MET Micro Exposure Tool NA Numerical Aperture NGL Next Generation Lithography OPC Optical-Proximity Correction PSM Phase-Shifting Masks PXL Proximity X-ray Lithography SCALPEL Scattering with Angular Limitation in Projection Electron Lithography sr steradian TBD To Be Determined UV Ultraviolet VNL Virtual National Laboratory VUV Vacuum ultraviolet XPS X-ray Photoelectron Spectroscopy xi One Introduction 1.1 Background The work presented in this thesis is part of the development of laser-plasma sources for extreme-ultraviolet (EUV) radiation that takes place at the Royal Institute of Technology and also took place at the former company Innolite AB. The purpose of the work has been to develop laser-plasma sources and to investigate their ap- plicability for EUV lithography (EUVL). EUVL may be the main lithographic choice for semiconductor production to- wards the end of this decade and the beginning of next. A major problem, though, is that no EUV source is available today that meets the requirements for a production- scale EUVL stepper. In particular, no source has been able to sustain the high average powers needed or prove capability to do so. Furthermore, no source has shown its ability to operate at the required power for long times without degrading the fragile optical components in its vicinity. However, laser-plasma sources based on liquid jets or liquid droplet targets have certain features such as the ability to use a liquefied inert gas as target material, and the ability to generate the plasma far from any source hardware, that indicates the possibility to meet the requirements of EUVL. Therefore, the work described in this thesis has mainly been to develop liquid jet/droplet laser plasma sources and to investigate and improve their performance from a system’s point of view for applicability in EUVL.
Recommended publications
  • Extreme Ultraviolet Source Based on Microwave Discharge Produced Plasma Using Cavity Resonator
    D2-PMo-1 APPC12 The 12th Asia Pacific Physics Conference Extreme Ultraviolet Source based on microwave discharge produced plasma using cavity resonator S. Tashima, M. Ohnishi, H. Osawa, W. Hugrass a Department of Electrical and Electronic Engineering, Faculty of Engineering Science, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan aSchool of Computing and Information Systems, University of Tasmania, Locked Bag 1359, Launceston, Tasmania 7250, Australia [email protected] Extreme ultra violet (EUV) lithography is a leading technology for the production of the next-generation chips with small features. The 13.5-nm EUV radiation can be obtained using either discharge-produced plasma (DPP) or laser-produced plasma (LPP) sources. Because the EUV radiation is strongly absorbed by all known materials, the entire EUV scanner system must be in a vacuum environment. The debris and the tin vapor generated in some EUV sources may cause contamination of the EUV mirrors and the silicon wafers. The microwave discharge produced plasma (MDPP) source invented at Kansai University does not produce debris because it is electrode-less and the working gas is Xe.. Figure 1 shows the photo of MDPP. The microwave frequency is 2.45 GHz, the maximum power (Prf ) is 6 kW and the cavity mode is TM110. The Xe gas is fed in a glass tube with inner diameter 3 mm. The EUV radiation is measured using a calorie meter and EUV spectroscopy. The preliminary experiments show that the Figure 1 The system of microwave discharge produced plasma system MDPP produces pulsed EUV radiation of 10 W/4π str.
    [Show full text]
  • Extreme-Ultraviolet Frequency Combs for Precision Metrology and Attosecond Science
    REVIEW ARTICLE https://doi.org/10.1038/s41566-020-00741-3 Extreme-ultraviolet frequency combs for precision metrology and attosecond science Ioachim Pupeza 1,2 ✉ , Chuankun Zhang3,4, Maximilian Högner 1 and Jun Ye 3,4 ✉ Femtosecond mode-locked lasers producing visible/infrared frequency combs have steadily advanced our understanding of fundamental processes in nature. For example, optical clocks employ frequency-comb techniques for the most precise measure- ments of time, permitting the search for minuscule drifts of natural constants. Furthermore, the generation of extreme-ultraviolet attosecond bursts synchronized to the electric field of visible/infrared femtosecond pulses affords real-time measurements of electron dynamics in matter. Cavity-enhanced high-order harmonic generation sources uniquely combine broadband vacuum- and extreme-ultraviolet spectral coverage with multimegahertz pulse repetition rates and coherence properties akin to those of frequency combs. Here we review the coming of age of this technology and its recent applications and prospects, including precision frequency-comb spectroscopy of electronic and potentially nuclear transitions, and low-space-charge attosecond-temporal-resolution photoelectron spectroscopy with nearly 100% temporal detection duty cycle. he control over broadband visible/near-infrared (VIS/NIR) ωN = ω0 +Nωr. Here ωr = 2π/Tr and ω0 are two frequencies in the electromagnetic waves, such as uniquely enabled by laser radiofrequency domain, corresponding to the inverse round-trip Tarchitectures employing mode-locked oscillators, lies at the time Tr of the optical pulse inside the mode-locked oscillator and heart of most advanced optical metrologies. The temporal inter- to an overall comb-offset frequency, respectively, and N is an play between gain, loss, dispersion and nonlinear propagation in integer.
    [Show full text]
  • China's Progress in Semiconductor Manufacturing Equipment
    MARCH 2021 China’s Progress in Semiconductor Manufacturing Equipment Accelerants and Policy Implications CSET Policy Brief AUTHORS Will Hunt Saif M. Khan Dahlia Peterson Executive Summary China has a chip problem. It depends entirely on the United States and U.S. allies for access to advanced commercial semiconductors, which underpin all modern technologies, from smartphones to fighter jets to artificial intelligence. China’s current chip dependence allows the United States and its allies to control the export of advanced chips to Chinese state and private actors whose activities threaten human rights and international security. Chip dependence is also expensive: China currently depends on imports for most of the chips it consumes. China has therefore prioritized indigenizing advanced semiconductor manufacturing equipment (SME), which chip factories require to make leading-edge chips. But indigenizing advanced SME will be hard since Chinese firms have serious weaknesses in almost all SME sub-sectors, especially photolithography, metrology, and inspection. Meanwhile, the top global SME firms—based in the United States, Japan, and the Netherlands—enjoy wide moats of intellectual property and world- class teams of engineers, making it exceptionally difficult for newcomers to the SME industry to catch up to the leading edge. But for a country with China’s resources and political will, catching up in SME is not impossible. Whether China manages to close this gap will depend on its access to five technological accelerants: 1. Equipment components. Building advanced SME often requires access to a range of complex components, which SME firms often buy from third party suppliers and then assemble into finished SME.
    [Show full text]
  • Annual Report 2004
    Annual Report 2004 Annual Report 2004 Contents 4 About ASML 5 ASML Corporate Achievements 2004 7 Message to Our Shareholders 10 Report of the Supervisory Board 17 Corporate Governance 34 Information and Investor Relations 35 ASML Worldwide Contact Information 37 Form 20-F In this report the expression “ASML” is sometimes used for convenience in contexts where reference is made to ASML Holding N.V. and/or any of its subsidiaries in general. The expression is also used where no useful purpose is served by identifying the particular company or companies. “Safe Harbor” Statement under the U.S. Private Securities Litigation Reform Act of 1995: the matters discussed in this document may include forward-looking statements that are subject to risks and uncertainties including, but not limited to, economic conditions, product demand and semiconductor equipment industry capacity, worldwide demand and manufacturing capacity utilization for semiconductors (the principal product of our customer base), competitive products and pricing, manufacturing efficiencies, new product development, ability to enforce patents, the outcome of intellectual property litigation, availability of raw materials and critical manufacturing equipment, trade environment, and other risks indicated in ASML’s Annual Report on Form 20-F and other filings with the U.S. Securities and Exchange Commission. © 2005, ASML Holding N.V. All Rights Reserved About ASML ASML is the world’s leading provider of lithography advanced scanners, enabling the delivery of complete systems for the semiconductor industry, manufacturing and integrated mask design to wafer imaging solutions. complex machines critical to the production of integrated circuits or chips. ASML Optics provides precision optical modules for the PAS 5500 and TWINSCAN lithography systems.
    [Show full text]
  • Patent Dispute Settlement; Financial Results Forecast Revision
    September 29, 2004 Patent Dispute Settlement; Financial Results Forecast Revision On September 28, 2004 (Japan time), Nikon Corporation (Nikon), ASML Holding N.V. (ASML) and Carl Zeiss SMT AG (SMT) signed a Memorandum of Understanding which provides for a comprehensive settlement of legal proceedings and cross- license of patents between Nikon, ASML and SMT. Accordingly, we have revised the forecast of Financial Results for the Year ending March2005 (April 1, 2004 – March 31, 2005) that was issued on May 10, 2004 (refer to item 4 in this document for a detailed breakdown). 1. Details regarding disputes (prior to settlement) The major events in the disputes between Nikon (and subsidiaries) and ASML (and subsidiaries/affiliates) are as outlined below. On December 21, 2001, Nikon filed a complaint against ASML with the U.S. International Trade Commission (ITC) requesting an exclusion order to prevent any further importation by ASML of infringing stepper and scanner equipment (used in manufacture of semiconductor devices) in the U.S. Since the ITC denied Nikon’s request, Nikon appealed to the Court of Appeals for the Federal Circuit (CAFC) on May 12, 2003. Nikon also pursued patent infringement cases against ASML with the Federal District Court for the Northern District of California (NDCA), with the Tokyo District Court and in Korea as well. As a result of several settlement discussions, Nikon basically agreed to settle the case since it concluded that its goal has been accomplished in principle. The NDCA allowed SMT to join in the case, and therefore, they are party to the Memorandum of Understanding.
    [Show full text]
  • Maskless Lithography Using Silicon Oxide Etch- Stop Layer Induced by Megahertz Repetition Femtosecond Laser Pulses
    Maskless lithography using silicon oxide etch- stop layer induced by megahertz repetition femtosecond laser pulses Amirkianoosh Kiani,1 Krishnan Venkatakrishnan,1 Bo Tan,2,* and Venkat Venkataramanan3 1Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada 2Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada 3Institute for Optical Sciences, University of Toronto, 60, St. George Street, Suite 331, Toronto, Ontario M5S 1A7, Canada *[email protected] Abstract: In this study we report a new method for maskless lithography fabrication process by a combination of direct silicon oxide etch-stop layer patterning and wet alkaline etching. A thin layer of etch-stop silicon oxide of predetermined pattern was first generated by irradiation with high repetition (MHz) ultrafast (femtosecond) laser pulses in air and at atmospheric pressure. The induced thin layer of silicon oxide is used as an etch stop during etching process in alkaline etchants such as KOH. Our proposed method has the potential to enable low-cost, flexible, high quality patterning for a wide variety of application in the field of micro- and nanotechnology, this technique can be leading to a promising solution for maskless lithography technique. A Scanning Electron Microscope (SEM), optical microscopy, Micro-Raman, Energy Dispersive X-ray (EDX) and X- ray diffraction spectroscopy were used to analyze the silicon oxide layer induced by laser pulses. ©2011 Optical Society of America OCIS codes: (220.3740) Lithography; (220.4000) Microstructure fabrication; (320.7090) Ultrafast lasers; (350.3850) Materials processing; (350.5340) Photothermal effects. References and links 1.
    [Show full text]
  • Maskless Laser-Write Lithography of A-Si:H TFT Passive Pixel Sensor for Hemispherical Imager By
    Maskless Laser-Write Lithography of a-Si:H TFT Passive Pixel Sensor for Hemispherical Imager by Geonwook Yoo A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Electrical Engineering) in The University of Michigan 2011 Doctoral Committee: Professor Jerzy Kanicki, Chair Professor Peter F. Green Professor Kensall D. Wise Associate Professor Jamie D. Phillips © Geonwook Yoo 2011 Acknowledgements I sincerely appreciate Prof. Jerzy Kanicki, my research advisor and doctoral committee chair, for his support and guidance throughout my graduate study. It was a great and precious opportunity for me to work with him on this exciting project. I am deeply grateful for my doctoral committee members, Prof. Kensall D. Wise, Prof. Peter F. Green, and Prof. Jamie D. Phillips for their help in completing my thesis. I also truly thank Daniela Radtke at Fraunhofer Institute for Applied Optics and Precision Engineering in Germany, Tae-Kyung Won at AKT America, Inc., Sandro Tedde at Siemens AG TC, and Werner Salewski at Heidelberg Instrument. A large portion of the success of this work is attributed to their collaboration and advice. My special thanks belong to Daniela for her help on laser-write lithography. I express my gratitude to all LNF staffs, especially to Brian VanDerElzen. I thank my current and previous group members: Gwanghyeon Baek, Dr. Hojin Lee, Dr. Alex Kuo, Dr. Tze-ching Fung, Dr. Charlene Chen, and Dennis Feng. It was their support and friendship that helped me to get through the course of graduate study. In addition I am very grateful to all my seniors and friends both in U.S and Korea for their belief and support.
    [Show full text]
  • A Theoretical Investigation
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 September 2019 doi:10.20944/preprints201909.0069.v1 ON THE EXTENSION OF COMPTON’S EXPERIMENT:A THEORETICAL INVESTIGATION Amal Pushp Fellow, The Royal Astro. Soc. Burlington House, Piccadilly London W1J 0BQ [email protected] September 6, 2019 ABSTRACT With new discoveries and insights in atomic and optical physics, the field of spectroscopy is advancing to a new level with applications ranging from material science to astronomy. We here propose a theoretical description of a potential new phenomenon resulting from the extension of Compton’s experiment on the scattering of high energy photons through atomic electrons. How the proposed phenomenon can be tested experimentally is discussed in the paper as well.∗ ∗The Idea of the paper is to be presented as part of an International Conference talk (ICECMP-2019) © 2019 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 September 2019 doi:10.20944/preprints201909.0069.v1 SEPTEMBER 6, 2019 1 Introduction Therefore, we get, In 1923, A.H. Compton made a discovery which showed h h h the remarkable transformation that X rays undergo when δλ = ; δλ = ; :::::; δλ = 1 m c 2 m c β m c they are scattered by atoms [1, 2]. Some 5 years later, Sir e e e CV Raman, an Indian physicist at the Indian Association or for the Cultivation of Science (IACS), discovered along δλ = δλ1 + δλ2 + ::: + δλβ (4) with his students, that this scattering involving the change in wavelength of the radiation is also possible for visible or light [3].
    [Show full text]
  • Maskless Exposure Device for Photolithography
    International Master’s Degree Programme In Biomedical Engineering DHANESH KATTIPPARAMBIL RAJAN MASKLESS EXPOSURE DEVICE FOR PHOTOLITHOGRAPHY MASTER OF SCIENCE THESIS Examiners: Professor Jukka Lekkala, Professor Jari Hyttinen Subject approved by the Faculty Council on 5th March 2008 by the Faculty of Science and Environmental Engineering II ABSTRACT TAMPERE UNIVERSITY OF TECHNOLOGY International Master’s Degree Programme in Biomedical Engineering KATTIPPARAMBIL RAJAN, DHANESH: Maskless Exposure Device for Photolithography Master of Science Thesis, 96 Pages. May 2008 Major: Medical Physics Examiners: Professor Jukka Lekkala, Professor Jari Hyttinen Keywords: lithography, maskless lithography, MEMS production Photolithography plays a consequential role in transferring patterns from photomasks to substrates and thereby is an important tool in semiconductor, IC, MEMS and many microstructures’ production. The photomasks are preprinted prior to the photolithographic procedure with certain layouts, and these layouts are transferred to surfaces of materials like silicon during the lithography and finally these surfaces undergo chemical processes by which three dimensional micro features are formed. Therefore photomasks containing specific layouts are the inevitable components in the entire procedure, but unfortunately those are expensive in its nature together with time consuming production formalities. Some of the successful attempts to remove these difficulties are cost effective photomasks and maskless lithography. A system named ‘Maskless Exposure Device’ (MED) is introduced here as my thesis related research and it is intended to replace the expensive photomasks. The device transfers images and layouts created on a computer, easily and effortlessly to different substrate surfaces and can be repeatedly used in photolithography by introducing new drawings on the computer screen and thereby, MED is nothing but a maskless lithographic technique.
    [Show full text]
  • New Approaches in Optical Lithography Technology for Subwavelength Resolution
    Rochester Institute of Technology RIT Scholar Works Theses 5-2005 New approaches in optical lithography technology for subwavelength resolution Hoyoung Kang Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Kang, Hoyoung, "New approaches in optical lithography technology for subwavelength resolution" (2005). Thesis. Rochester Institute of Technology. Accessed from This Dissertation is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. NEW APPROACHES IN OPTICAL LITHOGRAPHY TECHNOLOGY FOR SUBW A VELENGTH RESOLUTION by Hoyoung Kang M.S. Hanyang University (1987) A dissertation submitted in partial fulfillment of the requirements for the degree of Ph.D. in the Chester F. Carson Center for Imaging Science of the College of Science Rochester Institute of Technology May 2005 Author HoyoungKang Hoyoung Kang . Accepted by CHESTER F. CARLSON CENTER FOR IMAGING SCIENCE COLLEGE OF SCIENCE ROCHESTER INSTITUTE OF TECHNOLOGY ROCHESTER, NEW YORK CERTIFICATE OF APPROVAL Ph. D. DEGREE DISSERTATION The Ph.D. Degree Dissertation of Hoyoung Kang has been examined and approved by the dissertation committee as satisfactory for the dissertation requirement for the Ph.D. degree in Imaging Science Bruce W. Smith Dr. Bruce W. Smith, Thesis Advisor Zoran Ninkov Dr. Zoran Ninkov M. Kotlarchyk Dr. Michael Kotlarchyk Paul Michaloski Paul Michaloski, Date Thesis/Dissertation Author Permission Statement Title of thesis or dissertation: ________________---;- ____ N eu.l I'>.pproecb 1'0 OptIc 0..0 (!'t-b03k=A.phJ Te.cb'Y>C)lo~ y Nrumeofauthor: ____H_D~y~o_U_~ __ ~~ __~~~~~~~~ ___________~ ____ Degree: ph.
    [Show full text]
  • High-Throughput Plasmonic Nanolithography
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title High-Throughput Plasmonic Nanolithography Permalink https://escholarship.org/uc/item/93c7w34j Author Pan, Liang Publication Date 2010 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California High-Throughput Plasmonic Nanolithography by Liang Pan A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering-Mechanical Engineering in the Graduate Division of the University of California, Berkeley Committee in charge: Professor David B. Bogy, Co-Chair Professor Xiang Zhang, Co-Chair Professor Roberto Horowitz Professor Ming Wu Fall 2010 High-Throughput Plasmonic Nanolithography ©2010 by Liang Pan Abstract High-Throughput Plasmonic Nanolithography by Liang Pan Doctor of Philosophy in Engineering-Mechanical Engineering University of California, Berkeley Professor David B. Bogy, Co-Chair Professor Xiang Zhang, Co-Chair The conventional projection-type photolithography approach to nanoscale manufacturing is facing possibly insurmountable challenges, especially to invent novel technical solutions that remain economical for the next generation of semi-conductor integrated circuits. Although extreme ultra violet (EUV) lithography with the next generation photo-masks and 193-nm immersion lithography with double patterning are expected to deliver 22 nm and smaller nodes, it still cannot effectively address the reliability and cost issues required for mass production. Maskless nanolithography is a potentially agile and cost effective approach, but most of the current solutions have throughputs that are too low for manufacturing purposes. This dissertation reports a new low-cost high-throughput approach to maskless nanolithography that uses an array of plasmonic lenses (PL) that "fly" above the rotating surface to be patterned, concentrating short wavelength surface plasmons into sub-100 nm spots.
    [Show full text]
  • 2020 EUVL Workshop – Abstracts
    2020 EUVL Workshop June 7-11, 2020 Held Online Workshop Abstracts 2020 EUVL Workshop 2020 EUVL Workshop Sponsors Organized by Vivek Bakshi (EUV Litho, Inc.), Chair Patrick Naulleau (CXRO), Co-Chair www.euvlitho.com 1 2020 EUVL Workshop Contents Abstracts by Paper Numbers ________________________________________ 4 www.euvlitho.com 2 2020 EUVL Workshop Abstracts (Listed by Paper number) www.euvlitho.com 3 2020 EUVL Workshop P1 Lithographic Performance of The First Entirely Dry Process for EUV Lithography Mohammed Alvi1, Dictus Dries1, Richard Gottscho1, Kevin Gu1, Benjamin Kam1, Siva Kanakasabapathy1, Da Li1, Jeffrey Marks1, Katie Nardi1, Thad Nicholson1, Yang Pan1, Daniel Peters1, Al Schoepp1, Nader Shamma1, Easwar Srinivasan1, Samantha Tan1, Clint Thomas1, Boris Volosskiy1, Tim Weidman1*, Rich Wise1, William Wu1, Jun Xue1, Jengyi Yu1, Christophe Fouqu2, Rolf Custers2, Jara Garcia Santaclara2, Michael Kubis2, Gijsbert Rispens2, Lidia van Lent-Protasova2, Mircea Dusa3, Patrick Jaenen3, and Abhinav Pathak3 1LAM Reserach 2ASML 3IMEC The lithographic performance of a new entirely dry EUV photoresist platform will be described. Photoresist films are applied using reactive organometallic precursors in a vapor phase process that provides uniform, homogeneous films stable to air and visible light. EUV exposure and subsequent bake steps induce crosslinking and densification, while unexposed areas remain hydrophobic and freely soluble in common organic solvents. This has facilitated the extensive characterization of lithographic patterning performance using NXE-3400 tools at both IMEC and ASML – initially employing conventional (solvent based) negative tone development (NTD). In contrast to typical spin-on processes, dry deposited film thickness appears insensitive to substrate surface chemistry, making applied film thickness easily controlled/proportional to deposition time.
    [Show full text]