Reef Fish Dispersal in the Hawaiian Archipelago: Comparative Phylogeography of Three Endemic Damselfishes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phylogeny of the Damselfishes (Pomacentridae) and Patterns of Asymmetrical Diversification in Body Size and Feeding Ecology
bioRxiv preprint doi: https://doi.org/10.1101/2021.02.07.430149; this version posted February 8, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Phylogeny of the damselfishes (Pomacentridae) and patterns of asymmetrical diversification in body size and feeding ecology Charlene L. McCord a, W. James Cooper b, Chloe M. Nash c, d & Mark W. Westneat c, d a California State University Dominguez Hills, College of Natural and Behavioral Sciences, 1000 E. Victoria Street, Carson, CA 90747 b Western Washington University, Department of Biology and Program in Marine and Coastal Science, 516 High Street, Bellingham, WA 98225 c University of Chicago, Department of Organismal Biology and Anatomy, and Committee on Evolutionary Biology, 1027 E. 57th St, Chicago IL, 60637, USA d Field Museum of Natural History, Division of Fishes, 1400 S. Lake Shore Dr., Chicago, IL 60605 Corresponding author: Mark W. Westneat [email protected] Journal: PLoS One Keywords: Pomacentridae, phylogenetics, body size, diversification, evolution, ecotype Abstract The damselfishes (family Pomacentridae) inhabit near-shore communities in tropical and temperature oceans as one of the major lineages with ecological and economic importance for coral reef fish assemblages. Our understanding of their evolutionary ecology, morphology and function has often been advanced by increasingly detailed and accurate molecular phylogenies. Here we present the next stage of multi-locus, molecular phylogenetics for the group based on analysis of 12 nuclear and mitochondrial gene sequences from 330 of the 422 damselfish species. -
Research Article Reef Fish Dispersal in the Hawaiian Archipelago: Comparative Phylogeography of Three Endemic Damselfishes
Hindawi Publishing Corporation Journal of Marine Biology Volume 2016, Article ID 3251814, 17 pages http://dx.doi.org/10.1155/2016/3251814 Research Article Reef Fish Dispersal in the Hawaiian Archipelago: Comparative Phylogeography of Three Endemic Damselfishes Kimberly A. Tenggardjaja,1 Brian W. Bowen,2 and Giacomo Bernardi1 1 Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 100 Shafer Road, Santa Cruz, CA 95060, USA 2Hawaii Institute of Marine Biology, University of Hawaii, P.O. Box 1346, Kaneohe, HI 96744, USA Correspondence should be addressed to Kimberly A. Tenggardjaja; [email protected] Received 2November 2015; Accepted 8March 2016 Academic Editor: Yehuda Benayahu Copyright © 2016 Kimberly A. Tenggardjaja et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Endemic marine species at remote oceanic islands provide opportunities to investigate the proposed correlation between range size and dispersal ability. Because these species have restricted geographic ranges, it is assumed that they have limited dispersal ability, which consequently would be refected in high population genetic structure. To assess this relationship at a small scale and to determine if it may be related to specifc reef fsh families, here we employ a phylogeographic survey of three endemic Hawaiian damselfshes: Abudefduf abdominalis, Chromis ovalis,andChromis verater. Data from mitochondrial markers cytochrome b and control region revealed low but signifcant genetic structure in all three species. Combining these results with data from a previous study on Dascyllus albisella and Stegastes marginatus,allfveendemicdamselfshspeciessurveyedtodateshowevidence of genetic structure, in contrast with other widespread reef fsh species that lack structure within the Hawaiian Archipelago. -
Epinephelus Coioides) from Northern Oman
490 NOAA First U.S. Commissioner National Marine Fishery Bulletin established 1881 of Fisheries and founder Fisheries Service of Fishery Bulletin Abstract—Age, growth, and monthly reproductive characteristics were Demographic profile of an overexploited determined for the orange-spotted serranid, the orange-spotted grouper grouper (Epinephelus coioides) from northern Oman. This species is char- (Epinephelus coioides), from northern Oman acterized by a prevalence of females (1–11 years old), and males make up 1,2 6.5% of the total sample. Growth pa- Jennifer L. McIlwain rameters indicate a typical pattern Aisha Ambu-ali1 for groupers with a low growth co- Nasr Al Jardani1 efficient (K=0.135). The trajectory of 3 the von Bertalanffy growth function Andrew. R. Halford was almost linear with no evidence Hamed S. Al-Oufi4 of asymptotic growth. Estimates of David A. Feary (contact author)5 mortality revealed a low natural mortality of 0.14/year but a high Email address for contact author: [email protected] fishing mortality of 0.59/year. More alarming was the high rate of exploi- 1 Department of Marine Science and Fisheries 4 tation (0.81/year), considered unsus- Ministry of Agriculture and Fisheries College of Agricultural and Marine Sciences tainable for a slow-growing grouper. P.O. Box 1700, Muscat 111 Sultan Qaboos University The population off southern Oman Sultanate of Oman P.O. Box 34, Al-Khod 123 is diandric protogynous, and sex 5 School of Life Sciences Sultanate of Oman change takes place between 449 and University of Nottingham 748 mm in total length (TL) or over 2 Department of Environment and Agriculture University Park a period of 4–8 years. -
Use of Productivity and Susceptibility Indices to Determine the Vulnerability of a Stock: with Example Applications to Six U.S
Use of productivity and susceptibility indices to determine the vulnerability of a stock: with example applications to six U.S. fisheries. Wesley S. Patrick1, Paul Spencer2, Olav Ormseth2, Jason Cope3, John Field4, Donald Kobayashi5, Todd Gedamke6, Enric Cortés7, Keith Bigelow5, William Overholtz8, Jason Link8, and Peter Lawson9. 1NOAA, National Marine Fisheries Service, Office of Sustainable Fisheries, 1315 East- West Highway, Silver Spring, MD 20910; 2 NOAA, National Marine Fisheries Service, Alaska Fisheries Science Center, 7600 Sand Point Way, Seattle, WA 98115; 3NOAA, National Marine Fisheries Service, Northwest Fisheries Science Center, 2725 Montlake Boulevard East, Seattle, WA 98112; 4NOAA, National Marine Fisheries Service, Southwest Fisheries Science Center, 110 Shaffer Road, Santa Cruz, CA 95060; 5NOAA, National Marine Fisheries Service, Pacific Islands Fisheries Science Center, 2570 Dole Street, Honolulu, HI 96822; 6NOAA, National Marine Fisheries Service, Southeast Fisheries Science Center, 75 Virginia Beach Drive, Miami, FL 33149; 7NOAA, National Marine Fisheries Service, Southeast Fisheries Science Center, 3500 Delwood Beach Road, Panama City, FL 32408; 8NOAA, National Marine Fisheries Service, Northeast Fisheries Science Center, 166 Water Street, Woods Hole, MA 02543; 9NOAA, National Marine Fisheries Service, Northwest Fisheries Science Center, 2030 South Marine Science Drive, Newport, OR 97365. CORRESPONDING AUTHOR: Wesley S. Patrick, NOAA, National Marine Fisheries Service, Office of Sustainable Fisheries, 1315 East-West -
Genetic Analyses and Simulations of Larval Dispersal Reveal Distinct
Hindawi Publishing Corporation Journal of Marine Biology Volume 2011, Article ID 765353, 11 pages doi:10.1155/2011/765353 Research Article Genetic Analyses and Simulations of Larval Dispersal Reveal Distinct Populations and Directional Connectivity across the Range of the Hawaiian Grouper (Epinephelus quernus) Malia Ana J. Rivera,1 Kimberly R. Andrews,1 Donald R. Kobayashi,2 Johanna L. K. Wren,1, 3 Christopher Kelley,4 George K. Roderick,5 and Robert J. Toonen1 1 Hawai‘i Institute of Marine Biology, University of Hawai‘i at Manoa,¯ P.O. Box 1346, Kane‘ohe,¯ HI 96744, USA 2 Pacific Islands Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2570 Dole Street, Honolulu, HI 96822, USA 3 Department of Oceanography, University of Hawai‘i at Manoa,¯ 1000 Pope Road, Honolulu, HI 96822, USA 4 Hawai‘i Undersea Research Laboratory, University of Hawai‘i at Manoa,¯ 1000 Pope Road, MSB 303, Honolulu, HI 96822, USA 5 Department of Environmental Science, Policy and Management, University of California, 130 Mulford Hall, MC 3114, Berkeley, CA 94708-3114, USA CorrespondenceshouldbeaddressedtoM.A.J.Rivera,[email protected] Received 16 July 2010; Accepted 27 September 2010 Academic Editor: Benjamin S. Halpern Copyright © 2011 Malia Ana J. Rivera et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Integration of ecological and genetic data to study patterns of biological connectivity can aid in ecosystem-based management. Here we investigated connectivity of the Hawaiian grouper Epinephelus quernus, a species of management concern within the Main Hawaiian Islands (MHI), by comparing genetic analyses with simulated larval dispersal patterns across the species range in the Hawaiian Archipelago and Johnston Atoll. -
Fishes Collected During the 2017 Marinegeo Assessment of Kāne
Journal of the Marine Fishes collected during the 2017 MarineGEO Biological Association of the ā ‘ ‘ ‘ United Kingdom assessment of K ne ohe Bay, O ahu, Hawai i 1 1 1,2 cambridge.org/mbi Lynne R. Parenti , Diane E. Pitassy , Zeehan Jaafar , Kirill Vinnikov3,4,5 , Niamh E. Redmond6 and Kathleen S. Cole1,3 1Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, PO Box 37012, MRC 159, Washington, DC 20013-7012, USA; 2Department of Biological Sciences, National University of Singapore, Original Article Singapore 117543, 14 Science Drive 4, Singapore; 3School of Life Sciences, University of Hawai‘iatMānoa, 2538 McCarthy Mall, Edmondson Hall 216, Honolulu, HI 96822, USA; 4Laboratory of Ecology and Evolutionary Biology of Cite this article: Parenti LR, Pitassy DE, Jaafar Aquatic Organisms, Far Eastern Federal University, 8 Sukhanova St., Vladivostok 690091, Russia; 5Laboratory of Z, Vinnikov K, Redmond NE, Cole KS (2020). 6 Fishes collected during the 2017 MarineGEO Genetics, National Scientific Center of Marine Biology, Vladivostok 690041, Russia and National Museum of assessment of Kāne‘ohe Bay, O‘ahu, Hawai‘i. Natural History, Smithsonian Institution DNA Barcode Network, Smithsonian Institution, PO Box 37012, MRC 183, Journal of the Marine Biological Association of Washington, DC 20013-7012, USA the United Kingdom 100,607–637. https:// doi.org/10.1017/S0025315420000417 Abstract Received: 6 January 2020 We report the results of a survey of the fishes of Kāne‘ohe Bay, O‘ahu, conducted in 2017 as Revised: 23 March 2020 part of the Smithsonian Institution MarineGEO Hawaii bioassessment. We recorded 109 spe- Accepted: 30 April 2020 cies in 43 families. -
Annotated Checklist of the Fish Species (Pisces) of La Réunion, Including a Red List of Threatened and Declining Species
Stuttgarter Beiträge zur Naturkunde A, Neue Serie 2: 1–168; Stuttgart, 30.IV.2009. 1 Annotated checklist of the fish species (Pisces) of La Réunion, including a Red List of threatened and declining species RONALD FR ICKE , THIE rr Y MULOCHAU , PA tr ICK DU R VILLE , PASCALE CHABANE T , Emm ANUEL TESSIE R & YVES LE T OU R NEU R Abstract An annotated checklist of the fish species of La Réunion (southwestern Indian Ocean) comprises a total of 984 species in 164 families (including 16 species which are not native). 65 species (plus 16 introduced) occur in fresh- water, with the Gobiidae as the largest freshwater fish family. 165 species (plus 16 introduced) live in transitional waters. In marine habitats, 965 species (plus two introduced) are found, with the Labridae, Serranidae and Gobiidae being the largest families; 56.7 % of these species live in shallow coral reefs, 33.7 % inside the fringing reef, 28.0 % in shallow rocky reefs, 16.8 % on sand bottoms, 14.0 % in deep reefs, 11.9 % on the reef flat, and 11.1 % in estuaries. 63 species are first records for Réunion. Zoogeographically, 65 % of the fish fauna have a widespread Indo-Pacific distribution, while only 2.6 % are Mascarene endemics, and 0.7 % Réunion endemics. The classification of the following species is changed in the present paper: Anguilla labiata (Peters, 1852) [pre- viously A. bengalensis labiata]; Microphis millepunctatus (Kaup, 1856) [previously M. brachyurus millepunctatus]; Epinephelus oceanicus (Lacepède, 1802) [previously E. fasciatus (non Forsskål in Niebuhr, 1775)]; Ostorhinchus fasciatus (White, 1790) [previously Apogon fasciatus]; Mulloidichthys auriflamma (Forsskål in Niebuhr, 1775) [previously Mulloidichthys vanicolensis (non Valenciennes in Cuvier & Valenciennes, 1831)]; Stegastes luteobrun- neus (Smith, 1960) [previously S. -
Deep Bottom ID
by par Lindsay Chapman, Aymeric Desurmont, Youngmi Choi, Lindsay Chapman, Aymeric Desurmont, Youngmi Choi, Pierre Boblin, William Sokimi and Steve Beverly Pierre Boblin, William Sokimi et Steve Beverly nzaid ii © Copyright Secretariat of the Pacific Community 2008 © Copyright Secrétariat général de la Communauté du Pacifique 2008 All rights for commercial / for profit reproduction or translation, in any Tous droits réservés de reproduction ou de traduction à des fins commer- form, reserved. SPC authorises the partial reproduction or translation of ciales/lucratives, sous quelque forme que ce soit. Le Secrétariat général de this material for scientific, educational or research purposes, provided SPC la Communauté du Pacifique autorise la reproduction ou la traduction par- and the source document are properly acknowledged. Permission to tielles de ce document à des fins scientifiques ou éducatives ou pour les reproduce the document and/or translate in whole, in any form, whether besoins de la recherche, à condition qu’il soit fait mention de la CPS et de for commercial / for profit or non-profit purposes, must be requested in la source. L’autorisation de la reproduction et/ou de la traduction intégrale writing. Original SPC artwork may not be altered or separately published ou partielle de ce document, sous quelque forme que ce soit, à des fins without permission. commerciales/lucratives ou à titre gratuit, doit être sollicitée au préalable par écrit. Il est interdit de modifier ou de publier séparément des Original text: English and French graphismes originaux de la CPS sans autorisation préalable. Texte original :anglais et français Secretariat of the Pacific Community Cataloguing-in-publication data Chapman, L. -
Epinephelus Marginatus and E. Morio
Begossi et al. Journal of Ethnobiology and Ethnomedicine (2019) 15:53 https://doi.org/10.1186/s13002-019-0331-2 RESEARCH Open Access Fishers and groupers (Epinephelus marginatus and E. morio) in the coast of Brazil: integrating information for conservation Alpina Begossi1,2,3* , Svetlana Salyvonchyk1,4, Branko Glamuzina1,5, Shirley Pacheco de Souza1,6, Priscila F. M. Lopes1,7, Regina H. G. Priolli1,2,3, Djalma Osmanir do Prado3, Milena Ramires1,3, Mariana Clauzet1,8, Cleverson Zapelini9, Daiana T. Schneider10, Luis T. Silva10 and Renato A. M. Silvano1,10 Abstract Background: Groupers are a vulnerable but economically important group of fish, especially for small-scale fisheries. We investigated catches and local ecological knowledge (LEK) of diet, habitat, and past fishing experiences. Methods: Landings, prices, interviews, and restaurants demand for two species, Epinephelus marginatus (dusky grouper) and Epinephelus morio (red grouper), were registered. Results: We visited 74 markets and 79 sites on the coast of Brazil in 2017–2018, and we interviewed 71 fishers: Bahia (NE), Rio de Janeiro and São Paulo (SE), and Santa Catarina (S). The landings sampled of dusky grouper (2016–2017) in Rio de Janeiro were: n = 222, size 38–109 cm, weight 1–24 kg, average 3.84 kg; in São Paulo, São Sebastião were: n =47, size 39–106 cm, weight 2–8 kg, average of 2.77 kg; and at Santos: n =80,26–120 cm, weight 0.36–15 kg, average 2.72 kg. Red grouper was observed in markets in the northeastern Brazil. We did not observe Epinephelus marginatus from Bahia northward; a maximum size of 200 cm was reported south of the Bahia, besides Rio de Janeiro and São Paulo coasts, 20 years ago (or longer) by 12 fishers. -
ASFIS ISSCAAP Fish List February 2007 Sorted on Scientific Name
ASFIS ISSCAAP Fish List Sorted on Scientific Name February 2007 Scientific name English Name French name Spanish Name Code Abalistes stellaris (Bloch & Schneider 1801) Starry triggerfish AJS Abbottina rivularis (Basilewsky 1855) Chinese false gudgeon ABB Ablabys binotatus (Peters 1855) Redskinfish ABW Ablennes hians (Valenciennes 1846) Flat needlefish Orphie plate Agujón sable BAF Aborichthys elongatus Hora 1921 ABE Abralia andamanika Goodrich 1898 BLK Abralia veranyi (Rüppell 1844) Verany's enope squid Encornet de Verany Enoploluria de Verany BLJ Abraliopsis pfefferi (Verany 1837) Pfeffer's enope squid Encornet de Pfeffer Enoploluria de Pfeffer BJF Abramis brama (Linnaeus 1758) Freshwater bream Brème d'eau douce Brema común FBM Abramis spp Freshwater breams nei Brèmes d'eau douce nca Bremas nep FBR Abramites eques (Steindachner 1878) ABQ Abudefduf luridus (Cuvier 1830) Canary damsel AUU Abudefduf saxatilis (Linnaeus 1758) Sergeant-major ABU Abyssobrotula galatheae Nielsen 1977 OAG Abyssocottus elochini Taliev 1955 AEZ Abythites lepidogenys (Smith & Radcliffe 1913) AHD Acanella spp Branched bamboo coral KQL Acanthacaris caeca (A. Milne Edwards 1881) Atlantic deep-sea lobster Langoustine arganelle Cigala de fondo NTK Acanthacaris tenuimana Bate 1888 Prickly deep-sea lobster Langoustine spinuleuse Cigala raspa NHI Acanthalburnus microlepis (De Filippi 1861) Blackbrow bleak AHL Acanthaphritis barbata (Okamura & Kishida 1963) NHT Acantharchus pomotis (Baird 1855) Mud sunfish AKP Acanthaxius caespitosa (Squires 1979) Deepwater mud lobster Langouste -
Spatial Patterns of Endemism in Shallow-Water Reef Fish Populations of the Northwestern Hawaiian Islands
MARINE ECOLOGY PROGRESS SERIES Vol. 271: 281–296, 2004 Published April 28 Mar Ecol Prog Ser Spatial patterns of endemism in shallow-water reef fish populations of the Northwestern Hawaiian Islands Edward E. DeMartini1,*, Alan M. Friedlander2 1NOAA Fisheries, Pacific Island Fisheries Science Center, 2570 Dole Street, Honolulu, Hawaii 96822-2396, USA 2NOAA, National Ocean Service, National Centers for Coastal Ocean Science — Biogeography Program, and The Oceanic Institute, Makapuu Point/41-202 Kalanianaole Highway, Waimanalo, Hawaii 96795, USA ABSTRACT: The spatial distribution and magnitude of endemism in shallow-water (<18 m) reef fishes of the 10 Northwestern Hawaiian Islands (NWHI) are described in terms of occurrence, and numerical and biomass densities, using a series of diver-observation surveys conducted during Sep- tember/October 2000, 2001, and 2002. Based on species-presence in our surveys, we found endemism to be equal (20.6% using all available data) for fishes in the NWHI and the Main Hawai- ian Islands (MHI; 20.9%). On average, percentage endemism was much higher based on the biomass (37%) and numerical densities (52%) of endemics, increased with latitude, and was especially pro- nounced at the 4 northernmost reefs that are the most ancient emergent geological features of the archipelago. Endemic reef fishes were appreciably smaller bodied than non-endemics within the NWHI. Median body size did not vary with latitude and longitude for either endemics or non- endemics, negating environmental effects. Reef fish populations at higher latitude reefs included larger proportions of young-of-year (YOY) recruits. YOY length frequencies did not differ for most species between northern and southern reefs, suggesting that a seasonal lag in spawning and recruitment at higher latitudes cannot explain the greater YOY densities observed there. -
A U K an Ha a H W I'i 'Imi Lo
_ A�u K��an�haPursuing new�a knowledgeH�w�i brings‘i bountiful‘imi rewards. lo�. Hawaiian phrase by Zepherin Kepelino Kahoali‘i Keauokalani from Kepelino's Traditions of Hawaii (Beckwith, Martha Wl, ed., Bernice P. PERMITTED ACTIVITIES Bishop Museum Bulletin 95, 1932). Front cover photo by Kaipo Kī‘aha, Polynesian Voyaging Society and ‘Ōiwi TV. Back cover photo by NOAA 2015 ANNUAL REPORT and Richard Pyle/Bishop Museum. Contents INTRODUCTION ............................................................................4 Research Expedition Finds Highest Known Rates of Endemism ................................................................................................... 28 Ua pa‘a nā inoa kahiko – Ancient Names Remembered .......................................................................... 6 Researchers Follow up on Major Coral Timeline of Protections ........................................................................................................................... 8 Bleaching Event in Papahānaumokuākea ......................................................................................... 30 MONUMENT PERMITTING PROGRAM ............................................. 10 Researchers Discover New Moth Species on Nihoa Island ............................................................................................................ 32 Overview .............................................................................................................................................. 10 Presidential Proclamation 8031 ...........................................................................................................