Session 3-Grados

Total Page:16

File Type:pdf, Size:1020Kb

Session 3-Grados New Approaches to Industrialization of Algarrobo (Prosopis pallida) Pods in Peru Nora Grados and Gastón Cruz University of Piura Faculty of Engineering - Laboratory of Chemistry Aptdo. 353, Piura, Peru e-mail: [email protected] ABSTRACT Peruvian "algarrobo" (Prosopis pallida and Prosopis juliflora) and its fruits are described and some new ways for its industrialization are suggested on the basis of the research done at the University of Piura since 1984. The processing alternatives of Prosopis pods developed at the University of Piura are focused especially on the different uses for each part of the fruit [exocarp, mesocarp (pulp), endocarp], and the episperm, endos- perm and cotyledon from the seed. Each of these components has specific industrial applications. Several specific components have been determined. Sucrose is the main sugar (46% in weight) in the pulp. In the endosperm the polysaccharide is a galactomannan, with a 1:1.36 galactose/mannose ratio. Among the important amino acids in the seed cotyledon are: glutamic acid, arginine, aspartic acid, leucine, proline and serine. In the pulp, vitamin C, nicotinic acid, and calcium pantothenate have also been found. In the seed the content of vitamin C and E are significant. The dietary fiber of the pulp and endocarp hulls is basically insoluble dietary fiber. The results of the research show the feasibility of industrialization of Prosopis in Peru. The basic equipment for a pilot plant is being installed at the University of Piura to demonstrate this fact. Introduction Piura is on the northwestern coast of Peru (Figure 1), an arid zone where the annual rainfall is below 100 mm. The average annual temperature is 24EC and the relative humidity is 74%. Algarrobo (Prosopis pallida and Prosopis juliflora) [1] is one of the few arboreal species that occur natu- rally in these desertic areas (Figure 2). It has, therefore, an enormous importance in the protection of this fragile environment. Some trees can be 15 meters tall. Prosopis forests cover about 85 000 ha of land in northern Peru [2]. Algarrobo is the name the Spaniards gave the tree when they arrived in Peru in the 16th century, due to the similarity of its fruits to those of the mediterranean carob. The Peruvian native names for Prosopis were Thacco or Guarango, which are not often used today [3]. Thanks to its wood and fruits, Prosopis plays an important role in the daily life of impoverished local farmers in northern Peru. They use Prosopis wood in constructing their rustic houses and cattle fences, and as fuel for cooking; fallen Prosopis leaves, as an organic fertilizer (called puño); and their fruits, with a high sugar content, are used as forage and food (mainly as algarrobina syrup). Since Prosopis is one of the few trees growing in this area, the people and the animals can also enjoy the shade of the tree, which is a very important benefit. 3-25 Figure 1. Location of Piura in Peru Figure 2. Tree of Prosopis pallida in Piura, Peru 3-26 Figure 3. Desertification Areas Nevertheless, fuelwood is not only used for cooking but is also commercialized as fuel for brick baking furnaces, bakery ovens, and making charcoal for grills in chicken restaurants. The excessive extraction of Prosopis fuelwood has caused a reduction of the availability of this resource (Figure 3). It is estimated that from the 1950s to the 1980s, 200 000 ha were deforested [4]. In 1983, as a result of the El Niño phenomenon, rainfall reached 2 411 mm [5], resulting in new areas of land being recovered by Prosopis trees. The University of Piura has been developing a project for conservation and propagation of Prosopis since 1984. The success of this project is based on showing that Prosopis has many other rational uses. One part of this project includes the characterization of the fruit and the studies of new products and processes; another part includes agroeconomical aspects for forestation of these arid areas. There are 80 ha of Prosopis at the campus of the University for these studies (Figure 4). Prosopis Pods Production And Storage Since Prosopis trees are not cultivated but grow wild in desertic areas, the fruits are not harvested but collected by those who need them. Prosopis pallida and Prosopis juliflora are varieties with especially large and sweet fruits (Figure 5). The fruits are yellow pods of up to 30 cm long, with an average weight of 12 g. The sugar content of its pulp is 46% [6, 7]. The tree produces twice every year: the main pod production is between December and March. The second, minor production season, is between June and July. The productivity depends mainly on the age of the tree and on the soil quality. Some trees produce up to 300 kg of fruits per year. 3-27 Figure 4. Experimental Plantation at the Campus of the University of Piura Figure 5. Pods of Prosopis pallida 3-28 The pods fall to the ground when they are ripe, and remain there for a long time until they are collected or eaten by animals, such as goats, sheep, or donkeys. During the production period, the fruit has a very low price because of its abundance. A metric ton of pods costs US$27. The collecting is done by very poor children and women as an activity parallel to their agricultural tasks (Figure 6). One person can collect about 150 kg of pods in a day, which is equivalent to less than US$5. The quantities of comercialized Prosopis pods are not officially recorded. An estimation based on measurements done on representative parcels of land [2] would give an approximate production of 300 000 metric tons per year in the northern region of Peru. However, not all of it is used. More than 50% is lost because it is not collected, 15% is used as animal food and the remaining 35% is bought by dealers who sell it in feed stores in other cities (Figure 7). In fact, the main use of Prosopis pods in Peru is still the feeding of animals, which eat the pods without any previous processing. Some factories produce feed mixtures for livestock. It is interesting to point out that Prosopis is prefered by ranchers because they believe it has some special properties in addition to its recognized nutritional value, that make it irreplaceable. It is enough to say that a large part of the production is fed to racehorses. Prosopis pods are attacked by insects which eat the pulp and the seeds. The most numerous are insects of family Bruchidae, but Tribolium castaneum (fam. Tenebrionidae), Laspeyresia leguminis and Cryptophebia sp. (fam. Olethreutidae) and Plodia interpunctella (fam. Pyralidae) are also known to eat the seeds [8]. Rain also damages the fruits. When the fruits lying on the ground get wet, they become rotten (Figure 8). To reduce the damage, the pods are usually stored in rustic storage rooms, on the ground, or underground. Once a room is full it is sealed with clay. A typical storage room made from adobe is showed in Figure 9. Chemicals are not often used to control insects during storage, but natural- repellent plants are used. PhostoxinTM has proved to be efficient in avoiding proliferation of insects in the storage rooms, but a considerable number of pods are damaged in the tree or on the ground and no control methods for the damage is known. Because of the seasonal production of Prosopis, storage is necessary to supply seeds throughout the year. Between August and October, the price rises up to 5 times. Traditional Human Food Products From Prosopis Pods For many years, inhabitants of northern Peru have prepared and consumed algarrobina, a concentrated sugary extract of the pods. The concentrated syrup has a brilliant, dark brown color and is thicker than honey. Algarrobina is used in different ways: it is taken by spoon as a medicine or is added to juices and milk as both sweetener and a natural flavoring. We must say that a delicious drink is algarrobina cocktail, a mixture of a small quantity of algarrobina, pisco brandy, and milk. Algarrobina is produced now in very simple plants and is sold in reusable glass bottles (Figure 10). Ancient people talk about another product, yupisin, a beverage obtained in the same way as algarrobina, but is not concentrated. It is consumed directly or used to prepare desserts with sweet- potato flour or corn flour. Yupisin is consumed in rural areas only; it is not bottled. 3-29 Figure 6. Children Collecting Prosopis Pods 3-30 Figure 7. Loading a Truck With Prosopis Pods Figure 8. Typical Damage in Prosopis Pods 3-31 Figure 9. An Algarrobera (Rustic Storage Room for Prosopis Pods) Figure 10. Bottles of Algarrobina from Local Producers 3-32 Figure 11. Potential Uses of Prosopis Pods 3-33 Potential Uses of Prosopis Pods The two traditional food products from Prosopis described above use only the soluble sugars in its pulp, which, in fact, is the main constituent and the other components, i.e., the endocarp, fiber, and seeds are discarded. For this reason we have studied each of the fractions of the fruit separately to develop a more complete utilization of the entire fruit. For the industrial processing of Prosopis we have carried out many studies to fractionate the fruit into exocarp and mesocarp (pulp), endocarp, and seed, based on an ambitious proposal for North American Prosopis species [9]. The seed can then be separated in episperm, endosperm, and cotyledon. The scheme in Figure 11 shows the variety of products that can be obtained in a process which uses all the components of Prosopis pods.
Recommended publications
  • The Prosopis Juliflora - Prosopis Pallida Complex: a Monograph
    DFID DFID Natural Resources Systems Programme The Prosopis juliflora - Prosopis pallida Complex: A Monograph NM Pasiecznik With contributions from P Felker, PJC Harris, LN Harsh, G Cruz JC Tewari, K Cadoret and LJ Maldonado HDRA - the organic organisation The Prosopis juliflora - Prosopis pallida Complex: A Monograph NM Pasiecznik With contributions from P Felker, PJC Harris, LN Harsh, G Cruz JC Tewari, K Cadoret and LJ Maldonado HDRA Coventry UK 2001 organic organisation i The Prosopis juliflora - Prosopis pallida Complex: A Monograph Correct citation Pasiecznik, N.M., Felker, P., Harris, P.J.C., Harsh, L.N., Cruz, G., Tewari, J.C., Cadoret, K. and Maldonado, L.J. (2001) The Prosopis juliflora - Prosopis pallida Complex: A Monograph. HDRA, Coventry, UK. pp.172. ISBN: 0 905343 30 1 Associated publications Cadoret, K., Pasiecznik, N.M. and Harris, P.J.C. (2000) The Genus Prosopis: A Reference Database (Version 1.0): CD ROM. HDRA, Coventry, UK. ISBN 0 905343 28 X. Tewari, J.C., Harris, P.J.C, Harsh, L.N., Cadoret, K. and Pasiecznik, N.M. (2000) Managing Prosopis juliflora (Vilayati babul): A Technical Manual. CAZRI, Jodhpur, India and HDRA, Coventry, UK. 96p. ISBN 0 905343 27 1. This publication is an output from a research project funded by the United Kingdom Department for International Development (DFID) for the benefit of developing countries. The views expressed are not necessarily those of DFID. (R7295) Forestry Research Programme. Copies of this, and associated publications are available free to people and organisations in countries eligible for UK aid, and at cost price to others. Copyright restrictions exist on the reproduction of all or part of the monograph.
    [Show full text]
  • A Case Study on the Potential of the Multipurpose Prosopis Tree
    23 Underutilised crops for famine and poverty alleviation: a case study on the potential of the multipurpose Prosopis tree N.M. Pasiecznik, S.K. Choge, A.B. Rosenfeld and P.J.C. Harris In its native Latin America, the Prosopis tree (also known as Mesquite) has multiple uses as a fuel wood, timber, charcoal, animal fodder and human food. It is also highly drought-resistant, growing under conditions where little else will survive. For this reason, it has been introduced as a pioneer species into the drylands of Africa and Asia over the last two centuries as a means of reclaiming desert lands. However, the knowledge of its uses was not transferred with it, and left in an unmanaged state it has developed into a highly invasive species, where it encroaches on farm land as an impenetrable, thorny thicket. Attempts to eradicate it are proving costly and largely unsuccessful. In 2006, the problem of Prosopis was hitting the headlines on an almost weekly basis in Kenya. Yet amidst calls for its eradication, a pioneering team from the Kenya Forestry Research Institute (KEFRI) and HDRA’s International Programme set out to demonstrate its positive uses. Through a pilot training and capacity building programme in two villages in Baringo District, people living with this tree learned for the first time how to manage and use it to their benefit, both for food security and income generation. Results showed that the pods, milled to flour, would provide a crucial, nutritious food supplement in these famine-prone desert margins. The pods were also used or sold as animal fodder, with the first international order coming from South Africa by the end of the year.
    [Show full text]
  • Prosopis Juliflora Global Invasive Species Database (GISD)
    FULL ACCOUNT FOR: Prosopis juliflora Prosopis juliflora System: Terrestrial Kingdom Phylum Class Order Family Plantae Magnoliophyta Magnoliopsida Fabales Fabaceae Common name ironwood (English), algarrobo (Spanish), Mesquitebaum (German), mesquite (English), bayarone (French), algarroba (Spanish), cují negro (Spanish) Synonym Similar species Summary view this species on IUCN Red List Management Info Preventative measures: A Risk assessment of Prosopis spp. for Australia was prepared by Pacific Island Ecosystems at Risk (PIER) using the Australian risk assessment system (Pheloung, 1995). The result is a score of 20 and a recommendation of: reject the plant for import (Australia) or species likely to be a pest (Pacific). The Best Practice Manual Mesquite Control and management options for mesquite (Prosopis spp.) in Australia aims to provide the most current information on mesquite in Australia. The control and management options presented in this manual are the combined results of years of trials carried out by many dedicated researchers, landholders, herbicide companies, government officers, landcare groups and others. As mesquite species respond differently to control methods, the most effective method or combination of methods will vary depending on the size, density and species of mesquite present. The manual includes a 'mesquite control tool box'. Included also are a number of case studies to demonstrate best practice. Principal source: Compiler: IUCN/SSC Invasive Species Specialist Group (ISSG) Updates with support from the Overseas
    [Show full text]
  • Ceratonia Siliqua Fabaceae
    Ceratonia siliqua L. Fabaceae - Caesalpinioideae locust bean, chocar, carob tree LOCAL NAMES Arabic (al-kharoubah,kharrub); Catalan (garrover,garrofer); English (St. John’s bread,locust bean,carob tree,carob bean); French (caroubier); German (karubenßaum,johannisbrotßaum); Greek (charaoupi); Hindi (kharnub); Italian (carrubo); Malay (gelenggang); Mandarin (chiao-tou- shu); Portuguese (alfarrobeira); Spanish (garrover,algarrobo,garrofero); Thai (chum het tai); Trade name (carob tree,locust bean,chocar); Turkish (charnup) BOTANIC DESCRIPTION Dead branches are the result of feeding by Ceratonia siliqua is an evergreen shrub or tree up to 10 m high, crown rats. (William M. Ciesla, Forest Health broad semi-spherical, thick trunk, brown rough bark and sturdy branches. Management International, www.forestryimages.org) Leaves 10-20 cm long, alternate, pinnate, with or without a terminal leaflet. Leaflets 3-7 cm long, ovate to elliptic, 4-10 normally opposite pairs, coriaceous, dark green and shiny above, pale green beneath finely veined with margins slightly ondulate, tiny stipules. Flowers green-tinted red, small, numerous, 6-12 mm long, spirally arranged along the inflorescence axis in catkin-like racemes borne on spurs from old wood and even on the trunk (cauliflory). Pentamerous symmetry with calyx but not corolla placed on a short pedicel. Calyx disc- shaped, reddish-green, bears nectaries. Females consist of a pistil (6-8.5 C. siliqua is widely cultivated in traditional mm) on a disk and rudimentary stamens, 5 hairy sepals. Males consist of Olive-Apricot-Fig-pasture agroforestry a nectarial disk, 5 stamens with delicate filaments hairy sepals. In the systems throughout the Mediterranean. centre of the disk there is a rudimentary pistil.
    [Show full text]
  • Nutritional Characterization of Carobs and Traditional Carob Products
    Received: 23 May 2018 | Revised: 16 July 2018 | Accepted: 20 July 2018 DOI: 10.1002/fsn3.776 ORIGINAL RESEARCH Nutritional characterization of carobs and traditional carob products Eleni Papaefstathiou1 | Agapios Agapiou1 | Stelios Giannopoulos2 | Rebecca Kokkinofta2 1Department of Chemistry, University of Cyprus, Nicosia, Cyprus Abstract 2State General Laboratory, Nicosia, Cyprus Twenty traditional carob products were measured for their nutritional composition, and their results were compared with the pulp of Cypriot carob cultivars. Moisture, Correspondence Agapios Agapiou, Department of Chemistry, ash, fat, proteins, sugars, dietary fibers, minerals, caffeine- theobromine, carbohy- University of Cyprus, P.O. Box 20537, 1678, drates, and energy value were determined. Fluctuations of the nutritional composi- Nicosia, Cyprus. Email: [email protected] tion values based on the ingredients’ chemical synthesis and product manufacturing process were noted. Only 60% of the products had a label indicating their nutritional Funding information University of Cyprus value, and the majority of them (75%) were consistent with that of labeling. Chemometric analyses distinguished the carob products according to their type and the discriminator components highlighted their particular nutritional value. Carobs can be characterized as functional foods with low- fat content, high content in dietary fibers, and high content and/or source of minerals; however, carob products partially satisfied those health and nutritional claims as expected. This pilot research contrib- utes to the nutritional estimation of carob and highlights the traditional carob products. KEYWORDS carob products, Ceratonia siliqua L., chemical composition, chemometrics, elemental profiling, functional food 1 | INTRODUCTION content (0.2%–0.6%) (Batlle & Tous, 1997), low content of alkaloids, and high content of dietary fibers, especially in the seeds (Ortega The scientific name of carob tree, Ceratonia siliqua L., derives from the et al., 2009).
    [Show full text]
  • Prosopis Pallida) and Implications for Peruvian Dry Forest Conservation
    Revista de Ciencias Ambientales (Trop J Environ Sci). (Enero-Junio, 2018). EISSN: 2215-3896. Vol 52(1): 49-70. DOI: http://dx.doi.org/10.15359/rca.52-1.3 URL: www.revistas.una.ac.cr/ambientales EMAIL: [email protected] Community Use and Knowledge of Algarrobo (Prosopis pallida) and Implications for Peruvian Dry Forest Conservation Uso y conocimiento comunitario del algarrobo (Prosopis pallida) e implicaciones para la conservación del bosque seco peruano Johanna Depenthala and Laura S. Meitzner Yoderb a Master’s candidate in Environmental Management with a concentration in Ecosystem Science and Conservation at Duke University; ORCID: 0000-0003-4560-0862, [email protected] b Doctorate in Forestry and Environmental Studies; researcher and professor at Wheaton College, IL, [email protected] Director y Editor: Dr. Sergio A. Molina-Murillo Consejo Editorial: Dra. Mónica Araya, Costa Rica Limpia, Costa Rica Dr. Gerardo Ávalos-Rodríguez. SFS y UCR, USA y Costa Rica Dr. Manuel Guariguata. CIFOR-Perú Dr. Luko Hilje, CATIE, Costa Rica Dr. Arturo Sánchez Azofeifa. Universidad de Alberta-Canadá Asistente: Sharon Rodríguez-Brenes Editorial: Editorial de la Universidad Nacional de Costa Rica (EUNA) Los artículos publicados se distribuye bajo una Licencia Creative Commons Atribución 4.0 Internacional (CC BY 4.0) basada en una obra en http://www. revistas.una.ac.cr/ambientales., lo que implica la posibilidad de que los lectores puedan de forma gratuita descargar, almacenar, copiar y distribuir la versión final aprobada y publicada del artículo, siempre y cuando se mencione la fuente y autoría de la obra. Revista de Ciencias Ambientales (Trop J Environ Sci).
    [Show full text]
  • The Good, the Bad and the Thorny: Impacts of Prosopis in Africa
    The Good, the Bad and the Thorny: Impacts of Prosopis in Africa Nick Pasiecznik CAB International, Wallingford, OXON, UK. E-mail: [email protected] April 2004 Tropical agroforesters have been successful over the past 25 years in the selection, introduction, promotion and plantation of many exotic, fast-growing tree species for the benefit of rural people. However, some of these ‘miracle trees’ have proved to be very well adapted to local conditions, escaping from cultivation and spreading widely as aggressive weeds, threatening, rather than improving livelihoods. The status of exotic Prosopis species in sub-Saharan Africa epitomises this dilemma; it is the main plantation species in Cape Verde, the subject of national eradication and control programmes in South Africa, and all possible combinations in between, throughout the Sahel, East and southern Africa. Even after decades of work with probably the most common and widespread, multi-purpose trees in Africa, it appears that the agroforestry research and development community still cannot decide what to advise. Perceptions of Prosopis species vary widely, ranging from the most useful and productive tree tolerant of sites where little else will grow, to a weedy invader worthy only of wholesale eradication. What is a weed to one farmer may be a source of livelihood to another, but the extent of this dichotomy of opinion regarding Prosopis sends a very confused message to extension workers, foresters and farmers, who don’t know whether to plant it, prune it or pull it up. Prosopis trees provided many valuable resources to indigenous populations in the native range, and are still a source of food, feed, fuel, timber and other raw materials today; often the cornerstone of local economies in arid regions where they constitute the main forest resource.
    [Show full text]
  • Carob Agroforestry in the Low Rainfall Murray Valley a Market & Economic Assessment
    Carob Agroforestry in the Low Rainfall Murray Valley A market & economic assessment A report for the Rural Industries Research and Development Corporation by Allan Curtis and Digby Race in association with Bill Booth January 1998 RIRDC Publication No 98/8 RIRDC Project No. UCS-14A © 1998 Rural Industries Research and Development Corporation. All rights reserved. ISBN 0 642 54030 6 ISSN 1321 2656 "Carob Agroforestry in the Low Rainfall Murray Valley: A market and economic assessment” The views expressed and the conclusions reached in this publication are those of the author/s and not necessarily those of persons consulted or the Rural Industries Research and Development Corporation. RIRDC shall not be responsible in any way whatsoever to any person who relies in whole, or in part, on the contents of this report unless authorised in writing by the Managing Director of RIRDC. This publication is copyright. Apart from any fair dealing for the purposes of research, study, criticism or review as permitted under the Copyright Act 1968, no part may be reproduced in any form, stored in a retrieval system or transmitted without the prior written permission from the Rural Industries Research and Development Corporation. Requests and inquiries concerning reproduction should be directed to the Managing Director. Researcher Contact Details Allan Curtis and Digby Race The Johnstone Centre Charles Sturt University ALBURY NSW 2640 Phone: (02) 6041 8850 Fax: (02) 6041 8897 RIRDC Contact Details Rural Industries Research and Development Corporation Level
    [Show full text]
  • Production and Characterisation of Prosopis Seed Galactomannan
    Research Collection Doctoral Thesis Production and characterisation of Prosopis seed galactomannan Author(s): Cruz Alcedo, Gastón Eduardo Publication Date: 1999 Permanent Link: https://doi.org/10.3929/ethz-a-003838586 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Diss.ETHNo. 13153 Production and characterisation of Prosopis seed galactomannan A dissertation submitted to the SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH For the degree of Doctor of Technical Sciences presented by Gaston Eduardo CRUZ ALCEDO Ingeniero Industrial, Universidad de Piura born June 2, 1963 citizen of Peru accepted on the recommendation of Prof. Dr. Renato Amadö, examiner Prof. Dr. Felix Escher, co-examiner Ms. Eva Arrigoni, co-examiner Zurich 1999 ACKNOWLEDGEMENTS I wish to thank Prof. Dr. Renato Amadö, my thesis director, for giving me the opportunity to work in his laboratory, for the fruitful discussions and his excellent guidance. Already in 1987 he believed in my skills and enthusiasm for the study of Prosopis fruits and permitted me to learn many analytical techniques during a stay at the ETH in Zurich. I am happy for winning his estimation. A special thanks is due also to Evi Arrigoni for her practical advice in the laboratory and for her friendly collaboration, as well as for the critical review and correction of my thesis. I am very grateful to her for agreeing to be my co-examiner. I would also like to express my gratitude to Prof. Dr. Felix Escher for agreeing to be co- examiner and for the helpful discussion on processing technologies and the rheology of gums.
    [Show full text]
  • Fit-For-Purpose Seed Supply Systems for the Implementation of Landscape
    Fit-for-purpose seed supply systems for the implementation of landscape restoration under Initiative 20x20 An analysis of national seed supply systems in Mexico, Guatemala, Costa Rica, Colombia, Peru, Chile and Argentina Supported by: 1 This report was produced for Initiative 20x20 by Biodiversity International, in collaboration with the World Agroforestry Centre (ICRAF). This project is part of the International Climate Initiative (IKI). The German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB) supports this initiative on the basis of a decision adopted by the German Bundestag. Information used in the report was drawn from the accompanying document Alcazar, C. et al (2018) Levantemiento de linea base y escenarios potenciales de sistemas de produccion y suministro de semillas forestales como apoyo a los objetivos de restauracion de los paises de America Latina asociados a la Iniciative 20x20. Bioversity International, Lima, Peru. Authors would like to acknowledge the contribution of the following to these two reports: Gustavo Basil (Instituto Nacional de Tecnología Agropecuaria, Argentina), Norberto Bischoff (Ministerio de Agroindustria, Argentina), César Luis de la Vega (Ministerio de Agroindustria, Argentina), Luis Fernando Fornes Pullarello (Instituto Nacional de Tecnología Agropecuaria, Argentina), Leo Gallo (Instituto Nacional de Tecnología Agropecuaria, Argentina), Mirta Larrieu (Ministerio de Agroindustria, Argentina), Elizabeth Graciela Verzino (Universidad Nacional de Córdoba, Argentina),
    [Show full text]
  • Working Guide for Integrated Management of Invasive Species in the Arid and Semi-Arid Zones of Ethiopia
    Working Guide for Integrated Management of Invasive Species in the Arid and Semi-Arid Zones of Ethiopia Photo by: J.Duraisamy @ www.ecoport.org Compiled by: Faith Ryan, USDA Forest Service June, 2011 Introduction ........................................................................................................................................ 1 Section 1: People and Capacity Building .............................................................................................. 2 1.1 Community Participation ........................................................................................................... 2 1.2 Invasive Species Inventory Tools ................................................................................................ 4 1.3 Information and Coordination Tools ........................................................................................... 5 1.4 Value of Monitoring and Evaluation ........................................................................................... 7 Section 2: Practices and Potential Actions ........................................................................................... 8 2.1 Prevention ................................................................................................................................. 8 2.2 Early Detection / Rapid Response ............................................................................................... 9 2.3 Contain and Control ...............................................................................................................
    [Show full text]
  • Assessment of Nutritional Composition of Carob Pulp (Ceratonia Siliqua L.) Collected from Various Locations in Morocco
    J. Mater. Environ. Sci. 7 (9) (2016) 3278-3285 El Batal et al. ISSN : 2028-2508 CODEN: JMESC Assessment of nutritional composition of Carob pulp (Ceratonia Siliqua L.) collected from various locations in Morocco H. El Batal, A. Hasib*, F. Dehbi, N. Zaki, A. Ouatmane, A. Boulli Laboratory of Environment and Valorisation of Agro-resources; University of Sultan Moulay Slimane; Faculty of Science and Technology of BENI-MELLAL; Received 09 Feb 2016, Revised 02 Aug 2016, Accepted 05 Aug2016 *Corresponding author. E-mail: [email protected] (A. Hasib); Tel (212) 61 38 69 02; Fax: (212) 48 52 01 Abstract Seven Moroccan carob provenances (Taroudant, Agadir, Essaouira, Marrakesh, Beni Mellal, Taza and Al Houceima were analysed for proximate (Dry matter, ash, total sugars, protein and fat) as well as for polyphenol and composition mineral. The average proximate composition range of raw carob pulp was: 86.53 –87.84% dry matter; 3.10 – 4.50% protein; 31.50 – 50.10% total sugar; 11.30 – 14.60% sugar reducing; carbohydrates; 40.69 – 54.74% sugars; 0.50 – 0.80% fat and 2.05 – 4.60 mg/g polyphenols. All samples contained all nine minerals analyzed for, in this study. Slight compositional variations (although statistically significant) were found among samples. The results obtained in this study suggest that the pulp of carob is highly nutritious and thus carob can be considered as an alternative food source for Morocco. Keywords: Carob pods; Carob pulp; Chemical Composition; Minerals; Phenolic Compounds. 1. Introduction Carob bean is the fruit of Ceratonia siliqua L., which belongs to the Leguminosae family.
    [Show full text]