The Characterization of Oligonucleotides and Nucleic Acids Using Ribonuclease H and Mass Spectrometry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Site-Selective Artificial Ribonucleases: Renaissance of Oligonucleotide Conjugates for Irreversible Cleavage of RNA Sequences
molecules Review Site-Selective Artificial Ribonucleases: Renaissance of Oligonucleotide Conjugates for Irreversible Cleavage of RNA Sequences Yaroslav Staroseletz 1,†, Svetlana Gaponova 1,†, Olga Patutina 1, Elena Bichenkova 2 , Bahareh Amirloo 2, Thomas Heyman 2, Daria Chiglintseva 1 and Marina Zenkova 1,* 1 Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev’s Ave. 8, 630090 Novosibirsk, Russia; [email protected] (Y.S.); [email protected] (S.G.); [email protected] (O.P.); [email protected] (D.C.) 2 School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd., Manchester M13 9PT, UK; [email protected] (E.B.); [email protected] (B.A.); [email protected] (T.H.) * Correspondence: [email protected]; Tel.: +7-383-363-51-60 † These authors contributed equally to this work. Abstract: RNA-targeting therapeutics require highly efficient sequence-specific devices capable of RNA irreversible degradation in vivo. The most developed methods of sequence-specific RNA cleav- age, such as siRNA or antisense oligonucleotides (ASO), are currently based on recruitment of either intracellular multi-protein complexes or enzymes, leaving alternative approaches (e.g., ribozymes Citation: Staroseletz, Y.; Gaponova, and DNAzymes) far behind. Recently, site-selective artificial ribonucleases combining the oligonu- S.; Patutina, O.; Bichenkova, E.; cleotide recognition motifs (or their structural -
Ribonuclease A: Disulfide Bonds, Conformational Stability, and Cytotoxicity
Ribonuclease A: Disulfide Bonds, Conformational Stability, and Cytotoxicity by Tony A. Klink A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Biochemistry) at the UNIVERSITY OF WISCONSIN-MADISON 2()()() r OJ A dissertation entitled Ribonuclease A: Disulfide Bonds, Conformational Stability and Cytotoxicity submitted to the Graduate School of the University of Wisconsin-Madison in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Tony Anthony Klink Date of Final Oral Examination: August 4, 2000 Month & Year Degree to be awarded: December May August 2000 • * * * * * * • * * • * • • • • • * • • • * • • • • • • • • • • • • • * * • * • * * * • * • * • • • • • • * App oval Signature. f Dissertation Readers: Signature, Dean of Graduate School ---..., v.C~vJ,1A. 5. lJ,~k;at 1 Abstract Disulfide bonds between the side chains of cysteine residues are the only common cross links in proteins. Bovine pancreatic ribonuclease A (RNase A) is a 124-residue enzyme that contains four interweaving disulfide bonds (Cys26-Cys84, Cys40-Cys95, Cys58-CysllO, and Cys65-Cys72) and catalyzes the cleavage of RNA. The contribution of each disulfide bond to the confonnational stability and catalytic activity of RNase A was detennined using variants in which each cystine was replaced independently with a pair of alanine residues. Of the four disulfide bonds, the Cys40-Cys95 and Cys65-Cys72 cross-links are the least important to confonnational stability. Removing these disulfide bonds leads to RNase A variants that have Tm values below that of the wild-type enzyme but above physiological temperature. Unlike wild-type RNase A. G88R RNase A is toxic to cancer cells. To investigate the relationship between conformational stability and cytotoxicity, the C40AlC95A and C65A1C72A variants were made in the G88R background. -
Activation and Phosphorylation of the 'Dense-Vesicle' High-Affinity Cyclic AMP Phosphodiesterase by Cyclic AMP-Dependent Protein Kinase
Biochem. J. (1989) 260, 27-36 (Printed in Great Britain) 27 Activation and phosphorylation of the 'dense-vesicle' high-affinity cyclic AMP phosphodiesterase by cyclic AMP-dependent protein kinase Elaine KILGOUR, Neil G. ANDERSON and Miles D. HOUSLAY Molecular Pharmacology Group, Department of Biochemistry, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K. Incubation of a hepatocyte particulate fraction with ATP and the isolated catalytic unit of cyclic AMP- dependent protein kinase (A-kinase) selectively activated the high-affinity 'dense-vesicle' cyclic AMP phosphodiesterase. Such activation only occurred if the membranes had been pre-treated with Mg2". Mg2" pre-treatment appeared to function by stimulating endogenous phosphatases and did not affect phosphodiesterase activity. Using the antiserum DV4, which specifically immunoprecipitated the 51 and 57 kDa components of the 'dense-vesicle' phosphodiesterase from a detergent-solubilized membrane extract, we isolated a 32P-labelled phosphoprotein from 32P-labelled hepatocytes. MgCl2 treatment of such labelled membranes removed 32P from the immunoprecipitated protein. Incubation of the Mg2+-pre-treated membranes with [32P]ATP and A-kinase led to the time-dependent incorporation of label into the 'dense- vesicle' phosphodiesterase, as detected by specific immunoprecipitation with the antiserum DV4. The time- dependences of phosphodiesterase activation and incorporation of label were similar. It is suggested (i) that phosphorylation of the 'dense-vesicle' phosphodiesterase by A-kinase leads to its activation, and that such a process accounts for the ability of glucagon and other hormones, which increase intracellular cyclic AMP concentrations, to activate this enzyme, and (ii) that an as yet unidentified kinase can phosphorylate this enzyme without causing any significant change in enzyme activity but which prevents activation and phosphorylation of the phosphodiesterase by A-kinase. -
Determination of Pk, Values of the Histidine Side
Protein Science (1997), 6:1937-1944. Cambridge University Press. Printed in the USA Copyright 0 1997 The Protein Society Determination of pK, values of the histidine side chains of phosphatidylinositol-specific phospholipase C from Bacillus cereus by NMR spectroscopy and site-directed mutagenesis TUN LIU, MARGRET RYAN, FREDERICK W. DAHLQUIST, AND 0. HAYES GRIFFITH Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, Oregon 97403 (RECEIVEDDecember 4, 1996: ACCEPTEDMay 19, 1997) Abstract Two active site histidine residues have been implicated in the catalysis of phosphatidylinositol-specific phospholipase C (PI-PLC). In this report, we present the first study of the pK,, values of histidines of a PI-PLC. All six histidines of Bacillus cereus PI-PLC were studied by 2D NMR spectroscopy and site-directed mutagenesis. The protein was selec- tively labeled with '3C"-histidine. A series of 'H-I3C HSQC NMR spectra were acquired over a pH range of 4.0-9.0. Five of the six histidines have been individually substituted with alanine to aid the resonance assignments in the NMR spectra. Overall, the remaining histidines in the mutants show little chemical shift changes in the 'H-"C HSQC spectra, indicating that the alanine substitution has no effect on the tertiary structure of the protein. H32A and H82A mutants are inactive enzymes, while H92A and H61A are fully active, and H81A retains about 15% of the wild-type activity. The active site histidines, His32 and His82, display pK,, values of 7.6 and 6.9, respectively. His92 and His227 exhibit pK, values of 5.4 and 6.9. -
Redundancy in Ribonucleotide Excision Repair: Competition, Compensation, and Cooperation
DNA Repair 29 (2015) 74–82 Contents lists available at ScienceDirect DNA Repair j ournal homepage: www.elsevier.com/locate/dnarepair Redundancy in ribonucleotide excision repair: Competition, compensation, and cooperation ∗ Alexandra Vaisman, Roger Woodgate Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA a r t i c l e i n f o a b s t r a c t Article history: The survival of all living organisms is determined by their ability to reproduce, which in turn depends Received 1 November 2014 on accurate duplication of chromosomal DNA. In order to ensure the integrity of genome duplication, Received in revised form 7 February 2015 DNA polymerases are equipped with stringent mechanisms by which they select and insert correctly Accepted 9 February 2015 paired nucleotides with a deoxyribose sugar ring. However, this process is never 100% accurate. To fix Available online 16 February 2015 occasional mistakes, cells have evolved highly sophisticated and often redundant mechanisms. A good example is mismatch repair (MMR), which corrects the majority of mispaired bases and which has been Keywords: extensively studied for many years. On the contrary, pathways leading to the replacement of nucleotides Ribonucleotide excision repair with an incorrect sugar that is embedded in chromosomal DNA have only recently attracted significant Nucleotide excision repair attention. This review describes progress made during the last few years in understanding such path- Mismatch repair Ribonuclease H ways in both prokaryotes and eukaryotes. Genetic studies in Escherichia coli and Saccharomyces cerevisiae Flap endonuclease demonstrated that MMR has the capacity to replace errant ribonucleotides, but only when the base is DNA polymerase I mispaired. -
(PDE 1 B 1) Correlates with Brain Regions Having Extensive Dopaminergic Innervation
The Journal of Neuroscience, March 1994, 14(3): 1251-l 261 Expression of a Calmodulin-dependent Phosphodiesterase lsoform (PDE 1 B 1) Correlates with Brain Regions Having Extensive Dopaminergic Innervation Joseph W. Polli and Randall L. Kincaid Section on Immunology, Laboratory of Molecular and Cellular Neurobiology, National Institute on Alcohol Abuse and Alcoholism, Rockville, Maryland 20852 Cyclic nucleotide-dependent protein phosphorylation plays PDE implies an important physiological role for Ca2+-regu- a central role in neuronal signal transduction. Neurotrans- lated attenuation of CAMP-dependent signaling pathways mitter-elicited increases in cAMP/cGMP brought about by following dopaminergic stimulation. activation of adenylyl and guanylyl cyclases are downre- [Key words: CAMP, cyclase, striatum, dopamine, basal gulated by multiple phosphodiesterase (PDE) enzymes. In ganglia, DARPP-321 brain, the calmodulin (CaM)-dependent isozymes are the major degradative activities and represent a unique point of Cyclic nucleotides, acting as “second messengers”or via direct intersection between the cyclic nucleotide- and calcium effects, regulate a diverse array of neuronal functions, from ion (Ca*+)-mediated second messenger systems. Here we de- channel conductance to gene expression. Hydrolysis of 3’,5’- scribe the distribution of the PDEl Bl (63 kDa) CaM-depen- cyclic nucleotidesto 5’-nucleosidemonophosphates is the major dent PDE in mouse brain. An anti-peptide antiserum to this mechanismfor decreasingintracellular cyclic nucleotide levels. isoform immunoprecipitated -3O-40% of cytosolic PDE ac- This reaction is catalyzed by cyclic nucleotide phosphodiester- tivity, whereas antiserum to PDElA2 (61 kDa isoform) re- ase (PDE) enzymes that constitute a large superfamily (Beavo moved 60-70%, demonstrating that these isoforms are the and Reifsynder, 1990). -
Supporting Information
Supporting Information Figure S1. The functionality of the tagged Arp6 and Swr1 was confirmed by monitoring cell growth and sensitivity to hydeoxyurea (HU). Five-fold serial dilutions of each strain were plated on YPD with or without 50 mM HU and incubated at 30°C or 37°C for 3 days. Figure S2. Localization of Arp6 and Swr1 on chromosome 3. The binding of Arp6-FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) are compared. The position of Tel 3L, Tel 3R, CEN3, and the RP gene are shown under the panels. Figure S3. Localization of Arp6 and Swr1 on chromosome 4. The binding of Arp6-FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) in the whole chromosome region are compared. The position of Tel 4L, Tel 4R, CEN4, SWR1, and RP genes are shown under the panels. Figure S4. Localization of Arp6 and Swr1 on the region including the SWR1 gene of chromosome 4. The binding of Arp6- FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) are compared. The position and orientation of the SWR1 gene is shown. Figure S5. Localization of Arp6 and Swr1 on chromosome 5. The binding of Arp6-FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) are compared. The position of Tel 5L, Tel 5R, CEN5, and the RP genes are shown under the panels. Figure S6. Preferential localization of Arp6 and Swr1 in the 5′ end of genes. Vertical bars represent the binding ratio of proteins in each locus. -
A Novel, Highly Potent and Selective Phosphodiesterase-9 Inhibitor for the Ferrata Storti Foundation Treatment of Sickle Cell Disease
Red Cell Biology & its Disorders ARTICLE A novel, highly potent and selective phosphodiesterase-9 inhibitor for the Ferrata Storti Foundation treatment of sickle cell disease James G. McArthur,1 Niels Svenstrup,2 Chunsheng Chen,3 Aurelie Fricot,4 Caroline Carvalho,4 Julia Nguyen,3 Phong Nguyen,3 Anna Parachikova,2 Fuad Abdulla,3 Gregory M. Vercellotti,3 Olivier Hermine,4 Dave Edwards,5 Jean-Antoine Ribeil,6 John D. Belcher3 and Thiago T. Maciel4 1Imara Inc., 2nd Floor, 700 Technology Square, Cambridge, MA, USA; 2H. Lundbeck A/S, 3 Haematologica 2020 Ottiliavej 9, 2500 Valby, Denmark; Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USA; Volume 105(3):623-631 4INSERM UMR 1163, CNRS ERL 8254, Imagine Institute, Laboratory of Excellence GR-Ex, Paris Descartes - Sorbonne Paris Cité University, Paris, France; 5Kinexum, 8830 Glen Ferry Drive, Johns Creek, GA, USA and 6Departments of Biotherapy, Necker Children’s Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris Descartes- Sorbonne Paris Cité University, Paris, France ABSTRACT he most common treatment for patients with sickle cell disease (SCD) is the chemotherapeutic hydroxyurea, a therapy with Tpleiotropic effects, including increasing fetal hemoglobin (HbF) in red blood cells and reducing adhesion of white blood cells to the vascular endothelium. Hydroxyurea has been proposed to mediate these effects through a mechanism of increasing cellular cGMP levels. An alternative path to increasing cGMP levels in these cells is through the use of phospho- diesterase-9 inhibitors that selectively inhibit cGMP hydrolysis and increase cellular cGMP levels. We have developed a novel, potent and selective phosphodiesterase-9 inhibitor (IMR-687) specifically for the treatment of Correspondence: SCD. -
Reduction of Pectinesterase Activity in a Commercial Enzyme Preparation
Journal of the Science of Food and Agriculture J Sci Food Agric 85:1613–1621 (2005) DOI: 10.1002/jsfa.2154 Reduction of pectinesterase activity in a commercial enzyme preparation by pulsed electric fields: comparison of inactivation kinetic models Joaquın´ Giner, Pascal Grouberman, Vicente Gimeno and Olga Martın´ ∗ Department of Food Technology, University of Lleida, CeRTA-UTPV, ETSEA, Avda Alcalde Rovira Roure 191, 25198-Lleida, Spain Abstract: The inactivation of pectinesterase (PE) in a commercial enzyme preparation (CEP) under high intensity pulsed electric fields (HIPEF) was studied. After desalting and water dilution of the raw CEP, samples were exposed to exponentially decay waveform pulses for up to 463 µs at electric field intensities ranging from 19 to 38 kV cm−1. Pulses were applied in monopolar mode. Experimental data were fitted to a first-order kinetic model as well as to models based on Fermi, Hulsheger¨ or Weibull equations to describe PE inactivation kinetics. Characteristic parameters for each model were calculated. Relationships between some of the parameters and process variables were obtained. The Weibull model yielded the best accuracy factor. The relationship between residual PE and input of electrical energy density was found to be that of exponential decay. 2005 Society of Chemical Industry Keywords: pulsed electric fields; kinetics; pectinesterase; model; inactivation INTRODUCTION It has become customary to use CEPs in fruit and Pectinesterase (PE; EC 3.1.1.11) is a pectic enzyme vegetable juice technology. Depending -
Serum 5-Nucleotidase by Theodore F
J Clin Pathol: first published as 10.1136/jcp.7.4.341 on 1 November 1954. Downloaded from J. clin. Path. (1954), 7, 341. SERUM 5-NUCLEOTIDASE BY THEODORE F. DIXON AND MARY PURDOM t0o From the Biochemistry Department, the Institute of Orthopaedics, Stanmore, Middlesex (RECEIVED FOR PUBLICATION DECEMBER 8. 1953) Reis (1934, 1940, 1951) has demonstrated the add the molybdate solution, and dilute with washings to presence of alkaline phosphatase in various tissues 1 litre with water. specifically hydrolysing 5-nucleotidase such as Standard Phosphate Solution.-KH2PO4 0.02195 g., adenosine and inosine-5-phosphoric acids. The and 50 g. trichloracetic acid, made up to 1 litre. This enzyme has its optimum action at pH 7.8 and in all solution contains 0.02 mg. P in 4 ml. human tissues except intestinal mucosa its activity, at the physiological pH range, is much more Methods pronounced than that of the non-specific alkaline Non-specific alkaline phosphatase activity is high at phosphatase. Thus ossifying cartilage, one of the pH 9 towards phenylphosphate adenosine phosphate classical sites of high alkaline phosphatase activity, and glycerophosphate, in this decreasing order (cf. Reis, although very active against say phenyl phosphoric 1951). At pH 7.5, however, the total phosphatase acids at pH 9, is more active against adenosine-5- activity is equally low towards phenyl- or glycero-phos- phosphoric at pH 7.5. This finding suggested to phate -nd the higher activity towards adenosine-5- phosphate at this reaction is reasonably inferred to be Reis that the enzyme might play a part in calcifica- due to the specific 5-nucleotidase. -
Potent Inhibition of Human Telomerase by U-73122
Journal of Biomedical Science (2006) 13:667–674 667 DOI 10.1007/s11373-006-9100-z Potent inhibition of human telomerase by U-73122 Yi-Jui Chen, Wei-Yun Sheng, Pei-Rong Huang & Tzu-Chien V. Wang* Department of Molecular and Cellular Biology, Chang Gung University, Kwei-San, Tao-Yuan, 333, Taiwan Received 28 April 2006; accepted 14 June 2006 Ó 2006 National Science Council, Taipei Key words: alkylating agents, cancer therapyzU-73122, N-ethylmaleimide, telomerase inhibitor Summary Telomerase activity is repressed in normal human somatic cells, but is activated in most cancers, suggesting that telomerase may be an important target for cancer therapy. In this study, we report that U-73122, an amphiphilic alkylating agent that is commonly used as an inhibitor for phospholipase C, is also a potent and selective inhibitor of human telomerase. The inhibition of telomerase by U-73122 was attributed primarily to the pyrrole-2,5-dione group, since its structural analog U-73343 did not inhibit telomerase. In confirmation, we observed that telomerase was inhibited by N-ethylmaleimide, but not N-ethylsuccinimide. The IC50 value of U-73122 for the in vitro inhibition of telomerase activity is 0.2 lM, which is comparable to or slightly more sensitive than that for phospholipase C. The inhibitory action of U-73122 on telomerase appears to be rather selective since the presence of externally added proteins did not protect the inhibition and the IC50 values for the other enzymes tested in this study were at least an order of magnitude higher than that for telomerase. Furthermore, we demonstrate that U-73122 can inhibit telomerase in hemato- poietic cancer cells. -
Specific Binding of a Hela Cell Nuclear Protein to RNA Sequences in The
Proc. Nati. Acad. Sci. USA Vol. 86, pp. 4858-4862, July 1989 Biochemistry Specific binding of a HeLa cell nuclear protein to RNA sequences in the human immunodeficiency virus transactivating region (chemical nuclease imprinting/untranslated RNA binding protein 1) RICHARD GAYNOR*tt, EMMANUEL SOULTANAKIS*t, MICHIo KUWABARA*§, JOSEPH GARCIA*t, AND DAVID S. SIGMAN*§ *Molecular Biology Institute, and tDivision of Hematology-Oncology, Department of Medicine, and §Department of Biological Chemistry, School of Medicine, and tWadsworth Veterans Hospital, University of California, Los Angeles, CA 90024 Communicated by Paul D. Boyer, March 27, 1989 ABSTRACT The transactivator protein, tat, encoded by been shown to be involved in increasing the steady-state level the human immunodeficiency virus is a key regulator of viral of RNA, it has also been reported to increase the translation transcription. Activation by the tat protein requires sequences of RNA (15, 17, 22). The possibility that increased levels of downstream of the transcription initiation site called the trans- RNA are attributable to an antitermination mechanism has activating region (TAR). RNA derived from the TAR is capable also been raised (5, 18-20, 27). In contrast to other transac- offorming a stable stem-oop structure and the maintenance of tivating proteins, such as ElA (28), which activate a number both the stem structure and the loop sequences located between of viral and cellular promoters, tat activation is specific for + 19 and +44 is required for complete in vivo activation by tat. the HIV LTR. It is of interest to identify features ofthe TAR Gel retardation assays with RNA from both wild-type and responsible for this selectivity.