DNA Polymerase I

Total Page:16

File Type:pdf, Size:1020Kb

DNA Polymerase I INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type o f computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Company 300 North Zeeb Road, Ann Arbor MI 48106-1346 USA 313/761-4700 800/521-0600 The Role of Magnesium in Hydrolytic Nuclease Enzymes. The Use of Inert Chromium and Cobalt Probes in Understanding Magnesium Activation. Dissertation Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Graduate School of The Ohio State University by Christopher B. Black. B.Sc. ******** The Ohio State University 19% Dissertation Committee: Approved by: Dr. Andrew Wojcicki < j A G u ' Dr. Sheldon G. Shore Adviser Dr. James A. Cowan, Adviser Department of Chemistry UMI Number: 9630854 UMI Microform 9630854 Copyright 1996, by UMI Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. UMI 300 North Zeeb Road Ann Arbor, MI 48103 To Beth, Tess, my Family and Friends, for their support, friendship and love ACKNOWLEDGEMENTS I would first like to thank my adviser, Professor J. A. Cowan for his guidance in exploring the field of inorganic biochemistry. His expertise and help has played an integral role in my interest and ability to carry out this research. I would also like to thank both Matthew Foster and Professor Peter Andersen for help with the various chromium complexes. Especially Matt, for persevering through the hot summer months learning the joys of synthetic inorganic chemistry. I am also grateful for the financial support provided by Armoco in the form of an industrial fellowship. Throughout the road from bright-eyed graduate student to wom-in researcher I have made many invaluable friends. These friends have enriched my experience at Ohio State as well as kept my sanity in check. I would like to thank Mark Hartell for teaching me the habits of a native New Yorker and putting up with me our first year at Ohio State. Also, those responsible for keeping my sanity: Patricia Anderson, Thomas J. Corcoran, Glenn Jordan IV (“Woody”), Sang-Mock Lee, Jarrod Marto, Adolfo Muccillo, Harsh Vinayak, and Martin Votel. A special thanks goes to John Graham for the endless discussions on chemistry, Ireland and all of the other esoteric topics lost in the annals of time; also, to Anshu Agarwal for her friendship, patience toward my ignorance of Indian culture and for all of the support while in the Cowan lab. An even more special thanks goes to Elizabeth Groeber and her daughter Theresa for their caring, understanding, support and love throughout my time here at Ohio State. Finally, I thank my family: Jeannie, Bud, Donna, Rick and David. Their concern, care, help and support has been instrumental in completing my education in chemistry. iv VITA August 23, 1968 Bom, Hammond, Indiana 1990 B.Sc., Chemistry, University of Cincinnati, Ohio 1990-1996 Graduate Teaching Associate, The Ohio State University, Columbus Ohio 1994 Armoco Fellowship, The Ohio State University, Columbus, Ohio MANUSCRIPTS 1. Role of Divalent Cations in the 3',5'-Exonuclease Reaction of DNA Polymerase I. Black, C.B. and Cowan, J.A. (1992) ChemTracts, 4, 393-397. 2. The Coordination Chemistry of Divalent Magnesium Ion and Monovalent Potassium Ion in Biological Systems. Black, C.B., Huang, H.-W. and Cowan, J.A. (1994) Coordn. Chem. Rev. 135/136, 165-202. v 3. Quantitative Evaluation of Electrostatic and Hydrogen Bonding Contributions to Metal Cofactor Binding to Nucleic Acids. Black, C.B. and Cowan, J.A. (1994) J. Am. Chem. Soc., 116, 1174-1178. 4. Magnesium Activation of Ribonuclease H. Evidence for One Catalytic Metal Ion. Black, C.B. and Cowan, J.A. (1994) lnorg. Chem., 33, 5805-5808. 5. Magnesium-Dependent Enzymes in Nucleic Acid Processing Enzymes: The Biological Chemistry of Magnesium. Black, C.B. and Cowan, J.A., Cowan, J.A., Ed. (VCH Publishers, Inc., New York, NY, 1995), pp. 137-158. 6. Magnesium-Dependent Enzymes in General Metabolism: The Biological Chemistry of Magnesium. Black, C.B. and Cowan, J.A., Cowan, J.A., Ed. (VCH Publishers, Inc., New York,NY, 1995), pp. 159-183. RESEARCH EXPERIENCE Major Field: Chemistry Studies in Inorganic Biochemistry, Group Theory, Nonmetal, Organometallic and Cluster Chemistry: Professors Bruce E. Bursten, James A. Cowan, Eugene P. Schram, Sheldon G. Shore, Andrew Wojcicki, and Robin P. Ziebarth Research in: •Synthesis of Pt(IV), Ru(II) and Cr(III) complexes for use as metal ion probes in the ribonuclease H and exonuclease III systems. •Bacterial growth (E. coli) and isolation of proteins (ribonuclease H and exonuclease III). vi •Development of UV kinetic assay which monitors enzyme steady-state kinetics utilizing hypochromicity of nucleic acids. •Measurement of steady-state rate constants for ribonuclease H and exonuclease III using an optical stopped-flow apparatus. •Calorimetric studies on ribonuclease H-nucleic acid interactions with direct measurement of n binding sites, K binding constant and AH of binding. •Attended Inorganic Biochemistry Summer Workshop, University of Georgia, Athens. August, 1992. (Hands on experience with CHARMM, EPR and 2D NMR). PROFESSIONAL ORGANIZATIONS 1991 Dec.- Member of American Chemical Society 1992 Jan.- Member of American Association for the Advancement of Science Table of Contents Dedication ............................................................................................................................ ii Acknowledgements ............................................................................................................ iii Vita ....................................................................................................................................... v List of Tables ..................................................................................................................... xiii List of Figures ................................................................................................................... xvi List of Abbreviations .................................................................................................... xxii Chapter Page I. Overview ....................................................................................................................... 1 1.1 Introduction .................................................................................................... 1 1.2 Physicochemical Properties of Magnesium ................................................ 9 1.3 The Biochemistry of Magnesium ................................................................ 11 1.3.1 Structural Role ..................................................................................... 11 1.3.2 Catalytic Role ....................................................................................... 13 1.4 Research Objective ........................................................................................ 21 viii II. Materials and Methods ........................................................................................... 23 2.1 General Materials ............................................................................................ 23 2.2 Bulk Growth of Escherichia coli .................................................................. 23 2.3 Enzyme Purification ....................................................................................... 24 2.3.1 Purification of E. coli RNase H using pSK58 ........................... 24 2.3.2 Purification of E. coli RNase H using pET 21 b(+) .................. 26 2.3.3 Purification of E. coli Exonuclease III ....................................... 29 2.3.4 Purification of the Klenow Fragment from CJ379 ................... 29 2.4 Synthesis of (A • dT) 2 o Hybrid Substrate ..................................................... 39 2.5 Preparation of Chromium Complexes ......................................................... 43 2.6 Estimation of Extinction Coefficients and Turnover Rates ...................... 53 2.6.1 E. coli Ribonuclease III ...................................................................... 54 2.6.2 E. coli Exonuclease III ....................................................................... 55 2.6.3 E. coli DNA Polymerase I Klenow Fragment ................................ 56 2.7 Steady-State
Recommended publications
  • Klenow Fragment, #EP0054
    Description Klenow Fragment is the Large Fragment of DNA Polymerase I, E.coli . It exhibits 5' →3' polymerase activity and 3' →5' exonuclease (proofreading) activity, but lacks 5' →3' exonuclease activity of DNA Polymerase I. PRODUCT INFORMATION Applications Klenow Fragment • DNA blunting by fill-in of 5’-overhangs or removal of 3‘-overhangs. (1), see protocols on back page. • Random-primed DNA labeling (2-4). #EP0054 300 U • Labeling by fill-in 5 ’-overhangs of dsDNA. Lot: _ Expiry Date: _ • DNA sequencing by the Sanger method (5). • Site-specific mutagenesis of DNA with synthetic oligonucleotides (6). Concentration: 2 U/µL • Second strand synthesis of cDNA (7). Source Supplied with: 1 mL of 10X Reaction Buffer E.coli cells with a cloned fragment of the polA gene. Molecular Weight 68 kDa monomer. Store at -20 °C Definition of Activity Unit One unit of the enzyme catalyzes the incorporation of 10 nmol of deoxyribonucleotides into a polynucleotide fraction (adsorbed on DE-81) in 30 min at 37°C. Enzyme activity is assayed in the following mixture: 50 mM Tris-HCl (pH 8.0 at 25°C), 5 mM MgCl 2, 1 mM DTT, In total 2 vials. 0.033 mM dNTP, 0.4 M Bq/mL [3H]-dTTP and 62.5 µg/mL activated salmon milt DNA. www.thermoscientific.com/onebio Rev.9 V Storage Buffer CERTIFICATE OF ANALYSIS The enzyme is supplied in: 25 mM Tris-HCl (pH 7.5), Endodeoxyribonuclease Assay 0.1 mM EDTA, 1 mM DTT and 50% (v/v) glycerol. 10X Reaction Buffer No conversion of covalently closed circular DNA to nicked DNA was detected after incubation of 20 units of Klenow 500 mM Tris-HCl (pH 8.0 at 25°C), 50 mM MgCl 2, 10 mM DTT.
    [Show full text]
  • Redundancy in Ribonucleotide Excision Repair: Competition, Compensation, and Cooperation
    DNA Repair 29 (2015) 74–82 Contents lists available at ScienceDirect DNA Repair j ournal homepage: www.elsevier.com/locate/dnarepair Redundancy in ribonucleotide excision repair: Competition, compensation, and cooperation ∗ Alexandra Vaisman, Roger Woodgate Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA a r t i c l e i n f o a b s t r a c t Article history: The survival of all living organisms is determined by their ability to reproduce, which in turn depends Received 1 November 2014 on accurate duplication of chromosomal DNA. In order to ensure the integrity of genome duplication, Received in revised form 7 February 2015 DNA polymerases are equipped with stringent mechanisms by which they select and insert correctly Accepted 9 February 2015 paired nucleotides with a deoxyribose sugar ring. However, this process is never 100% accurate. To fix Available online 16 February 2015 occasional mistakes, cells have evolved highly sophisticated and often redundant mechanisms. A good example is mismatch repair (MMR), which corrects the majority of mispaired bases and which has been Keywords: extensively studied for many years. On the contrary, pathways leading to the replacement of nucleotides Ribonucleotide excision repair with an incorrect sugar that is embedded in chromosomal DNA have only recently attracted significant Nucleotide excision repair attention. This review describes progress made during the last few years in understanding such path- Mismatch repair Ribonuclease H ways in both prokaryotes and eukaryotes. Genetic studies in Escherichia coli and Saccharomyces cerevisiae Flap endonuclease demonstrated that MMR has the capacity to replace errant ribonucleotides, but only when the base is DNA polymerase I mispaired.
    [Show full text]
  • Klenow Fragment Is a Mesophilic DNA Polymerase Derived from the E.Coli Polymerase I DNA- Klenow Fragment Dependent Repair Enzyme
    Product Specifications P7060L Rev C Product Information Product Description: Klenow Fragment is a mesophilic DNA polymerase derived from the E.coli Polymerase I DNA- Klenow Fragment dependent repair enzyme. The enzyme exhibits DNA synthesis and proofreading (3′→5′) nuclease activities, and, Part Number P7060L in the absence of the holoenzyme’s (5′→3′) nuclease domain, displays a moderate strand displacement activity Concentration 5,000 U/mL during DNA synthesis. The protein is expressed as a Unit Size 2,500 U truncated product of the E.coli PolA gene. Storage Temperature -25⁰C to -15⁰C Product Specifications P7060 Specific SS DS E. coli DNA Assay SDS Purity DS Exonuclease Activity Exonuclease Endonuclease Contamination Units Tested n/a n/a 50 50 50 50 Specification >99% 5,000 U/mg Functional Functional No Conversion <10 copies Source of Protein: A recombinant E. coli strain carrying the Klenow Fragment gene. Unit Definition: 1 unit is defined as the amount of polymerase required to convert 10 nmol of dNTPs into acid insoluble material in 30 minutes at 37°C. Molecular weight: 68,202 Daltons Quality Control Analysis: Unit Activity is measured using a 2-fold serial dilution method. Dilutions of enzyme were made in a 50% glycerol Klenow (3’-5’ exo-) storage solution and added to 50 µL reactions containing Calf Thymus DNA, 1X Klenow Reaction Buffer, 3H-dTTP and 100 µM dNTPs. Reactions were incubated 10 minutes at 37°C, plunged on ice, and analyzed using the method of Sambrook and Russell (Molecular Cloning, v3, 2001, pp. A8.25-A8.26). Protein Concentration (OD280) is determined by OD280 absorbance.
    [Show full text]
  • Supporting Information
    Supporting Information Figure S1. The functionality of the tagged Arp6 and Swr1 was confirmed by monitoring cell growth and sensitivity to hydeoxyurea (HU). Five-fold serial dilutions of each strain were plated on YPD with or without 50 mM HU and incubated at 30°C or 37°C for 3 days. Figure S2. Localization of Arp6 and Swr1 on chromosome 3. The binding of Arp6-FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) are compared. The position of Tel 3L, Tel 3R, CEN3, and the RP gene are shown under the panels. Figure S3. Localization of Arp6 and Swr1 on chromosome 4. The binding of Arp6-FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) in the whole chromosome region are compared. The position of Tel 4L, Tel 4R, CEN4, SWR1, and RP genes are shown under the panels. Figure S4. Localization of Arp6 and Swr1 on the region including the SWR1 gene of chromosome 4. The binding of Arp6- FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) are compared. The position and orientation of the SWR1 gene is shown. Figure S5. Localization of Arp6 and Swr1 on chromosome 5. The binding of Arp6-FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) are compared. The position of Tel 5L, Tel 5R, CEN5, and the RP genes are shown under the panels. Figure S6. Preferential localization of Arp6 and Swr1 in the 5′ end of genes. Vertical bars represent the binding ratio of proteins in each locus.
    [Show full text]
  • Potent Inhibition of Human Telomerase by U-73122
    Journal of Biomedical Science (2006) 13:667–674 667 DOI 10.1007/s11373-006-9100-z Potent inhibition of human telomerase by U-73122 Yi-Jui Chen, Wei-Yun Sheng, Pei-Rong Huang & Tzu-Chien V. Wang* Department of Molecular and Cellular Biology, Chang Gung University, Kwei-San, Tao-Yuan, 333, Taiwan Received 28 April 2006; accepted 14 June 2006 Ó 2006 National Science Council, Taipei Key words: alkylating agents, cancer therapyzU-73122, N-ethylmaleimide, telomerase inhibitor Summary Telomerase activity is repressed in normal human somatic cells, but is activated in most cancers, suggesting that telomerase may be an important target for cancer therapy. In this study, we report that U-73122, an amphiphilic alkylating agent that is commonly used as an inhibitor for phospholipase C, is also a potent and selective inhibitor of human telomerase. The inhibition of telomerase by U-73122 was attributed primarily to the pyrrole-2,5-dione group, since its structural analog U-73343 did not inhibit telomerase. In confirmation, we observed that telomerase was inhibited by N-ethylmaleimide, but not N-ethylsuccinimide. The IC50 value of U-73122 for the in vitro inhibition of telomerase activity is 0.2 lM, which is comparable to or slightly more sensitive than that for phospholipase C. The inhibitory action of U-73122 on telomerase appears to be rather selective since the presence of externally added proteins did not protect the inhibition and the IC50 values for the other enzymes tested in this study were at least an order of magnitude higher than that for telomerase. Furthermore, we demonstrate that U-73122 can inhibit telomerase in hemato- poietic cancer cells.
    [Show full text]
  • DNA Bound by the Oxytricha Telomere Protein Is Accessible to Telomerase and Other DNA Polymerases DOROTHY E
    Proc. Natl. Acad. Sci. USA Vol. 91, pp. 405-409, January 1994 Biochemistry DNA bound by the Oxytricha telomere protein is accessible to telomerase and other DNA polymerases DOROTHY E. SHIPPEN*, ELIZABETH H. BLACKBURNt, AND CAROLYN M. PRICE0§ tDepartment of Microbiology and Immunology, University of California, San Francisco, CA 94143; and tDepartment of Chemistry, University of Nebraska, Lincoln, NB 68588 Contributed by Elizabeth H. Blackburn, August 25, 1993 ABSTRACT Macronuclear telomeres in Oxytricha exist as oftelomere protein in these two populations is not altered by DNA-protein complexes in which the termini of the G-rich additional nuclease treatment. strands are bound by a 97-kDa telomere protein. During The fragment of DNA bound by the majority of telomere telome'ic DNA replication, the replication machinery must protein molecules corresponds to the most terminal 13 or 14 have access to the G-rich strand. However, given the stability nucleotides of the T4G4T4G4 overhang (4). Dimethyl sulfate of telomere protein binding, it has been unclear how this is footprinting demonstrated that the complex formed between accomplished. In this study we investigated the ability of the telomere protein and the residual DNA fragment retains several different DNA polymerases to access telomeric DNA in the same DNA-protein contacts present at native telomeres Oxytricha telomere protein-DNA complexes. Although DNA (4). Thus, these telomeric DNA-protein complexes are useful bound by the telomere protein is not degraded by micrococcal substrates for in vitro investigations of telomere structure nuclease or labeled by terminal deoxynucleotidyltrnsferase, (10). In this study we have employed the DNA-protein this DNA serves as an efficient primer for the addition of complexes to analyze the interaction of protein-bound telo- telomeric repeats by telomerase, a specialized RNA-dependent meric DNA with components of the DNA replication ma- DNA polymerase (ribonucleoprotein reverse tanscriptase), chinery.
    [Show full text]
  • Arthur Kornberg Discovered (The First) DNA Polymerase Four
    Arthur Kornberg discovered (the first) DNA polymerase Using an “in vitro” system for DNA polymerase activity: 1. Grow E. coli 2. Break open cells 3. Prepare soluble extract 4. Fractionate extract to resolve different proteins from each other; repeat; repeat 5. Search for DNA polymerase activity using an biochemical assay: incorporate radioactive building blocks into DNA chains Four requirements of DNA-templated (DNA-dependent) DNA polymerases • single-stranded template • deoxyribonucleotides with 5’ triphosphate (dNTPs) • magnesium ions • annealed primer with 3’ OH Synthesis ONLY occurs in the 5’-3’ direction Fig 4-1 E. coli DNA polymerase I 5’-3’ polymerase activity Primer has a 3’-OH Incoming dNTP has a 5’ triphosphate Pyrophosphate (PP) is lost when dNMP adds to the chain E. coli DNA polymerase I: 3 separable enzyme activities in 3 protein domains 5’-3’ polymerase + 3’-5’ exonuclease = Klenow fragment N C 5’-3’ exonuclease Fig 4-3 E. coli DNA polymerase I 3’-5’ exonuclease Opposite polarity compared to polymerase: polymerase activity must stop to allow 3’-5’ exonuclease activity No dNTP can be re-made in reversed 3’-5’ direction: dNMP released by hydrolysis of phosphodiester backboneFig 4-4 Proof-reading (editing) of misincorporated 3’ dNMP by the 3’-5’ exonuclease Fidelity is accuracy of template-cognate dNTP selection. It depends on the polymerase active site structure and the balance of competing polymerase and exonuclease activities. A mismatch disfavors extension and favors the exonuclease.Fig 4-5 Superimposed structure of the Klenow fragment of DNA pol I with two different DNAs “Fingers” “Thumb” “Palm” red/orange helix: 3’ in red is elongating blue/cyan helix: 3’ in blue is getting edited Fig 4-6 E.
    [Show full text]
  • Processivity of DNA Polymerases: Two Mechanisms, One Goal Zvi Kelman1*, Jerard Hurwitz1 and Mike O’Donnell2
    Minireview 121 Processivity of DNA polymerases: two mechanisms, one goal Zvi Kelman1*, Jerard Hurwitz1 and Mike O’Donnell2 Replicative DNA polymerases are highly processive Processive DNA synthesis by cellular replicases and the enzymes that polymerize thousands of nucleotides without bacteriophage T4 replicase dissociating from the DNA template. The recently Until recently, the only mechanism for high processivity determined structure of the Escherichia coli bacteriophage that was understood in detail was that utilized by cellular T7 DNA polymerase suggests a unique mechanism that replicases and the replicase of bacteriophage T4. This underlies processivity, and this mechanism may generalize mechanism involves a ring-shaped protein called a ‘DNA to other replicative polymerases. sliding clamp’ that encircles the DNA and tethers the polymerase catalytic unit to the DNA [3,4]. The three- Addresses: 1Department of Molecular Biology, Memorial Sloan- dimensional structures of several sliding clamps have been Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, 2 determined: the eukaryotic proliferating cell nuclear USA and Laboratory of DNA Replication, Howard Hughes Medical β Institute, The Rockefeller University, 1230 York Avenue, New York, NY antigen (PCNA) [5,6]; the subunit of the prokaryotic 10021, USA. DNA polymerase III [7]; and the bacteriophage T4 gene 45 protein (gp45) (J Kuriyan, personal communication) *Corresponding author. (Figure 1). The overall structure of these clamps is very E-mail: [email protected] similar; the PCNA, β subunit and gp45 rings are super- Structure 15 February 1998, 6:121–125 imposable [8]. Each ring has similar dimensions and a http://biomednet.com/elecref/0969212600600121 central cavity large enough to accommodate duplex DNA (Figure 1).
    [Show full text]
  • T5 DNA Polymerase: Structural-Functional Relationships to Other DNA Polymerases (DNA Polymerase I/Proofreading/Processivity/Evolution) MARK C
    Proc. Nati. Acad. Sci. USA Vol. 86, pp. 4465-4469, June 1989 Biochemistry T5 DNA polymerase: Structural-functional relationships to other DNA polymerases (DNA polymerase I/proofreading/processivity/evolution) MARK C. LEAVITT AND JUNETSU ITO Department of Microbiology and Immunology, University of Arizona Health Sciences Center, Tucson, AZ 85724 Communicated by Lester 0. Krampitz, April 10, 1989 (receivedfor review February 1, 1989) ABSTRACT T5 DNA polymerase, a highly processive sin- proceed through double-stranded regions in template sec- gle-polypeptide enzyme, has been analyzed for its primary ondary structures or supercoiled plasmid templates. structural features. The amino acid sequence of T5 DNA We present here the DNA sequence of the T5 DNA polymerase has a high degree of homology with that of DNA polymerase gene* and the deduced amino acid sequence ofits polymerase I from Escherichia coli and retains many of the product. Comparisons of the primary structure of this en- amino acid residues that have been implicated in the 3' -* 5' zyme with other DNA polymerases suggest differences that exonuclease and DNA polymerase activities of that enzyme. may account for the high processivity of this enzyme. We Alignment with sequences of polymerase I and T7 DNA poly- also demonstrate the conservation of residues thought to be merase was used to identify regions possibly involved in the intimately involved in 3' -* 5' exonuclease and polymerase high processivity of this enzyme. Further, amino acid sequence activities. Finally, two amino acid sequence segments, which comparisons ofT5 DNA polymerase with a large group ofDNA may be involved in the 3' -*5' exonuclease function of these polymerases previously shown to exhibit little similarity to enzymes, appear to be highly conserved among a wide polymerase I indicate certain sequence segments are shared variety of DNA polymerases.
    [Show full text]
  • High-Level Expression, Purification, and Thermus Aquatlcus DNA
    Downloaded from genome.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press High-level Expression, Purification, and Enzymatic Characterization of Full-length Thermus aquatlcus DNA Polymerase and a Truncated Form Deficient in 5' to 3' Exonuclease Activity Frances C. Lawyer, 1 Susanne Stoffel, 1 Randall K. Saiki, 2 Sheng-Yung Chang, 3 Phoebe A. Landre, ~ Richard D. Abrarnson, 1 and David H. Gelfand 1 1Program in Core Research and Departments of 2Human Genetics and 3Infectious Disease, Roche Molecular Systems, Alameda, California 94501 The Thermus aquaticus DNA poly- life of 9 min at 97.5~ The Stoffel I in the native host is quite low (0.01- merase I (Taq Pol I) gene was cloned fragment has a half-life of 21 min at 0.02% of total protein). The cloning and into a plasmid expression vector that 97.5~ Taq Pol I contains a polymer- expression of full-length 94-kD Taq Pol I utilizes the strong bacteriophage ization-dependent 5' to 3' exonu- in E. coli under control of the E. coli lac PL promoter. A truncated form of Taq clease activity whereas the Stoffel promoter r or the tac promoter (7~ has Pol I was also constructed. The two fragment, deleted for the 5' to 3' ex- been reported. Because polymerase constructs made it possible to com- onuclease domain, does not possess yields in these constructs were low pare the full-length 832-amino-acid that activity. A comparison is made (-0.01% of total protein in our initial Taq Pol I and a deletion derivative among thermostable DNA poly- construct; see ref.
    [Show full text]
  • Family a and B DNA Polymerases in Cancer: Opportunities for Therapeutic Interventions
    biology Review Family A and B DNA Polymerases in Cancer: Opportunities for Therapeutic Interventions Vinit Shanbhag 1,2, Shrikesh Sachdev 2,3, Jacqueline A. Flores 2,3, Mukund J. Modak 4 and Kamalendra Singh 2,3,4,5,* 1 Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA; [email protected] 2 The Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA; [email protected] (S.S.); [email protected] (J.A.F.) 3 Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65211, USA 4 Department of Microbiology, Biochemistry and Molecular Genetics 225 Warren Street, NJ 07103, USA; [email protected] 5 Department of Laboratory Medicine, Karolinska Institutet, Stockholm 141 86, Sweden * Correspondence: [email protected]; Tel.: +1-573-882-9024 Received: 13 November 2017; Accepted: 29 December 2017; Published: 2 January 2018 Abstract: DNA polymerases are essential for genome replication, DNA repair and translesion DNA synthesis (TLS). Broadly, these enzymes belong to two groups: replicative and non-replicative DNA polymerases. A considerable body of data suggests that both groups of DNA polymerases are associated with cancer. Many mutations in cancer cells are either the result of error-prone DNA synthesis by non-replicative polymerases, or the inability of replicative DNA polymerases to proofread mismatched nucleotides due to mutations in 30-50 exonuclease activity. Moreover, non-replicative, TLS-capable DNA polymerases can negatively impact cancer treatment by synthesizing DNA past lesions generated from treatments such as cisplatin, oxaliplatin, etoposide, bleomycin, and radiotherapy. Hence, the inhibition of DNA polymerases in tumor cells has the potential to enhance treatment outcomes.
    [Show full text]
  • E. Coli Ribonuclease H (Rnase H), Recombinant # 02-060 1,000 Units, # 02-060-5 5 X 1,000 Units
    Manufacturer E. coli Ribonuclease H (RNase H), Recombinant # 02-060 1,000 units, # 02-060-5 5 x 1,000 units Ribonuclease H (RNase H) is an endoribonuclease which specifically degrades the RNA strand of an RNA/DNA hybrid, leaving the DNA strand and unhybridized RNA intact. E. coli RNase H (RNaseHI) was over-expressed in E. coli as a recombinant protein and the protein then purified. MW is 17.6 kDa. Applications 1. Removal of mRNA in DNA/RNA hybrid prior to the synthesis of the second strand of cDNA (1, 2) 2. Removal of poly (A) tails from mRNA after hybridization with oligo (dT) (3) 3. Oligodeoxyribonucleotide-directed site-specific cleavage of RNA (4) Specification Form: 50 units/ul in 20mM Tris-HCl (pH 7.5), 100mM KCl, 1mM DTT, 50% Glycerol Specific Activity: 100,000 units/mg protein Unit Definition: 1 unit is defined as the amount of the enzyme that hydrolyzes 1 nmol of the RNA in 3H labeled M13 DNA/RNA hybrid to acid-soluble ribonucleotides in 20 min at 37°C. Storage: -20°C Quality: Greater than 95% protein determined by SDS-PAGE (Fig. 1, CBB staining). Endo- and exo-DNase activities and RNase activity were not detected with 100 U/ml RNaseH in 50 ul reaction at 37°C. Reagents Supplied with Enzyme: 10X RNaseH Reaction Buffer: 100 mM Tris-HCl (pH 8.0), 100 mM MgCl2, 500 mM NaCl, 10 mM DTT, 500 ug/ml BSA (Bovine Serum Albumin) Caution: To avoid contamination of trace amounts of nucleic acids in BSA, use reaction buffer that does not contain BSA and use RNaseH at higher concentrations.
    [Show full text]