For Outright Speed

Total Page:16

File Type:pdf, Size:1020Kb

For Outright Speed TUNE YOUR SAILS FOR OUTRIGHT SPEED J/24 Tuning Guide Rev R05 Congratulations on your purchase of The other reason tuning (here we mean crews, but must stand up to near gales North J/24 sails. We have been building rig tuning) is important with the J/24 too. J/24 sails since the boat’s inception with is that we are asking a very limited sail the goal of providing our customers with inventory to perform over a very wide Picture a starting line of 50 to 80 ultra- fast, easy to use, and durable sails. You range of conditions. J/24’s are commonly aggressive racing fanatics and you can can follow this guide with confidence, raced from 0-30 knots of wind and to see how Darwin’s theory of evolution knowing that North Sails’ clients have ask four sails to cover that entire range applies to sailboat racing. Very often won more World, Continental and is really asking a lot. We need the sails one boat length separates the front National Championships than all our to be board flat in heavy air yet full and row from the cheap seats at the start, competition combined. powerful in the light stuff. so attention to boat preparation has become imperative to survival in the This guide is the result of years of testing, The best way to accomplish this is class. Following is our list of preparation tuning and practical racing experience. through aggressive adjustment of the ideas that will allow your team to stay While we can’t guarantee that you will shroud tensions (which directly affects competitive. start winning immediately by following sail shape) and sail trim changes through this guide, we can assure you that you the wind range. will be taking a very big step in the right direction. Please read this guide entirely The Straight Mast before using your sails for the first time. Introduction Tuning System We urge you to pay special attention to the section on sail care in order to Our Sail loft in Portsmouth has been BOAT PREPARATION prolong the life of your sails. obsessed with J/24 sailing for the last Boat preparation is critical in the J/24 decade. During that time we have class. Sails, deck layout, keel and rudder If you have any questions please feel free experimented with hundreds of sails, shape, and mast tuning all share equal to contact us. We are here to help you dozens of deck layouts, a spectrum importance. Often newcomers to the get the most out of your J/24 sailing. of keel shapes and every possible class prioritize one of these factors as combination of rig settings. As any of you “the project I’ll tackle this year”. These WHY TUNING IS IMPORTANT who have been talked into sitting on the are also typically the same people who rail for us can attest, tuning sessions are sell their boats for a major financial loss The J/24 is the most successful keelboat typically dull affairs. But we have been at the end of one season of mediocre design in the world. However, like many rewarded by watching our sails win 5 and poor finishes. To be competitive in other boats it has flaws. Most of the of the last 8 World Championships and the J/24 ranks, you must tackle all these tuning we do, especially in the boat hundreds of National, Regional and Local important factors. preparation area, is to overcome these titles. flaws and make the boat faster through The J/24 has a balance problem. Most the water. We have learned how to tune and of our tuning features are attempts fine-tune the J/24 in an attempt to fool to alleviate the lee helm that J/24s A characteristic of the J/24 is the boat four sails through a range that could be experience in less than 10 knots of wind. develops lee helm in light air. A boat covered by eight. The 150-percent genoa that has lee helm will be slow upwind, must be a drifter in light slop, and flat and KEEL because it will not point and will be slow twisty in 18 knots. The main needs to be Over the years we have found that due to the increased drag of the rudder flat enough to avoid excessive backwind, the minimum keel offsets will provide always needing to be forced off centerline but not invert when the big breeze and adequate lift upwind and reduce drag to keep the boat going upwind. We need backstay comes on. The spinnaker is downwind. When fairing the keel to to modify the boat and it’s sail plan in asked to float in the drifters and reach minimum thickness it should also be order to reduce this lee helm as much as in 25 knots. The 100-percent blade jib moved forward by removing material possible. is brought well below its range by light from the trailing edge and building 1 J/24 Tuning Guide Rev. R05 up the leading edge. This moves the get the center of the sail plan as far aft as backstay tension. Having the step too underwater center of effort forward, possible. Measuring the mast length and far forward (the most common problem) helping to reduce lee helm. headstay is very critical, and the class creates an over-tight headstay in light rules should be referred to in order to air, and too full a mainsail. We position RUDDER do this accurately. We also suggest you our mast base by crawling around the The rudder should also be minimum only cut the mast to within 5 mm of the inside of the forward cabin and taking thickness, but old rudders don’t stand minimum, as different measurers always two measurements. First, find the stem up well to being faired—that’s how get different lengths. Complete this fitting (the metal plate in the very bow they break. Since 1986 the rudders have process well before your next regatta as of the boat). Locate the 3rd bolt down come from builder Tillotson Pearson at your shrouds may need to be shortened on the fitting. Measure from beside that minimum thickness, so buying a new too. bolt, (where the bolt meets the hull) to rudder is better than fairing an old one. the “I” Beam on which the mast sits. The spreader angle must be fixed Put a mark on the beam at 2,730 mm. HULL depending on your mainsail’s type and From that line place the front of the In general, the bottom should be smooth luff curve. For our sail we move the mast exactly 130mm from this mark on and fair. The class rules allow factory spreaders forward for 160-165 mm of the “I” beam. We scribe a line into the imperfections to be filled. Grinding down deflection, stiffening the center of the beam so that we only have to make the highs in the gelcoat is not allowed. Wet mast to help get headstay tension in measurement once. sanding to 600 grit adds the finishing heavy air. This also allows a mainsail to touches to your fast underwater shape. be cut with less luff curve, giving the sail Now you can tighten your uppers to 20 plan greater projected area. There are on the scale of a Model B Loos gauge MAST PREPARATION three styles of spreader bracket used. and leave the lowers slack. To center Rig preparation is quite simple and The latest “thru-bar” types ensure the the mast, first measure back from the can be completed in a few hours. most accurate setting for the longest stem fitting to a point on both rails First, remove the spare genoa halyard period of time to maintain the 160- perpendicular to the front face of the since nearly all J/24s sail with hanks 165 mm setting, and any mast can mast. Measure from the marks to the on the forestay. If your halyards need be retrofitted to this type of spreader center weld on the mast to determine replacement, we recommend minimum- bracket. The other male-female and if the mast is centered at the deck. You diameter Spectra mainsail (8 mm) and female-male brackets require shims to may need to make custom shims to genoa (6 mm) halyards, both with spliced hold the spreaders in the correct position secure the mast toward one side of the wire tails for less weight and low stretch. or they will shift aft quickly. mast partners. Cleat the genoa halyard A 6 mm Dacron spinnaker halyard is at a position where, holding the shackle adequate. Depending on your local Finally, the fully prepared mast can be with two fingers and your thumb, you regulations and plans for the boat, you stepped and the mast butt fixed. We sail can just touch the mark on the rail with can take out the mast lights and wiring. with the maximum J dimension (2925 the halyard shackle. Repeat the process On older Proctor mast the wiring conduit mm - see class rules for measurement on the other side. Next, adjust the should be taken out by removing the five points); most mast-partner blocks will uppers until the mast is centered. Now pop rivets on the front side of the spar. have to be altered to achieve maximum adjust the lowers to straighten the mast. This allows the mast to bend properly in J. We use this maximum-aft setting to The backstay should be loose during the lower third.
Recommended publications
  • Mainsail Trim Pointers, Reefing and Sail Care for the Beneteau Oceanis Series
    Neil Pryde Sails International 1681 Barnum Avenue Stratford, CT 06614 203-375-2626 [email protected] INTERNATIONAL DESIGN AND TECHNICAL OFFICE Mainsail Trim Pointers, Reefing and Sail Care for the Beneteau Oceanis Series The following points on mainsail trim apply both to the Furling and Classic mainsails we produce for Beneteau USA and the Oceanis Line of boats. In sailing the boats we can offer these general ideas and observations that will apply to the 311’s through to the newest B49. Mainsail trim falls into two categories, upwind and downwind. MAINSAIL TRIM: The following points on mainsail trim apply both to the Furling and Classic mainsail, as the concepts are the same. Mainsail trim falls into two categories, upwind and downwind. Upwind 1. Upwind in up to about 8 knots true wind the traveler can be brought to weather of centerline. This ensures that the boom will be close centerline and the leech of the sail in a powerful upwind mode. 2. The outhaul should be eased 2” / 50mm at the stopper, easing the foot of the mainsail away from the boom about 8”/200mm 3. Mainsheet tension should be tight enough to have the uppermost tell tail on the leech streaming aft about 50% of the time in the 7- 12 true wind range. For those with furling mainsails the action of furling and unfurling the sail can play havoc with keeping the telltales on the sail and you may need to replace them from time to time. Mainsail outhaul eased for light air upwind trim You will find that the upper tell tail will stall and fold over to the weather side of the sail about 50% of the time in 7-12 knots.
    [Show full text]
  • The Weather Helm Issue (Rev 20 02 2020)
    Corbin 39 – the weather helm issue (rev 20 02 2020) Synopsis The subject of weather helm comes up repeatedly when discussing the Corbin 39 and not all of the folklore is justified. This note attempts to summarise the issue and to relate it to sufficient evidence, and to qualitative theory, that we can be reasonably certain of the situation. Remember - It is possible to overpower a yacht and induce weather helm, what we are trying to do is identify excessive weather helm. The key take-away is that the excessive weather helm was a genuine issue, which affected all the mk1 cutters irrespective of whether they were equipped with the taller double-spreader mast or the shorter single-spreader mast, provided that the mast was set in the intended aft mast position. Perhaps this was worse in the mk1 tallmast vs the mk1 shortmast, but we are not at all certain of that. All the mk1’s that had the forestay relocated onto a 3-foot long bowsprit were later able to alleviate this to an extent. The mk 1’s that have reduced the area of their main by shortening the mainsail boom & foot (or used in-mast furling) have reportedly completely eliminated this weather helm. All other versions including the mk1 ketches and all the mk2 cutters & ketches appear to be completely unaffected. This is the first openly published version of this analysis. Previous drafts were incomplete and drew erroneous conclusions in some areas due to an absence of reliable data. That has now been overcome as further evidence has come forwards, and so there are material differences between this version and previous drafts.
    [Show full text]
  • Sunfish Sailboat Rigging Instructions
    Sunfish Sailboat Rigging Instructions Serb and equitable Bryn always vamp pragmatically and cop his archlute. Ripened Owen shuttling disorderly. Phil is enormously pubic after barbaric Dale hocks his cordwains rapturously. 2014 Sunfish Retail Price List Sunfish Sail 33500 Bag of 30 Sail Clips 2000 Halyard 4100 Daggerboard 24000. The tomb of Hull Speed How to card the Sailing Speed Limit. 3 Parts kit which includes Sail rings 2 Buruti hooks Baiky Shook Knots Mainshoat. SUNFISH & SAILING. Small traveller block and exerts less damage to be able to set pump jack poles is too big block near land or. A jibe can be dangerous in a fore-and-aft rigged boat then the sails are always completely filled by wind pool the maneuver. As nouns the difference between downhaul and cunningham is that downhaul is nautical any rope used to haul down to sail or spar while cunningham is nautical a downhaul located at horse tack with a sail used for tightening the luff. Aca saIl American Canoe Association. Post replys if not be rigged first to create a couple of these instructions before making the hole on the boom; illegal equipment or. They make mainsail handling safer by allowing you relief raise his lower a sail with. Rigging Manual Dinghy Sailing at sailboatscouk. Get rigged sunfish rigging instructions, rigs generally do not covered under very high wind conditions require a suggested to optimize sail tie off white cleat that. Sunfish Sailboat Rigging Diagram elevation hull and rigging. The sailboat rigspecs here are attached. 650 views Quick instructions for raising your Sunfish sail and female the.
    [Show full text]
  • “F-27 1996 Sail Plan ”-Layer#1
    Sail Luff Leach Foot Material Area RECOMMENDED 50mm MAINSAIL CAMBER: 100/4" 2" Mainsail 33' 4" 35' 1" 12' 10" Mylar 317sq.ft. Top Third 10% at 44% aft Cutout for Middle 12% at 48% aft halyard Jib 33' 9" 30' 2" 11' 7" Mylar 185sq.ft. Bottom Third 6% at 46% aft clearance Recommended mast pre-bend is 3" Genoa 33' 9" 30' 8" 16' 1" Mylar 272sq.ft. Maximum headstay tension is 2700lbs, HEAD 9mm Rope Luff sag is 4-5" DETAIL Asy. Spinn. 39' 8" 36' 26' 11" Nylon 772sq.ft. 3/8" min. gap for Screacher 34' 10' 31' 9" 21' Mylar 343sq.ft. feeder clearance 31" Storm Jib 17' 12' 11" 9' 11" Mylar 59sq.ft. Batten Plastic Batten pocket end plate, bolted R. Furling 31' 9" 29' 11" 15' 8" Mylar 231sq.ft. Genoa or riveted through sail 1996 F-27 ® Class Rules: Mainsail BATTEN END DETAIL Max. Main Head Width (MHW) = 31" Maximum P (Luff) = 33' 4" Maximum E (Foot) = 12' 10" Maximum 1/4 P girth = 7' 4" 8oz Teflon Maximum 1/2 P girth = 10' 3" tape The mainsail shall be attached to the mast with a bolt rope and/or slugs. The mainsail shall be roller reefing and 9mm hard furling. 3/4" 12" 16" ® braided rope 9 1/4" Headsails (Jib & Genoa) MAIN LUFF TAPE: to be 8oz Number of headsails carried within these 25" measurements is left to the owners Teflon Tape or similar over 9mm discretion. 3"27 solid braided rope Maximum Luff = 33' 9" MAIN FOOT TAPE: to be 8oz Maximum Luff Perp.
    [Show full text]
  • Further Devels'nent Ofthe Tunny
    FURTHERDEVELS'NENT OF THETUNNY RIG E M H GIFFORDANO C PALNER Gi f ford and P art ners Carlton House Rlngwood Road Hoodl ands SouthamPton S04 2HT UK 360 1, lNTRODUCTION The idea of using a wing sail is not new, indeed the ancient junk rig is essentially a flat plate wing sail. The two essential characteristics are that the sail is stiffened so that ft does not flap in the wind and attached to the mast in an aerodynamically balanced way. These two features give several important advantages over so called 'soft sails' and have resulted in the junk rig being very successful on traditional craft. and modern short handed-cruising yachts. Unfortunately the standard junk rig is not every efficient in an aer odynamic sense, due to the presence of the mast beside the sai 1 and the flat shapewhich results from the numerousstiffening battens. The first of these problems can be overcomeby usi ng a double ski nned sail; effectively two junk sails, one on either side of the mast. This shields the mast from the airflow and improves efficiency, but it still leaves the problem of a flat sail. To obtain the maximumdrive from a sail it must be curved or cambered!, an effect which can produce over 5 more force than from a flat shape. Whilst the per'formanceadvantages of a cambered shape are obvious, the practical way of achieving it are far more elusive. One line of approach is to build the sail from ri gid componentswith articulated joints that allow the camberto be varied Ref 1!.
    [Show full text]
  • SLG 2018-03.Xlsx
    SAMPLE LESSON GRID -- BASIC SAILING COURSE DESCRIPTION A fun introduction to the fundamentals of sailing COURSE OUTCOME Sailor will be able to maneuver a keelboat upwind and downwind in open water ,using proper sail trim, and tack and jibe the boat when appropriate Week 1 2 Harbor Orientation Emergency Equip. & Proceed. Safety, Fun, Learning Points of Sail Emergency Contact Forms At the end of today you'll be able to sail On Personal Gear Teamwork: Shore Lifejackets (provided) --sailing is a team sport Class Procedures Takeaways: Weather & Marine Forecast --what stood out for each sailor from last class Find the Wind START & STOP TACK & JIBE HEAD UP & FALL OFF Review: Checklist Rigging, nomenclature, & checklist ! ! ! ! Demo Emergency Equipment ! ! ! ! Getting underway with sails ! ! ! ! Intro to mooring departure On Head up, fall off ! ! ! ! Head up, fall off ! ! ! ! Water Introduce tacking & jibing ! ! ! ! Telltales/apparent wind ! ! ! ! Start, stop, safety position in open water ! ! ! ! Directing your crew ! ! ! ! Everyone sails the boat ! ! ! ! Tacking ! ! ! ! De-rig, Stow, Ship-shape ! ! ! ! Sail trim ("turn & trim") ! ! ! ! Points of sail ! ! ! ! Demo the start, stop, and operation of motor ! ! ! ! Jibing ! ! ! ! Getting underway & return with motor ! ! ! ! Steering three ways (tiller, sails, wt. shift) ! ! ! ! Intro to mooring return Knot of the day--locking cleat hitch Knot of the day--figure 8 Debrief Debrief Highlights? No-go Zone Questions? Homework: points of sail On Has the wind changed? Shore Homework: Tacking Jibing 5 days
    [Show full text]
  • J/22 Sailing MANUAL
    J/22 Sailing MANUAL UCI SAILING PROGRAM Written by: Joyce Ibbetson Robert Koll Mary Thornton David Camerini Illustrations by: Sally Valarine and Knowlton Shore Copyright 2013 All Rights Reserved UCI J/22 Sailing Manual 2 Table of Contents 1. Introduction to the J/22 ......................................................... 3 How to use this manual ..................................................................... Background Information .................................................................... Getting to Know Your Boat ................................................................ Preparation and Rigging ..................................................................... 2. Sailing Well .......................................................................... 17 Points of Sail ....................................................................................... Skipper Responsibility ........................................................................ Basics of Sail Trim ............................................................................... Sailing Maneuvers .............................................................................. Sail Shape ........................................................................................... Understanding the Wind.................................................................... Weather and Lee Helm ...................................................................... Heavy Weather Sailing ......................................................................
    [Show full text]
  • East-1946.Pdf
    YACHTING -THE u. s . ONE-DESIGN CLASS IDS ONE-DESIGN class, which is T sponsored by a group of yachtsmen The perm4nent b4ckst.,ywtll keep representing all three clubs at Marble­ head, bids fair to become one of our popu­ the rig in the bo"t while the run­ lar racmg classes. Developed on the boards ning b4ckst4y will be needed in p~liminary plans by Carl Alberg, of only to 4Ssure the jib st4nding Marblehead, who is as80ciated with the well or to t4ke the tug of the ~den office, the general dimensions of the '\ rspinn4ker~ !' "" new boat arc: length over all, 37' 9"; \ length on the water line, 24'; beam, 7'; draft, 5' 4"; displacement is 6450 pounds. \ Her sail area is 378 8quarc feet, of which 262 square feet is in the mainsail and 116 \ square feet in the jib. In addition, there is \ a genoa with an area of. 200 square feet and a parachute spinnaker. \ An interesting feature of the new boat is a light weight, portable cabin top · \ which is made in two sections and may be \ carried in bad weather or for overnight I cruising. The cockpit, with the cabin top · removed, runs all the way forward to the . \ mast to facilitate light sail handling with­ Fastenings will_be made of bronze, the out the necessity of going on deck. The keel will be of lead and her hollow spars helmsman is 80 placed that he will get no will be spruce. Fittings and rigging will be interference from his crew, yet he will be by Merriman Brothers.
    [Show full text]
  • World War II at Sea This Page Intentionally Left Blank World War II at Sea
    World War II at Sea This page intentionally left blank World War II at Sea AN ENCYCLOPEDIA Volume I: A–K Dr. Spencer C. Tucker Editor Dr. Paul G. Pierpaoli Jr. Associate Editor Dr. Eric W. Osborne Assistant Editor Vincent P. O’Hara Assistant Editor Copyright 2012 by ABC-CLIO, LLC All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except for the inclusion of brief quotations in a review, without prior permission in writing from the publisher. Library of Congress Cataloging-in-Publication Data World War II at sea : an encyclopedia / Spencer C. Tucker. p. cm. Includes bibliographical references and index. ISBN 978-1-59884-457-3 (hardcopy : alk. paper) — ISBN 978-1-59884-458-0 (ebook) 1. World War, 1939–1945—Naval operations— Encyclopedias. I. Tucker, Spencer, 1937– II. Title: World War Two at sea. D770.W66 2011 940.54'503—dc23 2011042142 ISBN: 978-1-59884-457-3 EISBN: 978-1-59884-458-0 15 14 13 12 11 1 2 3 4 5 This book is also available on the World Wide Web as an eBook. Visit www.abc-clio.com for details. ABC-CLIO, LLC 130 Cremona Drive, P.O. Box 1911 Santa Barbara, California 93116-1911 This book is printed on acid-free paper Manufactured in the United States of America To Malcolm “Kip” Muir Jr., scholar, gifted teacher, and friend. This page intentionally left blank Contents About the Editor ix Editorial Advisory Board xi List of Entries xiii Preface xxiii Overview xxv Entries A–Z 1 Chronology of Principal Events of World War II at Sea 823 Glossary of World War II Naval Terms 831 Bibliography 839 List of Editors and Contributors 865 Categorical Index 877 Index 889 vii This page intentionally left blank About the Editor Spencer C.
    [Show full text]
  • What's in a Name?
    Neil Pryde Sails International 354 Woodmont Road #18 Milford, CT 06460 203-874-6984 [email protected] Adjusting and Trimming Your Roller Furling Headsail A layman’s guide to getting the most from your headsail By Bob Pattison Most contemporary mid-size sailboats built in North America over the last twenty years have been, by and large, masthead sloops with one or two sets of spreaders and fly a headsail that is between 140% and 155% in size. Generally these headsails are set flying on roller furling gear. With this in mind, here’s an easy and straightforward approach to trimming roller furling headsails and setting them up for quick and precise reefing. )LUVW7KLQJV)LUVW+DO\DUG7HQVLRQ)LUVW7KLQJV)LUVW+DO\DUG7HQVLRQ Luff tension is used to remove wrinkles from the luff of the genoa, so that the sail is smooth from to tack to head along the luff. Increasing the What’s in a Name? luff tension beyond this amount will affect the overall shape of the sail Headsail size percentages refer to length of by inducing stretch along the luff, which will pull the draft (shape) of the the “luff perpendicular’ or L.P. This is an imaginary line that runs from the clew of the sail forward for a better shape in heavier wind conditions. Don’t do it (!), sail and intersects the luff at a right angle, as you will more than likely, furl the sail as the wind strength increases the length of which is relative to the “J” negating the need for additional luff tension.
    [Show full text]
  • CATBOAT GUIDE and SAILING MANUAL Collected from Web Sites, Articles, Manuals, and Forum Postings
    CATBOAT GUIDE and SAILING MANUAL Collected from Web sites, articles, manuals, and forum postings Compiled and edited by: Edward Steinfeld [email protected] What I dream about. What fits my need best. ii Picnic cat by Com-Pac What I can trailer. Fisher Cat by Howard Boats iii Contents CATBOAT THESIS ...................................................................................................................1 MOORING AND DOCKING ...................................................................................................3 Docking ....................................................................................................................................................................................... 3 Docking and Mooring ............................................................................................................................................................. 4 Docking Lessons ...................................................................................................................................................................... 5 MENGER CAT 19 OWNER'S MANUAL ...............................................................................8 Stepping and Lowering the Tabernacle Mast ............................................................................................................... 8 Trailer Procedure ..................................................................................................................................................................... 9 Sailing
    [Show full text]
  • Sail Power and Performance
    the area of Ihe so-called "fore-triangle"), the overlapping part of headsail does not contribute to the driving force. This im­ plies that it does pay to have o large genoa only if the area of the fore-triangle (or 85 per cent of this area) is taken as the rated sail area. In other words, when compared on the basis of driving force produced per given area (to be paid for), theoverlapping genoas carried by racing yachts are not cost-effective although they are rating- effective in term of measurement rules (Ref. 1). In this respect, the rating rules have a more profound effect on the plan- form of sails thon aerodynamic require­ ments, or the wind in all its moods. As explicitly demonstrated in Fig. 2, no rig is superior over the whole range of heading angles. There are, however, con­ sistently poor performers such ns the La­ teen No. 3 rig, regardless of the course sailed relative to thewind. When reaching, this version of Lateen rig is inferior to the Lateen No. 1 by as rnuch as almost 50 per cent. To the surprise of many readers, perhaps, there are more efficient rigs than the Berntudan such as, for example. La­ teen No. 1 or Guuter, and this includes windward courses, where the Bermudon rig is widely believed to be outstanding. With the above data now available, it's possible to answer the practical question: how fast will a given hull sail on different headings when driven by eoch of these rigs? Results of a preliminary speed predic­ tion programme are given in Fig.
    [Show full text]