Mapping the Movement of Marine Fishes: Methods, Mechanisms, and Implications for Invasion Management
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
California Saltwater Sport Fishing Regulations
2017–2018 CALIFORNIA SALTWATER SPORT FISHING REGULATIONS For Ocean Sport Fishing in California Effective March 1, 2017 through February 28, 2018 13 2017–2018 CALIFORNIA SALTWATER SPORT FISHING REGULATIONS Groundfish Regulation Tables Contents What’s New for 2017? ............................................................. 4 24 License Information ................................................................ 5 Sport Fishing License Fees ..................................................... 8 Keeping Up With In-Season Groundfish Regulation Changes .... 11 Map of Groundfish Management Areas ...................................12 Summaries of Recreational Groundfish Regulations ..................13 General Provisions and Definitions ......................................... 20 General Ocean Fishing Regulations ��������������������������������������� 24 Fin Fish — General ................................................................ 24 General Ocean Fishing Fin Fish — Minimum Size Limits, Bag and Possession Limits, and Seasons ......................................................... 24 Fin Fish—Gear Restrictions ................................................... 33 Invertebrates ........................................................................ 34 34 Mollusks ............................................................................34 Crustaceans .......................................................................36 Non-commercial Use of Marine Plants .................................... 38 Marine Protected Areas and Other -
Assessing Species Diversity of Coral Triangle Artisanal Fisheries: a DNA Barcode Reference Library for the Shore Fishes Retailed at Ambon Harbor (Indonesia)
Received: 19 September 2019 | Revised: 30 January 2020 | Accepted: 3 February 2020 DOI: 10.1002/ece3.6128 ORIGINAL RESEARCH Assessing species diversity of Coral Triangle artisanal fisheries: A DNA barcode reference library for the shore fishes retailed at Ambon harbor (Indonesia) Gino Limmon1 | Erwan Delrieu-Trottin2,3 | Jesaya Patikawa1 | Frederik Rijoly1 | Hadi Dahruddin4 | Frédéric Busson2,5 | Dirk Steinke6 | Nicolas Hubert2 1Pusat Kemaritiman dan Kelautan, Universitas Pattimura (Maritime and Marine Abstract Science Center of Excellence), Ambon, The Coral Triangle (CT), a region spanning across Indonesia and Philippines, is home Indonesia to about 4,350 marine fish species and is among the world's most emblematic re- 2Institut de Recherche pour le Développement, UMR 226 ISEM (UM- gions in terms of conservation. Threatened by overfishing and oceans warming, the CNRS-IRD-EPHE), Montpellier, France CT fisheries have faced drastic declines over the last decades. Usually monitored 3Museum für Naturkunde, Leibniz-Institut für Evolutions-und Biodiversitätsforschung through a biomass-based approach, fisheries trends have rarely been characterized an der Humboldt-Universität zu Berlin, at the species level due to the high number of taxa involved and the difficulty to Berlin, Germany accurately and routinely identify individuals to the species level. Biomass, however, 4Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences is a poor proxy of species richness, and automated methods of species identifica- (LIPI), Cibinong, Indonesia tion are required to move beyond biomass-based approaches. Recent meta-analyses 5UMR 7208 BOREA (MNHN-CNRS-UPMC- have demonstrated that species richness peaks at intermediary levels of biomass. IRD-UCBN), Muséum National d’Histoire Naturelle, Paris, France Consequently, preserving biomass is not equal to preserving biodiversity. -
Reef Fish, Bolbometopon Muricatum, in a Remote Marine Reserve
Extraordinary Aggressive Behavior from the Giant Coral Reef Fish, Bolbometopon muricatum, in a Remote Marine Reserve Roldan C. Mun˜ oz1*, Brian J. Zgliczynski2, Joseph L. Laughlin3, Bradford Z. Teer1 1 National Marine Fisheries Service, Beaufort Laboratory, National Oceanic and Atmospheric Administration, Beaufort, North Carolina, United States of America, 2 Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, La Jolla, California, United States of America, 3 Mariculture Hawaii LLC, Ashland, Oregon, United States of America Abstract Human impacts to terrestrial and marine communities are widespread and typically begin with the local extirpation of large- bodied animals. In the marine environment, few pristine areas relatively free of human impact remain to provide baselines of ecosystem function and goals for restoration efforts. Recent comparisons of remote and/or protected coral reefs versus impacted sites suggest remote systems are dominated by apex predators, yet in these systems the ecological role of non- predatory, large-bodied, highly vulnerable species such as the giant bumphead parrotfish (Bolbometopon muricatum) has received less attention. Overfishing of Bolbometopon has lead to precipitous declines in population density and avoidance of humans throughout its range, contributing to its status as a candidate species under the U. S. Endangered Species Act and limiting opportunities to study unexploited populations. Here we show that extraordinary ecological processes, such as violent headbutting contests by the world’s largest parrotfish, can be revealed by studying unexploited ecosystems, such as the coral reefs of Wake Atoll where we studied an abundant population of Bolbometopon. Bolbometopon is among the largest of coral reef fishes and is a well known, charismatic species, yet to our knowledge, no scientific documentation of ritualized headbutting exists for marine fishes. -
Sub-Tidal Monitoring in the OCNMS
Assessment of the Subdal Assemblages Within the Olympic Coast Naonal Marine Sanctuary Reef Environmental Educaon Foundaon Christy Paengill‐Semmens and Janna Nichols Project Overview Results The Olympic Coast Naonal Marine Sanctuary (OCNMS) covers over 3,300 square 1.60 miles of ocean off Washington State's rocky Olympic Peninsula coastline and Table 2. Species that have been reported during 371 REEF surveys in the 1.40 OCNMS, conducted between 2003 and 2008. Sighting 1.20 Sanctuary waters host abundant marine life. The Reef Environmental Educaon Common Name Scientific Name Frequency 1.00 Foundaon (REEF) iniated an annual monitoring project in 2003 to document the Kelp Greenling Hexagrammos decagrammus 97% Fish-eating Anemone Urticina piscivora 93% 0.80 status and trends of sub‐dal fish assemblages and key invertebrates. Between 2003 Orange Cup Coral Balanophyllia elegans 92% Plumose Anemone Metridium senile/farcimen 91% 0.60 and 2008: Leather Star Dermasterias imbricata 91% Sunflower Star Pycnopodia helianthoides 91% Abundance Score 0.40 Black Rockfish Sebastes melanops 89% • 371 surveys have been conducted at 13 sites within the Sanctuary Gumboot Chiton Cryptochiton stelleri 66% 0.20 REEF Advanced Assessment Team Pink Hydrocoral Stylaster verrilli/S. venustus 66% • 70 species of fish and 28 species of invertebrates have been documented and members prepare for the OCNMS White-spotted Anemone Urticina lofotensis 65% 0.00 Longfin Sculpin Jordania zonope 63% Gumboot chiton are monitored monitoring. Orange Social Ascidian Metandrocarpa taylori/dura 62% frequently sighted in the 2003 2004 2005 2006 2007 2008 Lingcod Ophiodon elongatus 59% Red Sea Urchin Strongylocentrotus franciscanus 57% OCNMS. Photo by Steve California Sea Cucumber Gumboot Chiton Giant Barnacle Balanus nubilus 57% Lonhart. -
Humboldt Bay Fishes
Humboldt Bay Fishes ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> ·´¯`·._.·´¯`·.. ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> Acknowledgements The Humboldt Bay Harbor District would like to offer our sincere thanks and appreciation to the authors and photographers who have allowed us to use their work in this report. Photography and Illustrations We would like to thank the photographers and illustrators who have so graciously donated the use of their images for this publication. Andrey Dolgor Dan Gotshall Polar Research Institute of Marine Sea Challengers, Inc. Fisheries And Oceanography [email protected] [email protected] Michael Lanboeuf Milton Love [email protected] Marine Science Institute [email protected] Stephen Metherell Jacques Moreau [email protected] [email protected] Bernd Ueberschaer Clinton Bauder [email protected] [email protected] Fish descriptions contained in this report are from: Froese, R. and Pauly, D. Editors. 2003 FishBase. Worldwide Web electronic publication. http://www.fishbase.org/ 13 August 2003 Photographer Fish Photographer Bauder, Clinton wolf-eel Gotshall, Daniel W scalyhead sculpin Bauder, Clinton blackeye goby Gotshall, Daniel W speckled sanddab Bauder, Clinton spotted cusk-eel Gotshall, Daniel W. bocaccio Bauder, Clinton tube-snout Gotshall, Daniel W. brown rockfish Gotshall, Daniel W. yellowtail rockfish Flescher, Don american shad Gotshall, Daniel W. dover sole Flescher, Don stripped bass Gotshall, Daniel W. pacific sanddab Gotshall, Daniel W. kelp greenling Garcia-Franco, Mauricio louvar -
Diet and Condition of Mesopredators on Coral Reefs in Relation to Shark Abundance
RESEARCH ARTICLE Diet and condition of mesopredators on coral reefs in relation to shark abundance Shanta C. Barley1,2*, Mark G. Meekan2, Jessica J. Meeuwig1 1 School of Animal Biology and the Oceans Institute, University of Western Australia, Crawley, Western Australia, Perth, Australia, 2 Australian Institute of Marine Science, The Oceans Institute, University of Western Australia, Crawley, Western Australia, Perth, Australia * [email protected] a1111111111 a1111111111 Abstract a1111111111 a1111111111 Reef sharks may influence the foraging behaviour of mesopredatory teleosts on coral reefs a1111111111 via both risk effects and competitive exclusion. We used a ªnatural experimentº to test the hypothesis that the loss of sharks on coral reefs can influence the diet and body condition of mesopredatory fishes by comparing two remote, atoll-like reef systems, the Rowley Shoals and the Scott Reefs, in northwestern Australia. The Rowley Shoals are a marine reserve OPEN ACCESS where sharks are abundant, whereas at the Scott Reefs numbers of sharks have been Citation: Barley SC, Meekan MG, Meeuwig JJ reduced by centuries of targeted fishing. On reefs where sharks were rare, the gut contents (2017) Diet and condition of mesopredators on of five species of mesopredatory teleosts largely contained fish while on reefs with abundant coral reefs in relation to shark abundance. PLoS sharks, the same mesopredatory species consumed a larger proportion of benthic inverte- ONE 12(4): e0165113. https://doi.org/10.1371/ journal.pone.0165113 brates. These measures of diet were correlated with changes in body condition, such that the condition of mesopredatory teleosts was significantly poorer on reefs with higher shark Editor: Timothy Darren Clark, University of Tasmania, AUSTRALIA abundance. -
IAN Symbol Library Catalog
Overview The IAN symbol libraries currently contain 2976 custom made vector symbols The Libraries Include designed specifically for enhancing science communication skills. Download the complete set or create a custom packaged version. 2976 science/ecology symbols Our aim is to make them a standard resource for scientists, resource managers, 55 albums in 6 categories community groups, and environmentalists worldwide. Easily create diagrammatic representations of complex processes with minimal graphical skills. Currently Vector (SVG & AI) versions downloaded by 91068 users in 245 countries and 50 U.S. states. Raster (PNG) version The IAN Symbol Libraries are provided completely cost and royalty free. Please acknowledge as: Symbols courtesy of the Integration and Application Network (ian.umces.edu/symbols/). Acknowledgements The IAN symbol libraries have been developed by many contributors: Adrian Jones, Alexandra Fries, Amber O'Reilly, Brianne Walsh, Caroline Donovan, Catherine Collier, Catherine Ward, Charlene Afu, Chip Chenery, Christine Thurber, Claire Sbardella, Diana Kleine, Dieter Tracey, Dvorak, Dylan Taillie, Emily Nastase, Ian Hewson, Jamie Testa, Jan Tilden, Jane Hawkey, Jane Thomas, Jason C. Fisher, Joanna Woerner, Kate Boicourt, Kate Moore, Kate Petersen, Kim Kraeer, Kris Beckert, Lana Heydon, Lucy Van Essen-Fishman, Madeline Kelsey, Nicole Lehmer, Sally Bell, Sander Scheffers, Sara Klips, Tim Carruthers, Tina Kister , Tori Agnew, Tracey Saxby, Trisann Bambico. From a variety of institutions, agencies, and companies: Chesapeake -
DNA Barcoding of Commercially Important Reef Fishes in Weh Island, Aceh, Indonesia
DNA barcoding of commercially important reef fishes in Weh Island, Aceh, Indonesia Nur Fadli1,*, Siti Azizah Mohd Nor2,3,*, Ahmad Sofiman Othman3, Hizir Sofyan4 and Zainal A. Muchlisin1 1 Faculty of Marine and Fisheries, Syiah Kuala University, Banda Aceh, Aceh, Indonesia 2 Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Terengganu, Malaysia 3 School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia 4 Faculty of Mathematics and Natural Science, Syiah Kuala University, Banda Aceh, Aceh, Indonesia * These authors contributed equally to this work. ABSTRACT Knowledge on the precise identification of fish resources is critical for sustainable fisheries management. This study employs the DNA barcoding approach to generate a molecular taxonomic catalogue of commercially important reef fishes in the waters of Weh Island (Aceh Province), the most northerly inhabited island in the biodiverse Indonesian Archipelago. The waters not only support artisanal fisheries but also a feeder for the industry in the greater island of Aceh. In total, 230 specimens from 72 species belonging to 32 genera and 17 families were DNA barcoded, representing a major segment of the captured reef fish taxa and a quarter of fish species diversity that had previously been recorded. The sequence read lengths were 639 bp revealing 359 conserved sites, 280 variable sites, 269 parsimony informative and 11 singletons. Our molecular findings paralleled the morphological identification with no evidence of cryptic species or new species discovery. This study is a significant contribution to the fisheries statistics of this area, which would facilitate assessment of species catch composition and hence for strategizing management plans. It is an important input to Submitted 6 August 2019 the DNA barcode library of Indonesian marine fishes and to the global DNA barcode Accepted 9 July 2020 entries in general. -
Marine Protected Area Restricts Demographic Connectivity: Dissimilarity in a Marine Environment Can Function As a Biological Barrier
Received: 2 July 2017 | Accepted: 15 July 2017 DOI: 10.1002/ece3.3318 ORIGINAL RESEARCH Marine protected area restricts demographic connectivity: Dissimilarity in a marine environment can function as a biological barrier Masaaki Sato1 | Kentaro Honda2 | Wilfredo H. Uy3 | Darwin I. Baslot3 | Tom G. Genovia3 | Yohei Nakamura4 | Lawrence Patrick C. Bernardo5 | Hiroyuki Kurokochi6 | Allyn Duvin S. Pantallano3,4 | Chunlan Lian6 | Kazuo Nadaoka5 | Masahiro Nakaoka2 1Graduate School of Environmental Science, Hokkaido University, Akkeshi-cho, Hokkaido, Japan 2Akkeshi Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Akkeshi-cho, Hokkaido, Japan 3Institute of Fisheries Research and Development, Mindanao State University at Naawan, Naawan, Misamis Oriental, Philippines 4Graduate School of Kuroshio Science, Kochi University, Nankoku, Kochi, Japan 5Department of Mechanical and Environmental Informatics, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo, Japan 6Asian Natural Environmental Science Center, The University of Tokyo, Nishitokyo, Tokyo, Japan Correspondence Masaaki Sato, Graduate School of Abstract Environmental Science, Hokkaido University, The establishment of marine protected areas (MPAs) can often lead to environmental Akkeshi-cho, Hokkaido, Japan. Email: [email protected] differences between MPAs and fishing zones. To determine the effects on marine dispersal of environmental dissimilarity between an MPA and fishing zone, we exam- Present addresses Masaaki Sato, National Research Institute ined the abundance and recruitment patterns of two anemonefishes (Amphiprion fre- of Fisheries Engineering, Japan Fisheries natus and A. perideraion) that inhabit sea anemones in different management zones Research and Education Agency, Hasaki, Kamisu-shi, Ibaraki, Japan (i.e., an MPA and two fishing zones) by performing a field survey and a genetic parent- Kentaro Honda, Hokkaido National Fisheries age analysis. -
Kane-Higham-2012.Pdf
G Model ZOOL-25301; No. of Pages 10 ARTICLE IN PRESS Zoology xxx (2012) xxx–xxx Contents lists available at SciVerse ScienceDirect Zoology journa l homepage: www.elsevier.com/locate/zool Life in the flow lane: differences in pectoral fin morphology suggest transitions in station-holding demand across species of marine sculpin ∗ Emily A. Kane , Timothy E. Higham University of California, Riverside, Department of Biology, 900 University Ave., Riverside, CA 92521, USA a r t i c l e i n f o a b s t r a c t Article history: Aquatic organisms exposed to high flow regimes typically exhibit adaptations to decrease overall drag Received 28 September 2011 and increase friction with the substrate. However, these adaptations have not yet been examined on a Received in revised form 27 February 2012 structural level. Sculpins (Scorpaeniformes: Cottoidea) have regionalized pectoral fins that are modified Accepted 7 March 2012 for increasing friction with the substrate, and morphological specialization varies across species. We examined body and pectoral fin morphology of 9 species to determine patterns of body and pectoral Keywords: fin specialization. Intact specimens and pectoral fins were measured, and multivariate techniques deter- Benthic fishes mined the differences among species. Cluster analysis identified 4 groups that likely represent differences Scorpaeniformes in station-holding demand, and this was supported by a discriminant function analysis. Primarily, the Flow regime high-demand group had increased peduncle depth (specialization for acceleration) and larger pectoral Functional regionalization Station-holding fins with less webbed ventral rays (specialization for mechanical gripping) compared to other groups; secondarily, the high-demand group had a greater aspect ratio and a reduced number of pectoral fin rays (specialization for lift generation) than other groups. -
Siganus Unimaculatus, S. Virgatus, S
Spatial distributions, feeding ecologies, and behavioral interactions of four rabbitfish species (Siganus unimaculatus, S. virgatus, S. corallinus, and S. puellus) Atsushi Nanami Research Center for Sub-tropical Fisheries, Seikai National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Ishigaki, Okinawa, Japan ABSTRACT Clarifying the underlying mechanisms that enable closely related species to coexist in a particular environment is a fundamental aspect of ecology. Coral reefs support a high diversity of marine organisms, among which rabbitfishes (family Siganidae) are a major component The present study aimed to reveal the mechanism that allows rabbitfishes to coexist on coral reefs in Okinawa, Japan, by investigating the spatial distributions, feeding ecologies, and behavioral interactions of four species: Siganus unimaculatus, S. virgatus, S. corallinus, and S. puellus. All four species had a size-specific spatial distribution, whereby small individuals were found in sheltered areas that were covered by branching and bottlebrush Acropora spp. and large individuals were found in both sheltered and exposed rocky areas. However, no clear species-specific spatial distribution was observed. There was some variation in the food items taken, with S. unimaculatus primarily feeding on brown foliose algae, red foliose algae, and red styloid algae, and S. virgatus and S. puellus preferring brown foliose algae and sponges, respectively. However, S. corallinus did not show any clear differences in food preferences from S. virgatus or S. unimaculatus, mainly feeding on brown foliose algae and red styloid algae. The four species exhibited differences in foraging substrate use, which was probably related to differences in their body shape characteristics: Submitted 7 August 2018 S. -
Pisces: Lutjanidae: Lutjanus) from the Indo-West Pacific
Two new species of snappers (Pisces: Lutjanidae: Lutjanus) from the Indo-West Pacific GERALD R. ALLEN Western Australian Museum, Locked Bag 49, Welshpool DC Perth, Western Australia 6986, Australia. E-mail: [email protected] WILLIAM T. WHITE CSIRO Marine Research, Wealth from Oceans Flagship, GPO Box 1538, Hobart, Tasmania 7011, Australia MARK V. ERDMANN Conservation International, Jl. Dr. Muwardi No. 17, Renon, Denpasar, Bali 80235, Indonesia Abstract Two new species of snappers, genus Lutjanus, are described from Indo-West Pacific seas.Lutjanus indicus is de- scribed from 20 specimens, 54.7–226 mm SL, from western Thailand, India, Sri Lanka, and Bahrain. It has also been photographed at Oman and the Andaman Islands (tissue sample also taken). It has invariably been confused with its sibling species, L. russellii, from the western Pacific. Comparison of the mitochondrial cytochrome c oxidase subunit 1 (CO1) genetic marker utilised in DNA barcoding produced a genetic divergence of about 4.1 % between L. indicus and its closest congener, L. russellii. In addition, significant colour differences are useful for separating the two species, specifically a series of seven narrow yellow-to-brown stripes on the side, obliquely rising (except lower two) dorsally and posteriorly, which are present on both juveniles and adults of L. indicus. Lutjanus papuensis is described from four specimens, 173–259 mm SL, collected at Cenderawasih Bay, West Papua and purchased from fish markets at Bali and western Java, Indonesia. It has also been observed at Timor Leste, northern Papua New Guinea, and the Solomon Islands. It is most closely related to L.