High-Level Expression, Purification, and Thermus Aquatlcus DNA

Total Page:16

File Type:pdf, Size:1020Kb

High-Level Expression, Purification, and Thermus Aquatlcus DNA Downloaded from genome.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press High-level Expression, Purification, and Enzymatic Characterization of Full-length Thermus aquatlcus DNA Polymerase and a Truncated Form Deficient in 5' to 3' Exonuclease Activity Frances C. Lawyer, 1 Susanne Stoffel, 1 Randall K. Saiki, 2 Sheng-Yung Chang, 3 Phoebe A. Landre, ~ Richard D. Abrarnson, 1 and David H. Gelfand 1 1Program in Core Research and Departments of 2Human Genetics and 3Infectious Disease, Roche Molecular Systems, Alameda, California 94501 The Thermus aquaticus DNA poly- life of 9 min at 97.5~ The Stoffel I in the native host is quite low (0.01- merase I (Taq Pol I) gene was cloned fragment has a half-life of 21 min at 0.02% of total protein). The cloning and into a plasmid expression vector that 97.5~ Taq Pol I contains a polymer- expression of full-length 94-kD Taq Pol I utilizes the strong bacteriophage ization-dependent 5' to 3' exonu- in E. coli under control of the E. coli lac PL promoter. A truncated form of Taq clease activity whereas the Stoffel promoter r or the tac promoter (7~ has Pol I was also constructed. The two fragment, deleted for the 5' to 3' ex- been reported. Because polymerase constructs made it possible to com- onuclease domain, does not possess yields in these constructs were low pare the full-length 832-amino-acid that activity. A comparison is made (-0.01% of total protein in our initial Taq Pol I and a deletion derivative among thermostable DNA poly- construct; see ref. 5), we sought to im- encoding a 544-amino-acid transla- merases that have been character- prove the expression level of the enzyme tion product, the Stoffel fragment. ized; specific activities of 292,000 by mutagenizing the 5' and 3' ends of Upon heat induction, the 832-amino- units/mg for Taq Pol I and 369,000 the gene and cloning the mutagenized acid construct produced 1-2% of to- units/mg for the Stoffel fragment are gene into a more suitable expression vec- tal protein as Taq Pol I. The induced the highest reported. tor. We also constructed a truncated Taq 544-amino-acid construct produced Pol I gene, deleted for the first 867 bp of 3% of total protein as Stoffel frag- the gene, which yields a predicted 61-kD ment. Enzyme purification included translation product. The 61-kD deriva- cell lysis, heat treatment followed by tive, Taq Pol I Stoffel fragment, is active Polymin P precipitation of nucleic ac- The thermostable DNA polymerase I in polymerase assays and PCR and is de- ids, phenyl sepharose column chro- (Taq Pol I) from Thermus aquaticus (Taq) void of the inherent 5' to 3' exonuclease matography, and heparin-Sepharose greatly improves the yield, specificity, activity of Taq Pol I. A similarly trun- column chromatography. For full- automation, and utility of the poly- cated gene deleted for the first 705 bp, length 94-kD Taq Pol I, yield was merase chain reaction (PCR) ~l'z~ method has recently been constructed, yielding 3.26x 107 units of activity from 165 of amplifying DNA fragments. ~3~ Fur- an approximately 67-kD translation grams wet weight cell paste. For the thermore, because of the high turnover product, KlenTaq DNA polymerase. (8~ 61-kD Taq Pol I Stoffel fragment, the number, lack of proofreading activity, Protein produced by the two constructs yield was 1.03 • 106 units of activity high temperature optimum, and ability described here provides a plentiful sup- from 15.6 grams wet weight cell to incorporate 7-deaza-2-deoxyguano- ply of the two forms of Taq Pol I enzyme, paste. The two enzymes have maxi- sine efficiently, Taq Pol I yields long thereby enabling their biochemical mal activity at 75~ to 80~ 2-4 mM stretches of readable DNA sequence that properties to be investigated. The study MgClz and 10-55 mM KCI. The nature are uniform in intensity and free of of these enzymes not only provides key of the substrate determines the pre- background. ~4~ insights into nucleic acid metabolism, cise conditions for maximal enzyme A 94-kD Taq Pol I has been purified but also provides useful information to activity. For both proteins, MgCI2 is from Taq, but growing the organism is those investigators who exploit DNA the preferred cofactor compared to more difficult than growing Escherichia polymerases in specialized molecular bi- MnCI z, CoCIz, and NiCI 2. The full- coll. Although the activity yield is high ology techniques, including the PCR. length Taq Pol I has an activity half- (40--60%), the expression level of Taq Pol Advancements in PCR methodology 2:275-2879 by Cold Spring Harbor Laboratory Press ISSN 1054-9803/93 $3.00 PCR Methods and Applications 275 Downloaded from genome.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press depend in part on an increased under- (pH 7.2), 5 mM MgC12.(17~ Single- tion products were transformed into standing of the biochemistry of thermo- stranded template DNA was prepared by DG98. Nitrocellulose filters containing stable DNA polymerases, as such conventional methods r from M13 ampicillin-resistant transformants were information aids substantially in the phage TSYC657 (7.359 kb), a derivative hybridized according to the method of constant refinement of this and other re- of M13mpl0 containing a 129-nucle- Woods et al. (23) with 3zp-labeled DG26 search techniques. otide insert derived from a Streptornyces probe. Positive colonies were picked and limosus a-amylase gene. (~8~ The 24-mer screened by restriction analysis of alka- synthetic oligodeoxynucleotide primer line-SDS miniptasmid preparations. A MATERIALS AND METHODS SC64 (Table 1) is complementary to the representative correct candidate was des- Bacterial Strains and Plasmids S. limosus-derived insert in TSYC657 and ignated pLSG2 (Fig. 1). has a calculated melting temperature of For mutagenesis of pLSG2, 0.5 pmole E. coli strain DG98 (thi-1 endA1 hsdR17 95~ at 0.12 I~M in 100 mM NaCI. Primer of single-stranded pLSG2, 0.5 pmole of lacI Q IacZAM15 proC::TnlO supE44/ F'la- and template were annealed at $83 nM PvuII-digested, CIAP-treated pBS § and cIQ IacZAM15 proC +) has been de- SC64 and 256 nM TSYC657(2.2:l primer: 2.5 pmoles of oligonucleotide SC107 scribed. (9~ E. coli strain DGl16 [thi-1 template) in 10 mM Tris-HC1 (pH 8.0) 6 (Table 1) were annealed. Extension, endA1 hsdR17 supE44 (hcI857 bloT76 mM MgCl2, and 50 mM KCI. The mixture transformation, and screening were per- M-/1)] is a derivative of strain MM294 (1~ was heated at 95~ for 4 rain, incubated formed as described above, using 32p-la- containing a defective h prophage. at 70~ for 10 min, and cooled to room beled SC107 as the probe. A representa- DGl16 was prepared using bacterioph- temperature. tive correct candidate was designated age P1 transduction ~1~ and E. coli strain pSYC1578 (Fig. 1). N6590 [C600 rK- mK- thr leu pro IacZXA21::Tn10 (hcI857 bloT76 M-/1), Cloning Procedures Assembly of a Full-length Taq Pol I provided by M. Gottesman, Columbia For oligonucleotide site-directed mu- Gene in High-level Expression University] as the source of the defective tagenesis, single-stranded DNA was pre- Vectors prophage. Plasmid pBS § was purchased pared from pBS § plasmid derivatives from Stratagene. Plasmid pFC54.T has pLSG1 and pLSG2 as described. (s~ Com- An SphI and BglII-digest of pSYC1578 been described. (~z~ Plasmid pDG160, a petent cells were prepared and transfor- DNA was ligated with HindIII- and derivative of pFC54.T, contains a conve- mations were carried out by the method BamHI-digested vector pFC54.T and an nient restriction site polylinker between of Hanahan. (19~ Alkaline-SDS miniplas- annealed duplex oligonucleotide, DG271 the PL promoter and retroregulator cas- mid DNA preparations were carried out 28 (Table 1). The oligonucleotide duplex settes. by the method of Birnboim and Doly. (2~ provided HindIII and SphI cohesive ends Enzymatic dideoxynucleotide DNA se- and codons one, two, and two of three Reagents quence analysis r confirmed all DNA nucleotides for codon three of Taq Pol I. sequence alterations. The resulting plasmid was designated Restriction endonucleases [New England pLSG5 (Fig. 1). Biolabs (NEB)], E. coli DNA polymerase I, Oligonucleotide Site-directed large fragment (Klenow) (U.S. Biochem- Mutagenesis (22) Assembly of a Truncated Taq Pol I icals), T4 DNA ligase, (~3~ calf intestine al- Gene kaline phosphatase (CIAP) (Boehringer- For pLSG1 mutagenesis, 0.24 pmole of Mannheim), and polynucleotide kinase single-stranded pLSG1, 0.36 pmole of A BstXI digest of pSYC1578 was treated (kinase) (NEB) were used according to PvuII-digested CIAP-treated vector pBS +, with Klenow to generate blunt ends. The standard procedures. Oligonucleotides and 0.48 pmole of primer DG26 (Table DNA was then treated with BglII and a were phosphorylated as described. (~4~ 1) were annealed. The mixture was put 1619-bp BstXI-blunt-BgllI fragment (en- Molecular weight standards for SDS- on ice and TTP, dGTP, dATP, [3H]dCTP coding Taq Pol I codons 294-832) was polyacrylamide gel electrophoresis were each added to 200 p.M along with 1 isolated via gel electrophoresis and elec- (PAGE) were purchased from Pharma- unit of Klenow fragment. The extension troelution. The isolated DNA fragment cia [~/-3zp]ATP (3000 Ci/mmole), mixture was incubated at 0~ for 30 min was ligated to HindlII- and BamHI-di- [R-32p]dCTP (800 Ci/mmole), and and then at 30~ for 30 rain. The reac- gested vector pFC54.T and an annealed [3H]dCTP (22.8 Ci/mmole), were pur- chased from New England Nuclear.
Recommended publications
  • Klenow Fragment, #EP0054
    Description Klenow Fragment is the Large Fragment of DNA Polymerase I, E.coli . It exhibits 5' →3' polymerase activity and 3' →5' exonuclease (proofreading) activity, but lacks 5' →3' exonuclease activity of DNA Polymerase I. PRODUCT INFORMATION Applications Klenow Fragment • DNA blunting by fill-in of 5’-overhangs or removal of 3‘-overhangs. (1), see protocols on back page. • Random-primed DNA labeling (2-4). #EP0054 300 U • Labeling by fill-in 5 ’-overhangs of dsDNA. Lot: _ Expiry Date: _ • DNA sequencing by the Sanger method (5). • Site-specific mutagenesis of DNA with synthetic oligonucleotides (6). Concentration: 2 U/µL • Second strand synthesis of cDNA (7). Source Supplied with: 1 mL of 10X Reaction Buffer E.coli cells with a cloned fragment of the polA gene. Molecular Weight 68 kDa monomer. Store at -20 °C Definition of Activity Unit One unit of the enzyme catalyzes the incorporation of 10 nmol of deoxyribonucleotides into a polynucleotide fraction (adsorbed on DE-81) in 30 min at 37°C. Enzyme activity is assayed in the following mixture: 50 mM Tris-HCl (pH 8.0 at 25°C), 5 mM MgCl 2, 1 mM DTT, In total 2 vials. 0.033 mM dNTP, 0.4 M Bq/mL [3H]-dTTP and 62.5 µg/mL activated salmon milt DNA. www.thermoscientific.com/onebio Rev.9 V Storage Buffer CERTIFICATE OF ANALYSIS The enzyme is supplied in: 25 mM Tris-HCl (pH 7.5), Endodeoxyribonuclease Assay 0.1 mM EDTA, 1 mM DTT and 50% (v/v) glycerol. 10X Reaction Buffer No conversion of covalently closed circular DNA to nicked DNA was detected after incubation of 20 units of Klenow 500 mM Tris-HCl (pH 8.0 at 25°C), 50 mM MgCl 2, 10 mM DTT.
    [Show full text]
  • RT-PCR Protocol Utilizing RT-PCR
    Protocol TD-P Revision 1.0 Creation Date: 2/18/2019 Revision Date: 4/24/2019 Reverse Transcription-Polymerase Chain Reaction (RT-PCR) Utilizing RT-PCR Kit Introduction Our RT-PCR Kit combines two powerful mixtures: i) 5x Master Mix and ii) Hot start Taq 2x master mix with a standard buffer for 2-step RT-PCR. The two mixtures require minimal handling during the reaction setup and offer consistent and robust RT-PCR reactions. First strand cDNA synthesis is achieved by using the 5x Master Mix, which contains Reverse Transcriptase, recombinant RNase inhibitor, dNTPs, an optimized buffer, MgCl2 and protein stabilizers. Reverse Transcriptase is a recombinant MMLV reverse transcriptase with reduced RNase H activity and increased thermostability. This kit also provides two optimized primers and nuclease-free water. An anchored Oligo-dT primer [d(T)23VN] forces the primer to anneal to the beginning of the polyA tail and the random hexamer primer mix provides random and consistent priming sites covering the entire RNA templates including both mRNAs and non- polyadenylated RNAs. In addition, this kit is highly efficient at producing full-length cDNA from long RNA templates at temperatures between 42-55°C. The amplification step features a high quality Hot Start Taq DNA Polymerase, which offers higher fidelity and better amplification in a master mix format. RT-PCR product can be generated up to 6 kb. Our RT-PCR Kit can be used for cDNA synthesis followed by gene expression data validation. The advantages of our RT-PCR Kit include robust and active cDNA synthesis at temperatures up to 55°C and high efficiency at producing full-length cDNA from as little as 50 pg of total RNA.
    [Show full text]
  • Expression of Telomerase Activity, Human Telomerase RNA, and Telomerase Reverse Transcriptase in Gastric Adenocarcinomas Jinyoung Yoo, M.D., Ph.D., Sonya Y
    Expression of Telomerase Activity, Human Telomerase RNA, and Telomerase Reverse Transcriptase in Gastric Adenocarcinomas Jinyoung Yoo, M.D., Ph.D., Sonya Y. Park, Seok Jin Kang, M.D., Ph.D., Byung Kee Kim, M.D., Ph.D., Sang In Shim, M.D., Ph.D., Chang Suk Kang, M.D., Ph.D. Department of Pathology, St. Vincent’s Hospital, Catholic University, Suwon, South Korea esis of gastric cancer and may reflect, along with Telomerase is an RNA-dependent DNA polymerase enhanced hTR, the malignant potential of the tu- that synthesizes TTAGGG telomeric DNA onto chro- mor. It is noteworthy that methacarn-fixed tissue mosome ends to compensate for sequence loss dur- cannot as yet substitute for the frozen section in the ing DNA replication. It has been detected in 85–90% TRAP assay. of all primary human cancers, implicating that the telomerase seems to be reactivated in tumors and KEY WORDS: hTR, Stomach cancer, Telomerase, that such activity may play a role in the tumorigenic TERT. process. The purpose of this study was to evaluate Mod Pathol 2003;16(7):700–707 telomerase activity, human telomerase RNA (hTR), and telomerase reverse transcriptase (TERT) in Recent studies of stomach cancer have been di- stomach cancer and to determine their potential rected toward gaining a better understanding of relationships to clinicopathologic parameters. Fro- tumor biology. Molecular analysis has suggested zen and corresponding methacarn-fixed paraffin- that alterations in the structures and functions of embedded tissue samples were obtained from 51 oncogenes and tumor suppressor genes, genetic patients with gastric adenocarcinoma and analyzed instability, as well as the acquisition of cell immor- for telomerase activity by using a TRAPeze ELISA tality may be of relevance in the pathogenesis of kit.
    [Show full text]
  • Llll|Llll Technical Tips
    Downloaded from genome.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press llll|llll Technical Tips The reverse transcriptase-polymerase reverse transcriptase, the multiple Single-step chain reaction (RT-PCR) provides an ef- rounds of amplification catalyzed by Elimination of fective method for detecting very small DNA polymerase are equally effective amounts of a specific mRNA in a small at amplifying either the cDNA or con- Contaminating sample of total RNA.O,2) Unfortunate- taminating genomic DNA. Even mi- DNA Prior to ly, for purposes of detecting RNA by nuscule amounts of contaminating this procedure, after the initial step of DNA (<1%) can produce a false- Reverse converting RNA into cDNA using positive amplification signal in an RT- Transcriptase PCR Donald D. Dilworth and John R. McCarrey Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, Texas 78228 FIGURE 1 Effects of pretreatment with nuclease on production of amplification signals by RT-PCR. Five hundred nanograms of total RNA from mouse liver supplemented with 0, 1, 5, or 10% genomic DNA was subjected to RT-PCR using primers determined from the mouse 13- actin cDNA sequence, (14) and reverse transcriptase and AmpliTaq DNA polymerase (Perkin- Elmer Cetus). Primers used were: (upstream) 5'-GCGGACTGTTACTGAGCTGCGT-3' and (downstream) 5 ' -GAAGCAATGCTGTCACCTTCCC-3 ', which delineated a 453-bp amplifica- tion product from either a cDNA or genomic DNA template, since this sequence apparently does not span an intron in genomic DNA. In each case a comparison of amplification with (+) or without (-) the addition of reverse transcriptase is shown. (A) RT-PCR with no prior nuclease treatment.
    [Show full text]
  • Pfu DNA Polymerase Deoxynucleoside-Triphosphate: DNA Deoxynucleotidyl-Transferase (DNA-Directed); EC 2.7.7.7
    Version 060918 G:\products\productflyer\pcr\polymerasen\proof\descr_m3004_pfu_en.docx ENAXXON fon: +49(0)731 – 3608 123 X G fax: +49(0)731 – 3608 962 b i o s c i e n c e E-Mail: [email protected] Pfu DNA Polymerase Deoxynucleoside-triphosphate: DNA deoxynucleotidyl-transferase (DNA-directed); EC 2.7.7.7 Product Cat# Package size Pfu DNA Polymerase (proof-reading polymerase) M3004.0250 250 units Pfu DNA Polymerase (proof-reading polymerase) M3004.0500 2 x 250 units Pfu DNA Polymerase (proof-reading polymerase) M3004.1250 5 x 250 units Description The Genaxxon bioscience Pfu DNA Polymerase is a thermostable enzyme possessing 5‘-3‘ DNA polymerase and 3‘-5‘ proof reading exonuclease activities. It is isolated from the hyperthermophilic marine archae Pyroccocus furiosus (Pfu). The enzyme provides extremely high fidelity. Whereas the enzyme is not able to amplify long fragments as efficiently as the Genaxxon Taq polymerase because of its very high exonuclease activity. To overcome this restriction we recommend to use the Genaxxon ReproFast DNA Polymerase, which will provide a more robust synthesis of longer amplification products (Barnes et al. (1994) Proc. Natl. Acad. Sci., USA 91, 2216-2220). Use of the Genaxxon Pfu DNA Polymerase in amplification results in blunt-ended products, which is not recommended for cloning into T/A vectors. Concentration: 2.5 units/µL Unit definition: One unit is defined as the amount of enzyme that incorporates 10nmoles of dNTPs into acid-insoluble form in 30 min at 72°C under the assay conditions (25mM TAPS (tris-(hydroxymethyl)methyl-amino-propane-sulphonic acid, sodium salt) pH9.3 (at 25°C), 50mM KCl, 2mM MgCl2, 1mM ß-mercaptoethanol) and activated calf thymus DNA as substrate.
    [Show full text]
  • Klenow Fragment Is a Mesophilic DNA Polymerase Derived from the E.Coli Polymerase I DNA- Klenow Fragment Dependent Repair Enzyme
    Product Specifications P7060L Rev C Product Information Product Description: Klenow Fragment is a mesophilic DNA polymerase derived from the E.coli Polymerase I DNA- Klenow Fragment dependent repair enzyme. The enzyme exhibits DNA synthesis and proofreading (3′→5′) nuclease activities, and, Part Number P7060L in the absence of the holoenzyme’s (5′→3′) nuclease domain, displays a moderate strand displacement activity Concentration 5,000 U/mL during DNA synthesis. The protein is expressed as a Unit Size 2,500 U truncated product of the E.coli PolA gene. Storage Temperature -25⁰C to -15⁰C Product Specifications P7060 Specific SS DS E. coli DNA Assay SDS Purity DS Exonuclease Activity Exonuclease Endonuclease Contamination Units Tested n/a n/a 50 50 50 50 Specification >99% 5,000 U/mg Functional Functional No Conversion <10 copies Source of Protein: A recombinant E. coli strain carrying the Klenow Fragment gene. Unit Definition: 1 unit is defined as the amount of polymerase required to convert 10 nmol of dNTPs into acid insoluble material in 30 minutes at 37°C. Molecular weight: 68,202 Daltons Quality Control Analysis: Unit Activity is measured using a 2-fold serial dilution method. Dilutions of enzyme were made in a 50% glycerol Klenow (3’-5’ exo-) storage solution and added to 50 µL reactions containing Calf Thymus DNA, 1X Klenow Reaction Buffer, 3H-dTTP and 100 µM dNTPs. Reactions were incubated 10 minutes at 37°C, plunged on ice, and analyzed using the method of Sambrook and Russell (Molecular Cloning, v3, 2001, pp. A8.25-A8.26). Protein Concentration (OD280) is determined by OD280 absorbance.
    [Show full text]
  • Optimization of the TRAP Assay to Evaluate Specificity of Telomerase Inhibitors
    Laboratory Investigation (2005) 85, 1565–1569 & 2005 USCAP, Inc All rights reserved 0023-6837/05 $30.00 www.laboratoryinvestigation.org Optimization of the TRAP assay to evaluate specificity of telomerase inhibitors Kamilla Piotrowska1,*, Elke Kleideiter1,*, Thomas E Mu¨ rdter1, Sebastian Taetz2, Christiane Baldes2, Ulrich Schaefer2, Claus-Michael Lehr2 and Ulrich Klotz1 1Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany and 2Department of Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbru¨cken, Germany Telomerase inhibition represents a promising approach to anticancer treatment. In order to clarify the therapeutic potential of telomerase inhibitors we examined different substances (small molecule compounds BIBR1532 and BRACO19, as well as hTR antisense oligonucleotides 20-O-methyl RNA and PNA) in A-549, MCF-7, and Calu-3 cell lines in a cell-free TRAP assay. We demonstrated that each of the tested agents inhibited telomerase in all used cell lines and that the antisense oligonucleotides represent the most potent inhibitors. Interestingly, upon evaluating the specificity of telomerase inhibitors we found out that not all agents acted specifically against telomerase. We observed that BRACO19 and PNA had an inhibitory effect also on PCR s amplification of the TSR8 oligonucleotide which is provided in the TRAPEZE kit as a PCR control. By modifying the experimental protocol and using a different reverse primer we were able to enhance PNA selectivity, although the PCR inhibition of the TSR8 control template by BRACO19 could not be prevented. We propose an explanation for the lack of target specificity and suggest caution when testing putative telomerase inhibitors, as it appears that some of those substances may not affect specifically telomerase or telomeric G-rich sequences and thus can lead to the misinterpretation of experimental results.
    [Show full text]
  • Datasheet for Longamp® Taq DNA Polymerase (M0323; Lot 0101212)
    Unit Definition: One unit is defined as the amount 3. Mg++ and additives: 25 µl 50 µl FInal ® ++ LongAmp Taq of enzyme that will incorporate 10 nmol of dNTP COMPONENT REacTION REacTION CONCENTRATION Mg concentration of 1.5–2.0 mM is optimal into acid insoluble material in 30 minutes at 75°C. 5X LongAmp Taq for most PCR products generated with ++ DNA Polymerase Reaction Buffer 5 µl 10 µl 1X LongAmp Taq DNA Polymerase. The final Mg ™ Unit Assay Conditions: 1X ThermoPol Reaction 10 mM dNTPs 0.75 µl 1.5 µl 300 µM concentration in 1X LongAmp Taq Reaction Buffer, 200 µM dNTPs including [3H]-dTTP and Buffer is 2 mM. This supports satisfactory 1-800-632-7799 10 µM Forward Primer 1 µl 2 µl 0.4 µM (0.05–1 µM) [email protected] 200 µg/ml activated Calf Thymus DNA. amplification of most amplicons. However, www.neb.com 10 µM Reverse Primer 1 µl 2 µl 0.4 µM (0.05–1 µM) Mg++ can be further optimized in 0.5 or 1.0 M0323S 010121214121 Heat Inactivation: No LongAmp Taq 5 units/ mM increments using MgSO . DNA Polymerase 1 µl 2 µl 50 µl PCR 4 Quality Control Assays Amplification of some difficult targets, like M0323S Template DNA variable variable <1,000 ng GC-rich sequences, may be improved Long Amplicon PCR: LongAmp Taq DNA Poly- Nuclease-Free Water to 25 µl to 50 µl 500 units 2,500 U/ml Lot: 0101212 merase is tested for the ability to amplify a 30 kb with additives, such as DMSO (4) or amplicon from lambda DNA and a 30 kb amplicon Notes: Gently mix the reaction.
    [Show full text]
  • For Improvement of Nucleic Acid Synthesis and Ampli
    Europäisches Patentamt *EP001088891B1* (19) European Patent Office Office européen des brevets (11) EP 1 088 891 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: C12N 15/55, C12N 15/54, of the grant of the patent: C12N 9/22, C12N 9/12, 12.01.2005 Bulletin 2005/02 C12Q 1/68, C12P 19/34 (21) Application number: 99119268.3 (22) Date of filing: 28.09.1999 (54) Thermostable enzyme promoting the fidelity of thermostable DNA polymerases - for improvement of nucleic acid synthesis and amplification in vitro Thermostabiles Enzym welches die Genauigkeit thermostabiler DNA Polymerasen erhöht - zur Verbesserung der Nucleinsäuresynthese und in vitro Amplifikation Enzyme thermostable pour augmenter la fidélité de polymèrase d’ADN thermostable - pour l’amélioration de la synthèse des acides nucléiques et d’amplification in vitro (84) Designated Contracting States: • KLENK H-P ET AL: "The complete genome AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU sequence of the hyperthermophilic, MC NL PT SE sulphate-reducing archaeon Archaeoglobus fulgidus" NATURE,GB,MACMILLAN JOURNALS (43) Date of publication of application: LTD. LONDON, vol. 390, 27 November 1997 04.04.2001 Bulletin 2001/14 (1997-11-27), pages 364-370, XP002091622 ISSN: 0028-0836 (73) Proprietor: Roche Diagnostics GmbH • KALUZ S ET AL: "DIRECTIONAL CLONING OF 68298 Mannheim (DE) PCR PRODUCTS USING EXONUCLEASE III" NUCLEIC ACIDS RESEARCH,GB,OXFORD (72) Inventors: UNIVERSITY PRESS, SURREY, vol. 20, no. 16, 1 • Dr.Waltraud Ankenbauer January 1992 (1992-01-01), pages 4369-4370, 82377 Penzberg (DE) XP002072726 ISSN: 0305-1048 • Franck Laue • BOOTH P M ET AL: "ASSEMBLY AND CLONING 82396 Paehl-Fischen (DE) OF CODING SEQUENCES FOR NEUROTROPHIC • Dr.Harald Sobek FACTORS DIRECTLY FROM GENOMIC DNA 82377 Penzberg (DE) USING POLYMERASE CHAIN REACTION AND • Michael Greif URACIL DNA GLYCOSYLASE" 83661 Lenggries (DE) GENE,NL,ELSEVIER BIOMEDICAL PRESS.
    [Show full text]
  • Biotechnology Explorer™
    Biotechnology Explorer™ GAPDH PCR Module Instruction Manual Catalog #166-5010EDU explorer.bio-rad.com This kit is shipped at 4°C. Open immediately upon arrival and store reagents at –20°C within 2 weeks. Duplication of any part of this document permitted for classroom use only. Please visit explorer.bio-rad.com to access our selection of language translations for Biotechnology Explorer kit curricula. For technical support, call your local Bio-Rad office or, in the U.S., call 1-800-424-6723 Dear Educator: Amplification as the path to visualization of DNA Molecular biologists are faced with the classic needle in a haystack problem. Often we must find a few copies of a piece of DNA that code for a given gene in the haystack of DNA comprising the entire genome. Even if there are a thousand copies of the same piece of DNA it is often still difficult to locate them. However by selectively amplifying only that specific piece of DNA we can separate it from the rest of the DNA and visualize it. Once we can visualize the DNA, we can use the tools of molecular biology to open the whole vista of genetic engineering. We can work with the DNA to make discoveries in science, agriculture, and medicine. The method used to amplify the DNA is the polymerase chain reaction (PCR). PCR is capable of repeatedly doubling the amount of specific DNA. After many PCR cycles a million-fold or billion-fold times as much DNA is generated. Because of the increasing use of PCR in science it is important to provide students with an understanding of the basic principles and applications of PCR.
    [Show full text]
  • The Heterodimeric Primase from the Euryarchaea Pyrococcus Abyssi: A
    Journal of Molecular Biology Archimer, archive institutionnelle de l’Ifremer Article in Press http://www.ifremer.fr/docelec/ Acceptation date : 5 October 2007 http://dx.doi.org/10.1016/j.jmb.2007.10.015 © 2007 Elsevier ailable on the publisher Web site The heterodimeric primase from the Euryarchaea Pyrococcus abyssi: a multifunctional enzyme for initiation and repair ? Magali Le Breton1, Ghislaine Henneke1, Cédric Norais2, Didier Flament1, Hannu Myllykallio2, Joël Querellou1 and Jean-Paul Raffin1,∗. 1. Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, BP 70, F-29280 blisher-authenticated version is av Plouzané, France. 2. Institut de Génétique et Microbiologie, UMR8621, Université Paris-sud, 91405 Orsay, France ∗Corresponding author: Jean Paul Raffin, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes, BP 70, 29280 Plouzané, France. Phone: 33(0)2 98 22 45 39 ; [email protected] Abstract: We report the characterization of the DNA primase complex of the hyperthermophilic archaeon Pyrococcus abyssi (Pab). The Pab DNA primase complex is composed of two proteins, Pabp41 and Pabp46, showing sequence similarities respectively to the p49 and p58 subunits of the eukaryotic polymerase α-primase complex. Both subunits were expressed, purified and characterized. The Pabp41 subunit alone had no RNA synthesis activity but could synthesize long (up to 3 kb) DNA strands. Addition of the Pabp46 subunit increased the rate of DNA synthesis but decreased the length of the DNA fragments synthesized and conferred RNA synthesis capability. Moreover, in our experimental conditions, Pab DNA primase had comparable affinities for ribo- and ccepted for publication following peer review. The definitive pu deoxyribonucleotides, and its activity was dependent on the presence of Mg2+ and Mn2+.
    [Show full text]
  • DNA Bound by the Oxytricha Telomere Protein Is Accessible to Telomerase and Other DNA Polymerases DOROTHY E
    Proc. Natl. Acad. Sci. USA Vol. 91, pp. 405-409, January 1994 Biochemistry DNA bound by the Oxytricha telomere protein is accessible to telomerase and other DNA polymerases DOROTHY E. SHIPPEN*, ELIZABETH H. BLACKBURNt, AND CAROLYN M. PRICE0§ tDepartment of Microbiology and Immunology, University of California, San Francisco, CA 94143; and tDepartment of Chemistry, University of Nebraska, Lincoln, NB 68588 Contributed by Elizabeth H. Blackburn, August 25, 1993 ABSTRACT Macronuclear telomeres in Oxytricha exist as oftelomere protein in these two populations is not altered by DNA-protein complexes in which the termini of the G-rich additional nuclease treatment. strands are bound by a 97-kDa telomere protein. During The fragment of DNA bound by the majority of telomere telome'ic DNA replication, the replication machinery must protein molecules corresponds to the most terminal 13 or 14 have access to the G-rich strand. However, given the stability nucleotides of the T4G4T4G4 overhang (4). Dimethyl sulfate of telomere protein binding, it has been unclear how this is footprinting demonstrated that the complex formed between accomplished. In this study we investigated the ability of the telomere protein and the residual DNA fragment retains several different DNA polymerases to access telomeric DNA in the same DNA-protein contacts present at native telomeres Oxytricha telomere protein-DNA complexes. Although DNA (4). Thus, these telomeric DNA-protein complexes are useful bound by the telomere protein is not degraded by micrococcal substrates for in vitro investigations of telomere structure nuclease or labeled by terminal deoxynucleotidyltrnsferase, (10). In this study we have employed the DNA-protein this DNA serves as an efficient primer for the addition of complexes to analyze the interaction of protein-bound telo- telomeric repeats by telomerase, a specialized RNA-dependent meric DNA with components of the DNA replication ma- DNA polymerase (ribonucleoprotein reverse tanscriptase), chinery.
    [Show full text]