GBE The Landscape of Nucleotide Polymorphism among 13,500 Genes of the Conifer Picea glauca, Relationships with Functions, and Comparison with Medicago truncatula Nathalie Pavy1,*,y,AstridDescheˆnes1,y, Sylvie Blais1, Patricia Lavigne2, Jean Beaulieu1,3, Nathalie Isabel1,2, John Mackay1, and Jean Bousquet1 1Canada Research Chair in Forest and Environmental Genomics, Centre for Forest Research and Institute for Systems and Integrative Biology, Universite´ Laval, Que´bec, Canada 2Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Que´bec, Canada 3Natural Resources Canada, Canadian Wood Fibre Centre, Laurentian Forestry Centre, Que´bec, Canada *Corresponding author: E-mail:
[email protected]. yThese authors contributed equally to this work. Accepted: September 15, 2013 Data deposition: This project has been deposited in dbSNP at: http://www.ncbi.nlm.nih.gov/SNP/snp_viewBatch.cgi?sbid¼1058878. Abstract Gene families differ in composition, expression, and chromosomal organization between conifers and angiosperms, but little is known regarding nucleotide polymorphism. Using various sequencing strategies, an atlas of 212k high-confidence single nucleo- tide polymorphisms (SNPs) with a validation rate of more than 92% was developed for the conifer white spruce (Picea glauca). Nonsynonymous and synonymous SNPs were annotated over the corresponding 13,498 white spruce genes representative of 2,457 known gene families. Patterns of nucleotide polymorphisms were analyzed by estimating the ratio of nonsynonymous to synonymous numbers of substitutions per site (A/S). A general excess of synonymous SNPs was expected and observed. However, the analysis from several perspectives enabled to identify groups of genes harboring an excess of nonsynonymous SNPs, thus potentially under positive selection.