El Ferrocarr a 550 Kmih

Total Page:16

File Type:pdf, Size:1020Kb

El Ferrocarr a 550 Kmih LEVITACION MAGNÉTICA Y El ferrocarr a 550 kmIh Los desarrollos ferroviarios actuales permitirán que los trenes circulen a 550 km/h en los primeros años del siglo XXI. Los vehículos de levitación magnética Maglev y Transrapid serán los pioneros de la nueva velocidad. A la vez, los trenes clásicos de alta velocidad se preparan para rodar a 360 y 400 km/h. En Europa se construye el TGV-NG y el ICE de la tercera generación, mientras que en Japón se desarrollan los modelos 300X, WIN 350 y Star 21. La alta velocidad clásica se prepara para los 360 y 400 Km/h. José Luis Ordóñez culo. En Japón se han construido donde la adherencia entre la rueda prototipos de tren de alta velocidad, y el carril es esencial para lograr la as investigaciones ferrovia- denominados 300X, WIN 350 y Star tracción de los coches. El corazón rias de Japón y Europa han 21, para circular a 350 km/h con co- de los trenes magnéticos está consti- coincidido en desarrollar ches de menor peso y logrando re- tuido por los electroimanes super- comoL tren de futuro el tren magné- ducir el ruido y las vibraciones. conductores que permiten sustentar tico. Es un tren que se sostiene en el Los trenes de levitación magnéti- en el aire los vehículos, a la vez que aire por medio de la levitación mag- ca permiten alcanzar velocidades de propulsarlos. nética y que su mueve propulsado 550 km/h con los conocimientos Los electroimanes del sistema ja- por motores lineales de inducción tecnológicos actuales. Estos vehícu- ponés Maglev, formados por bobi- magnética. En Japón el nuevo tren los permiten reducir considerable- nas de superconductores, permiti- se denomina Maglev mientras que mente el ruido y las vibraciones en rán circular por la nueva línea Chuo en Alemania ha tomado el nombre relación a los trenes tradicionales Shinkansen, entre Tokyo y Osaka, a de Transrapid. Estos trenes circula- rán a velocidades comerciales de 500 km/h, aunque pueden alcanzar velocidades máximas de 550 km/h. Por otra parte, los trenes de alta velocidad que circulan sobre carri- les también conocen nuevos desa- rrollos tecnológicos. En Europa, el TGV-Nueva Generación se prepara para circular a velocidades comer- ciales de 360 km/h en 1997 y el tren ICE evoluciona hacia una tercera Prototipo generación con nueva distribución de modelo japonés de los motores a lo largo del vehí- WIN 350. 4 Vía Libre DICIEMBRE 1994 t n portada 500 km/h de velocidad comercial. Los imanes de superconductores rl tren magnético Transrapid son instalados de forma que se al- ternen los polos Norte y Sur, tanto El parlamento alemán se ha pronunciado en 1994 a favor de la construcción de en los vehículos como en las pare- una línea de tren magnético entre Hamburgo y Berlín. Tras varios años de in- des laterales de la plataforma de la vestigación y desarrollo, la tecnología de la levitación y propulsión magnética vía. La levitación y la propulsión se parece haber alcanzado el nivel necesario para ser puesta en práctica. El tren logran por la captación, en los ima- Transrapid alemán con una longitud de 100 metros recorrerá en menos de una nes del tren, de la corriente induci- hora los 284 kms. que separan las dos ciudades alemanas. La construcción de la da por las bobinas de superconduc- infraestructura necesaria para penetrar en las ciudades no es simple, pero es re- tores instaladas en la vía. En las pa- alizable. La financiación del proyecto ha sido asegurada por el Estado en cola- redes laterales de la plataforma de boración con las empresas industriales alemanas. la vía existen dos capas de electroi- El elemento esencial del Transrapid está constituido por el dispositivo que manes de inducción, una destinada integra la levitación con la propulsión magnética. Los vehículos del tren mag- a provocar la levitación y otra espe- nético envuelven la vía monoviga de acero por los dos lados. Los electroima- cializada en la propulsión. nes instalados en el vehículo reciben las corrientes de inducción de los ima- El motor lineal síncrono instala- nes superconductores instalados en la vía. En sentido horizontal, y debajo de do en los trenes propulsa los vehí- las alas de la T formada por la monoviga, están colocadas las bobinas inducto- culos cuando la alimentación de la ras de la sustentación y propulsión. En sentido vertical y en los extremos de corriente eléctrica llevada a los elec- las alas de la T están situados los electroimanes inductores destinados al guia- troimanes de la vía se realiza de for- do de los trenes. ma adecuada. La atracción entre los La denominación Transrapid se debe a la firma Krauss-Maffei, y los ensayos polos de distinto signo y la repul- de los diferentes prototipos de tren han sido realizados en el tramo de pruebas, sión entre los polos de igual natura- de 31,5 km, denominado Transrapid Emsland. Esta infraestructura es explotada leza magnética logran tanto la pro- por la Sociedad de Ensayos y Planificación del Tren Magnético, conocida por las pulsión del vehículo como la levita- siglas MVP. En 1976, Thyssen-Henschel presentó el prototipo de tren denomi- ción. Las variaciones de frecuencia nado HBM-2, primer vehículo con motor lineal síncrono cuyos equipos de sus- en la corriente eléctrica de alimenta- tentación y levitación estaban integrados en un sólo dispositivo. Más tarde se ha ción provocan la aceleración de la desarrollado un tren cuya levitación magnética se logra con la técnica inventa- propulsión. da por Hermann Kemper en 1934 y la propulsión se hace con la tecnología de- sarrollada por Herbert Weh en 1976. Ahora Thyssen, como cabeza del grupo, se Cryostat. Los superconductores ha reunido con Siemens y AEG en el proyecto de tren de levitación magnética, japoneses "Cryostat" aprovechan la Transrapid. q propiedad que tienen ciertos meta- les de no ofrecer resistencia al paso JR-Central pretenden mejorar la su- vehículo. Esta acción es posible de la corriente eléctrica cuando se perconductividad de los materiales porque la polaridad de la parte baja encuentran a muy bajas temperatu- constituyentes de las bobinas de los de los electroimanes colocados en ras. Los cuatro imanes supercon- electroimanes, además de desarro- el tren es la misma que la corres- ductores, instalados en cada bogie llar nuevos refrigerantes. pondiente a los imanes instalados del tren Maglev, están sumergidos La acción de suspensión y guia- en las paredes laterales de la plata- en helio líquido, para mantener una do de los trenes es realizada desde forma. Este efecto simultáneo de temperatura de 269 grados centígra- los laterales de la plataforma de la atracción en la parte superior y re- dos bajo cero. Los electroimanes su- vía por medio de la inducción elec- pulsión en la parte inferior logra la perconductores de los vehículos se tromagnética ejercida por las bobi- levitación del vehículo. El tren posee refrigeran por medio de la evapora- nas instaladas en las paredes latera- ruedas neumáticas verticales que so- ción del helio. Las investigaciones les de la vía sobre los imanes super- portan el vehículo y ruedas neumáti- actuales de la compañía ferroviaria conductores instalados en el cas horizontales que lo guían, cuan- 1994 DICIEMBRE Vía Libre 5 n portada Los japoneses realizan pruebas a 350 KmIh Las compañías ferroviarias japonesas JR- Central, JR-Este y JR-Oeste están en pleno desarrollo de nuevas generaciones de trenes de alta velocidad. JR-Central desarrolla el tren denominado 300X. El prototipo será probado en los primeros meses de 1995. Es un tren diseñado para circular a 350 km/h y representará un avance importante respecto a su predecesor el tren Nozomi, que se en- cuentra en servicio en la linea Tokaido Shin- Tren 300X del proyecto Shinkansen. kansen de JR-Central (Tokyo-Osaka), y en la linea Sanyo Shinkansen de JR-Oeste (Osaka- Hakata). El nuevo tren 300X mejora el dise- ño aerodinámico, reduce el ruido e incorpo- ra mejoras en los bogies, frenos y sistemas de seguridad para poder circular en las con- diciones de explotación más desfavorables. La compañía JR-Oeste está desarrollando para la linea Sanyo Shinkansen el tren expe- rimental WIN 350, que se encuentra en prue- bas desde junio de 1992. En agosto de 1992 el tren alcanzó la velocidad de 350,4 km/h. Los trabajos actuales están destinados a re- ducir el nivel de ruido provocado por el tren cuando supera los 300 km/h, y a eliminar los efectos aerodinámicos generados por el cruce de trenes en el interior de los túneles. Otras lineas de investigación se centran en Segundo modelo del tren japonés 300X. alcanzar un mejor sistema para la suspen- sión de los vehículos, reducir el peso de los trenes, mejorar la tracción y el diseño de los carretones o bogies. La compañía JR-Este tiene líneas de alta velocidad que se denominan Mini-Shinkan- sen, porque han mantenido el ancho de vía tradicional en Japón, correspondiente a 1.067 milímetros, en vez de construir las nuevas líneas en ancho internacional de 1.435 mm. Esta diferencia de ancho no per- mite la conexión directa entre las líneas Sanyo Shinkansen y Tokaido Shinkansen, de JR-Oeste y JR-Central, respectivamente, con las líneas Tohoku Shinkansen y Joetsu Shinkansen, ambas explotadas por JR-Este. JR-Este ha desarrollado el nuevo tren de alta velocidad Star 21, que alcanzó en diciembre de 1993 la velocidad de 425 lun/h. q La nueva generación de TGV entrará en servicio en 1997. do se desplaza a baja velocidad o y se logra por el cambio de polari- das reostáticas o es reutilizada para está parado.
Recommended publications
  • Case of High-Speed Ground Transportation Systems
    MANAGING PROJECTS WITH STRONG TECHNOLOGICAL RUPTURE Case of High-Speed Ground Transportation Systems THESIS N° 2568 (2002) PRESENTED AT THE CIVIL ENGINEERING DEPARTMENT SWISS FEDERAL INSTITUTE OF TECHNOLOGY - LAUSANNE BY GUILLAUME DE TILIÈRE Civil Engineer, EPFL French nationality Approved by the proposition of the jury: Prof. F.L. Perret, thesis director Prof. M. Hirt, jury director Prof. D. Foray Prof. J.Ph. Deschamps Prof. M. Finger Prof. M. Bassand Lausanne, EPFL 2002 MANAGING PROJECTS WITH STRONG TECHNOLOGICAL RUPTURE Case of High-Speed Ground Transportation Systems THÈSE N° 2568 (2002) PRÉSENTÉE AU DÉPARTEMENT DE GÉNIE CIVIL ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE PAR GUILLAUME DE TILIÈRE Ingénieur Génie-Civil diplômé EPFL de nationalité française acceptée sur proposition du jury : Prof. F.L. Perret, directeur de thèse Prof. M. Hirt, rapporteur Prof. D. Foray, corapporteur Prof. J.Ph. Deschamps, corapporteur Prof. M. Finger, corapporteur Prof. M. Bassand, corapporteur Document approuvé lors de l’examen oral le 19.04.2002 Abstract 2 ACKNOWLEDGEMENTS I would like to extend my deep gratitude to Prof. Francis-Luc Perret, my Supervisory Committee Chairman, as well as to Prof. Dominique Foray for their enthusiasm, encouragements and guidance. I also express my gratitude to the members of my Committee, Prof. Jean-Philippe Deschamps, Prof. Mathias Finger, Prof. Michel Bassand and Prof. Manfred Hirt for their comments and remarks. They have contributed to making this multidisciplinary approach more pertinent. I would also like to extend my gratitude to our Research Institute, the LEM, the support of which has been very helpful. Concerning the exchange program at ITS -Berkeley (2000-2001), I would like to acknowledge the support of the Swiss National Science Foundation.
    [Show full text]
  • Shinkansen - Wikipedia 7/3/20, 1048 AM
    Shinkansen - Wikipedia 7/3/20, 10)48 AM Shinkansen The Shinkansen (Japanese: 新幹線, pronounced [ɕiŋkaꜜɰ̃ seɴ], lit. ''new trunk line''), colloquially known in English as the bullet train, is a network of high-speed railway lines in Japan. Initially, it was built to connect distant Japanese regions with Tokyo, the capital, in order to aid economic growth and development. Beyond long-distance travel, some sections around the largest metropolitan areas are used as a commuter rail network.[1][2] It is operated by five Japan Railways Group companies. A lineup of JR East Shinkansen trains in October Over the Shinkansen's 50-plus year history, carrying 2012 over 10 billion passengers, there has been not a single passenger fatality or injury due to train accidents.[3] Starting with the Tōkaidō Shinkansen (515.4 km, 320.3 mi) in 1964,[4] the network has expanded to currently consist of 2,764.6 km (1,717.8 mi) of lines with maximum speeds of 240–320 km/h (150– 200 mph), 283.5 km (176.2 mi) of Mini-Shinkansen lines with a maximum speed of 130 km/h (80 mph), and 10.3 km (6.4 mi) of spur lines with Shinkansen services.[5] The network presently links most major A lineup of JR West Shinkansen trains in October cities on the islands of Honshu and Kyushu, and 2008 Hakodate on northern island of Hokkaido, with an extension to Sapporo under construction and scheduled to commence in March 2031.[6] The maximum operating speed is 320 km/h (200 mph) (on a 387.5 km section of the Tōhoku Shinkansen).[7] Test runs have reached 443 km/h (275 mph) for conventional rail in 1996, and up to a world record 603 km/h (375 mph) for SCMaglev trains in April 2015.[8] The original Tōkaidō Shinkansen, connecting Tokyo, Nagoya and Osaka, three of Japan's largest cities, is one of the world's busiest high-speed rail lines.
    [Show full text]
  • Part 2: Speeding-Up Conventional Lines and Shinkansen Asahi Mochizuki
    Breakthrough in Japanese Railways 9 JRTR Speed-up Story 2 Part 2: Speeding-up Conventional Lines and Shinkansen Asahi Mochizuki Reducing Journey Times on is limited by factors such as curves, grades, and turnouts, so Conventional Lines scheduled speed can only be increased by focusing effort on increasing speed at these locations. Distribution of factors limiting speed Many of the intercity railways in Japan are lines in The maximum speed of any line is determined by emergency mountainous areas. So, objectives for increasing speeds braking distance. However, train speeds are also restricted by cannot be achieved by simply raising the maximum speed. various other factors, such as curves, grades, and turnouts. Acceleration and deceleration performance also impact Speed-up on curves journey time. The impact of each element depends on the The basic measures for increasing speeds on curves are terrain of the line. The following graphs show the distributions lowering the centre of gravity of rolling stock and canting the of these elements for the Joban Line, crossing relatively flat track. However, these measures have already been applied land, and for the eastern section of the Chuo Line, running fully; cant cannot be increased on lines serving slow freight through mountains. trains with a high centre of gravity. Conversely, increasing The graph for the Joban Line crossing the flat Kanto passenger train speed through curves to just below the limit Plain shows that it runs at the maximum speed of 120 km/h where the trains could overturn causes reduced ride comfort (M part) for about half the journey time.
    [Show full text]
  • (Microsoft Powerpoint
    Wydział Budownictwa Lądowego i Wodnego Politechniki Wrocławskiej Koleje dużych prędkości w Japonii Autor Kacper Piętka Drogi kolejowe – seminarium Data prezentacja 16.03.2021 Rok akademicki 2020/21 1 Kontekst – kolej w latach powojennych 2 Lata 50te i 60te - USA Autostrada w Nowym Yorku, lata 50-te Lotnisko w Washington City, lata 50-te 3 Lata 50te i 60te - Europa Niemiecki pług do niszczenia torów Pociąg parowy wyjeżdżający ze stacji, Europa, lata 60te 4 Japonia Pierwszy projekt- 1940, Tokio – Shimonoseki (200km/h) Od 1955 testowanie rozwiązań technologicznych dla KDP Od 1959 rekord prędkości na torze 1067mm – 175 km/h Dla KDP konieczne zastosowanie szerszego toru – 1435mm Rekordowy wąskotorowy pociąg serii 151 5 Pierwsza japońska KDP 6 Tokaido Shinkansen – informacje ogólne • Projekt- 1958 • Tokio – Osaka • Prędkość do 250 km/h • Realizacja 1959 – 1964 • Shinkansen – „nowa magistrala” • Wybudowana od zera • Długość 515 km 7 Tokaido Shinkansen – budowa i parametry • Łuki poziome- min. 2500m • Całkowita bezkolizyjność • Maks. Pochylenia niwelety 15-20 ‰ • Tunele- 65km • Mosty i wiadukty- 93km Bezkolizyjne przejazdy na Tokaido Shinkansen (obecnie) Budowa mostu naTokaido Shinkansen (1959-1964) 8 Tokaido Shinkansen – budowa i parametry Budowa mostu na Tokaido Shinkansen (1959-1964) Budowa tunelu na Tokaido Shinkansen (1959-1964) 9 Tokaido Shinkansen – budowa i parametry • Szyny bezstykowe, sprężone podkłady betonowe • Oryginalnie nawierzchnia podsypkowa Układanie toru na Tokaido Shinkansen, 1959-1964 10 Tokaido Shinkansen – budowa i parametry
    [Show full text]
  • Innovative Running Gear Solutions for New Dependable, Sustainable, Intelligent and Comfortable Rail Vehicles
    Ref. Ares(2020)945594 - 13/02/2020 Contract No. 777564 INNOVATIVE RUNNING GEAR SOLUTIONS FOR NEW DEPENDABLE, SUSTAINABLE, INTELLIGENT AND COMFORTABLE RAIL VEHICLES Deliverable 3.2 – New actuation systems for conventional vehicles and an innovative concept for a two-axle vehicle Due date of deliverable: 30/09/2019 Actual submission: 27/09/2019 Leader/Responsible of this Deliverable: Rickard Persson, KTH Reviewed: Yes Document status Revision Date Description 1 29.06.2018 Skeleton 2 12.04.2019 State-of-art study included 3 16.07.2019 Draft, KTH and HUD contributions added 4 17.07.2019 Draft, POLIMI contribution added 5 23.07.2019 Draft, complete 6 22.08.2019 Language reviewed 7 30.08.2019 For TMT review 8 13.09.2019 Updated after TMT review 9 27.09.2019 Final version after TMT and quality check The information in this document is provided “as is”, and no guarantee or warranty is given that the information is fit for any particular purpose. The content of this document reflects only the author`s view – the Joint Undertaking is not responsible for any use that may be made of the information it contains. The users use the information at their sole risk and liability. RUN2R-TMT-D-UNI-062-03 Page 1 27/09/2019 Contract No. 777564 This project has received funding from Shift2Rail Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 777564. Dissemination Level PU Public X CO Confidential, restricted under conditions set out in Model Grant Agreement CI Classified, information as referred to in Commission Decision 2001/844/EC Start date of project 01/09/2017 Duration 25 months REPORT CONTRIBUTORS Name Company Details of Contribution Rickard Persson KTH, Kungliga Tekniska Executive summary Högskolan 1.
    [Show full text]
  • JRTR No.64 Feature 50 Years of High-Speed Railways
    50 Years of High-Speed Railways 50 Years of Tokaido Shinkansen History Yoshiki Suyama Introduction regular service in the base timetable and arranging extra trains when necessary. The Tokaido Shinkansen commenced operation on October When the Tokaido Shinkansen commenced operation, 1, 1964 and is about to reach its 50th anniversary. The there were 60 departures per day in a “1-1” hourly timetable Tokaido Shinkansen, which takes on the role of Japan’s with one Hikari, stopping only at major stations, and one main transportation artery, has served 5.6 billion passengers Kodama, stopping at each station. The travel time of Hikari since its start and propped up Japan’s economy. Ever since between Tokyo and Shin-Osaka was 4 hours. the operation commenced, the Tokaido Shinkansen has Subsequently, the number of train departures was maintained a flawless record of no train accidents resulting increased time and again with the “2-2” and “3-3” hourly in fatalities or injuries of passengers onboard, and has timetables. Revisions were made almost annually to demonstrated stable and precise operation with an annual accommodate the rapid surge in transportation volume average delay of 0.9 minutes per operating train (FY2013). during Japan’s high-growth period. Transport capacity was The maximum speed in service has risen significantly boosted until the number of daily trains reached 240 in the from 210 km/h, when the line initially went into operation, year after the extension to Hakata was completed in 1975. to 270 km/h at present. Next spring, the maximum speed When Japanese National Railways (JNR) was privatized in is scheduled to be increased to 285 km/h.
    [Show full text]
  • Shinkansen Bogies Isao Okamoto
    T Technology echnolo Railway Technology Today 6 (Edited by Kanji Wako) Shinkansen Bogies Isao Okamoto In the previous issue we discussed some and reduced vibrations. As a result, bolsterless shinkansen bogies use this type of the main features of bogies, and looked bogies could run at faster speeds, making of wheel tread. The circular configura- at bogie structure for various carriages, rapid shinkansen services possible. tion which is shaped like a large number specific bogies for trains carrying commut- of arcs aligned next to each other, sup- ers and other passengers over short dis- poses a wheel tread that has already been tances, tilting carriages using pendulum Bogie Performance subjected to wear. This configuration mechanisms, and steering bogies. Such reduces contact bearing forces between trains run mainly on narrow-gauge track Because shinkansen run at high speeds, the wheel tread and the running surface in Japan, at maximum speeds of 120 to their bogies and carriages must not be of the rail. This means less wheel tread 130 km/h. This next article examines subjected to serious lateral vibrations, wear, which in turn means better running some of the characteristics of bogies re- called hunting. As a train runs faster, hunt- performance. The effective gradient of quired for high-speed trains, particularly ing can increase to such an extent that shinkansen circular wheel treads is about shinkansen that travel at maximum speeds the bogie vibrates severely side to side, 1:16, which meets demands for both over 200 km/h. I will also discuss the past which creates passenger discomfort, dam- stability at high speeds and excellent run- and present development of shinkansen ages the track, and can even derail the ning performance on curved track.
    [Show full text]
  • Study for the Formulation of High Speed Railway Projects on Hanoi-Vinh and Ho Chi Minh-Nha Trang Section
    Japan International Cooperation Agency (JICA) Vietnam Railways Study for the Formulation of High Speed Railway Projects on Hanoi-Vinh and Ho Chi Minh-Nha Trang Section Technical Report No.7 Test Tracks Technical Discussions on Semi-High Speed Railways Work Shop March 2014 ALMEC Corporation Japan International Consultants for Transport Co., Ltd. Oriental Consultants Co., Ltd. Nippon Koei Co., Ltd. Japan Transportation Consultants, Inc. EI JR 13-178 Study for the Formulation of High Speed Railway Projects on Hanoi-Vinh and Ho Chi Minh-Nha Trang Sections FINALREPORT Technical Report No.7 Test Tracks, Technical Discussions on Semi-High-Speed Railways and Work Shop TABLE OF CONTENTS Ⅰ. Test Tracks ·························································································· Ⅰ-1 1. Policy on the discussion of test tracks ······················································ Ⅰ-2 2. Study results ······················································································ Ⅰ-6 3. Comparison between alternative ideas ···················································· Ⅰ-22 4. Conclusion and proposal ······································································ Ⅱ-25 Ⅱ. Technical Discussions on Semi-High-Speed Railways ·································· Ⅱ-1 1. Summary ··························································································· Ⅱ-2 2. Track structure ···················································································· Ⅱ-3 3. Power supply system ···········································································
    [Show full text]
  • HOW JAPAN DEVELOPED SHINKANSEN HIGH-SPEED TRAINS Dr
    HOW JAPAN DEVELOPED SHINKANSEN HIGH-SPEED TRAINS Dr. İlhami Pektaş The episode of Japan with railways goes back to the year of 1872. For the construction of railways started in this year, asking technical assistance of England, Japan was using 1,067 mm rail gauge regarded as narrow, remained from that time. By the 1940s, passenger density experienced in Tokyo-Shimonoseki lines, brought up the connection of this line with a fast train line. At the same time, this line would use the standard 1,435 mm size of rail gauge. This fast train project has been named as “Shinkansen Fast Train” which means “Bullet Train” at that time. Delayed because of the Second World War this project has been restarted in year of 1959 with the name of “Tokaidao Shinkansen” and take the distance between Tokyo and Osaka in 3 hours with 200 km/h speed. Japan has believed in this plan is realistic and achievable. Yet, vehicle traction technologies, successful implementations in electrification and the knowledge obtained from aircraft technologies of the country will be helpful for the construction of such a fast train line. The construction of the line took 5 years and it has been put into service on the date of October 1, 1964. Considering that opening of Tokyo Olympics organized on October 10, 1964, it is known that this date has a meaning for the country. When the line first taken into service, with a speed of 210 km/h taking 4 hours, the travel time decreased to 3 hours 10 minutes in 1965, 3 hours in 1986 and in present time decreased to 2.5 hours by increasing the speed of the train to 270 km/h.
    [Show full text]
  • History of Air Spring Development for Shinkansen Trains
    SPECIAL History of Air Spring Development for Shinkansen Trains Hideki KITADA ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Air springs are part of a soft damping suspension system that provides both softness and damping characteristics by utilizing the compressibility and flow resistance of air. They were first used on railways about 60 years ago. The subsequent and continuous advancement of air spring technology is a result of the incorporation of air springs into Shinkansen trains and the acceleration of R&D activities in overcoming various challenges associated with increasing train speeds. To reduce the environmental impact of high-speed trains, the weight of each car was reduced dramatically. In particular, adoption of bolster-less bogies reduced car weight. Together with such technological innovations, the functions of air springs also changed remarkably. To make the Shinkansen competitive with aircraft by increasing both speed and ride quality, various new functional units were developed. Such units include the horizontally nonlinear air suspension system and the car-body tilting system with built-in air springs that enables trains to travel at higher speeds on curved tracks. A project aimed at further increasing train speed has been launched for several train lines. We will continue our R&D efforts to develop air springs that
    [Show full text]
  • Shinkansen – Pół Wieku Dużych Prędkości W Japonii Pociągi Shinkansen – Serii 700 I N700 (27.07.2014 R.)
    Shinkansen – pół wieku dużych prędkości w Japonii Pociągi Shinkansen – serii 700 i N700 (27.07.2014 r.). Fot. A. Nakamura/ © JR East W październiku ubiegłego roku kolej JR Central w Japonii obcho- Linia Tokaido Shinkansen łączy 4 największe miasta Japo- dziła uroczystość 50-lecia linii dużej prędkości Tokaido Shinkansen. nii – Tokio, Jokohamę, Nagoję i Osakę. Tokio i Jokohama mają Była to pierwsza linia dużej prędkości na świecie. łącznie ponad 17 mln mieszkańców, natomiast Nagoja – 2,2 mln mieszkańców, a Osaka – 2,6 mln mieszkańców. Uwzględniając te dane, można powiedzieć, że kolej JR Central obsługuje 23,7% Początki Tokaido Shinkansen terytorium Japonii, którą zamieszkuje 59,9% ludności tego kraju, Otwarcie w październiku 1964 r. linii Tokaido Shinkansen, długo- ale która wytwarza aż 64,4% Produktu Krajowego Brutto (PKB). ści 552,6 km, było ważnym wydarzeniem, nie tylko w Japonii, ale To pozwala zrozumieć ogromny sukces przewozowy linii Tokaido i w skali światowej. Widok pociągów elektrycznych o opływowych Shikansen. Ruch na tej linii zwiększył się w czasie pierwszych lat kształtach, przejeżdżających na tle Góry Fuji, przykuwał ludzką eksploatacji: z 11 mln pasażerów w pierwszym roku eksploatacji uwagę. Dla określenia tego cudu techniki wkrótce ukuto powie- do 118 mln pasażerów 10 lat później, tj. w 1974 r. W następnych dzenie „pociąg o prędkości pocisku karabinowego”. latach przewozy nieco spadły: do ok. 91 mln podróży rocznie Chociaż prędkość maksymalna pierwszych pociągów – w końcu lat 70. i na początku lat 80. XX w. Nastąpiło to w związku 210 km/h – nie brzmi obecnie zbyt imponująco, to wówczas uru- ze spowolnieniem wzrostu ekonomicznego Japonii. chomienie codziennie kursujących pociągów z taką prędkością było olbrzymim krokiem naprzód, zwłaszcza w Japonii, gdzie pociągi mo- Dalszy wzrost przewozów gły rozwijać na istniejącej, wąskotorowej sieci kolejowej o prześwi- W połowie lat 80.
    [Show full text]
  • Active Suspension in Railway Vehicles: a Literature Survey
    Rail. Eng. Science https://doi.org/10.1007/s40534-020-00207-w Active suspension in railway vehicles: a literature survey 1 2 2 2 Bin Fu • Rocco Libero Giossi • Rickard Persson • Sebastian Stichel • 1 3 Stefano Bruni • Roger Goodall Received: 24 December 2019 / Revised: 12 February 2020 / Accepted: 13 February 2020 Ó The Author(s) 2020 Abstract Since the concept of active suspensions and challenges. The potential for active suspensions in appeared, its large possible benefits has attracted continu- railway applications is outlined. ous exploration in the field of railway engineering. With new demands of higher speed, better ride comfort and Keywords Active suspension Á Railway vehicle Á lower maintenance cost for railway vehicles, active sus- Mechatronics Á Control Á Active primary suspension Á pensions are very promising technologies. Being the Active secondary suspension starting point of commercial application of active suspen- sions in rail vehicles, tilting trains have become a great success in some countries. With increased technical maturity of sensors and actuators, active suspension has unprecedented development opportunities. In this work, the 1 Introduction basic concepts are summarized with new theories and solutions that have appeared over the last decade. Experi- Over the last half-century, railway vehicles have developed mental studies and the implementation status of different in a way that more and more electronics, sensors and active suspension technologies are described as well. controllers are applied along with the traditional mechan- Firstly, tilting trains are briefly described. Thereafter, an in- ical structures to meet the new demands for higher speed, depth study for active secondary and primary suspensions better ride quality and stricter safety requirement.
    [Show full text]