Ciliophora, Scuticociliatia)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Special Issue Featuring: a Case Study on Black Gill in Georgia Shrimp
Volume 29 • Number 4 • Winter 2015 Special Issue Featuring: A Case Study on Black Gill in Georgia Shrimp Volume 29 • Number 4 • Winter 2015 The Mystery of Black Gill: Shrimpers in the South Atlantic Face Off with a Cryptic Parasite BY JILL M. GAMBILL, ALLISON E. DOYLE, RICHARD F. LEE, PH.D., PATRICK J. GEER, ANNA N. WALKER, PH.D., LINDSEY G. PARKER, PH.D., AND MARC E. FRISCHER, PH.D. ABSTRACT In the Southeast United States, an unidentified parasite is infecting shrimp and presenting new challenges for an already struggling industry. Emerging research in Georgia is investigating the resulting condition, known as Black Gill, to better understand this newest threat to the state’s most valuable commercial fishery. Researchers, shrimpers, extension agents, and fishery managers are working collaboratively to gather baseline data on where, when, and how frequently Black Gill is occurring, as well as partnering to determine its epidemiology, dispersal, and possible intervention strategies. Savannah, Ga. – In 2013, after years of intense competition from lower priced imports and financial pressures stemming Figure 1. A Georgia white shrimp displays symptoms of the from the rising cost of fuel and insurance, Georgia shrimpers Black Gill condition around its gills. Courtesy of Rachael were poised for a comeback as they looked forward to a Randall and Chelsea Parrish, 2015 profitable year. Shrimp prices had tripled, as a consequence of a bacterial disease infecting the supply of farmed shrimp A LANDMARK YEAR from Asia (Loc et al. 2013). Commercial food shrimp landings in 2013 were the lowest Georgia shrimpers took to the water with high expectations, in recent history. -
Penaeid Shrimp in Chesapeake Bay: Population Growth and Black Gill Disease Syndrome
W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 2021 Penaeid Shrimp in Chesapeake Bay: Population Growth and Black Gill Disease Syndrome Troy D. Tuckey Virginia Institute of Marine Science Jillian L. Swinford Mary C. Fabrizio Virginia Institute of Marine Science Hamish J. Small Virginia Institute of Marine Science Jeffrey D. Shields Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Aquaculture and Fisheries Commons, and the Marine Biology Commons Recommended Citation Tuckey, Troy D.; Swinford, Jillian L.; Fabrizio, Mary C.; Small, Hamish J.; and Shields, Jeffrey D., Penaeid Shrimp in Chesapeake Bay: Population Growth and Black Gill Disease Syndrome (2021). Marine and Coastal Fisheries, 13, 159-173. DOI: 10.1002/mcf2.10143 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Marine and Coastal Fisheries 13:159–173, 2021 © 2021 The Authors. Marine and Coastal Fisheries published by Wiley Periodicals LLC on behalf of American Fisheries Society ISSN: 1942-5120 online DOI: 10.1002/mcf2.10143 ARTICLE Penaeid Shrimp in Chesapeake Bay: Population Growth and Black Gill Disease Syndrome Troy D. Tuckey* Virginia Institute of Marine Science, William & Mary, 1370 Greate Road, Gloucester Point, Virginia 23062, USA Jillian L. Swinford Texas Parks and Wildlife, Coastal Fisheries Division, Perry R. Bass Marine Fisheries Research Center, 3864 Farm to Market Road 3280, Palacios, Texas 77465, USA Mary C. -
Scuticociliate Infection and Pathology in Cultured Turbot Scophthalmus Maximus from the North of Portugal
DISEASES OF AQUATIC ORGANISMS Vol. 74: 249–253, 2007 Published March 13 Dis Aquat Org NOTE Scuticociliate infection and pathology in cultured turbot Scophthalmus maximus from the north of Portugal Miguel Filipe Ramos1, Ana Rita Costa2, Teresa Barandela2, Aurélia Saraiva1, 3, Pedro N. Rodrigues2, 4,* 1CIIMAR (Centro Interdisciplinar de Investigação Marinha e Ambiental), Rua dos Bragas, 289, 4050-123 Porto, Portugal 2ICBAS (Instituto de Ciências Biomédicas Abel Salazar), Largo Prof. Abel Salazar, 2, 4099-003 Porto, Portugal 3FCUP (Faculdade de Ciências da Universidade de Porto), Praça Gomes Teixeira, 4099-002 Porto, Portugal 4IBMC (Instituto de Biologia Molecular e Celular), Rua do Campo Alegre, 823, 4150-180 Porto, Portugal ABSTRACT: During the years 2004 and 2005 high mortalities in turbot Scophthalmus maximus (L.) from a fish farm in the north of Portugal were observed. Moribund fish showed darkening of the ven- tral skin, reddening of the fin bases and distended abdominal cavities caused by the accumulation of ascitic fluid. Ciliates were detected in fresh mounts from skin, gill and ascitic fluid. Histological examination revealed hyperplasia and necrosis of the gills, epidermis, dermis and muscular tissue. An inflammatory response was never observed. The ciliates were not identified to species level, but the morphological characteristics revealed by light and electronic scanning microscopes indicated that these ciliates belonged to the order Philasterida. To our knowledge this is the first report of the occurrence of epizootic disease outbreaks caused by scuticociliates in marine fish farms in Portugal. KEY WORDS: Philasterida · Scuticociliatia · Histophagous parasite · Scophthalmus maximus · Turbot · Fish farm Resale or republication not permitted without written consent of the publisher INTRODUCTION litis; these changes are associated with the softening and liquefaction of brain tissues (Iglesias et al. -
Handbook of Shrimp Diseases
LOAN COPY ONLY TAMU-H-95-001 C3 Handbook of Shrimp Diseases Aquaculture S.K. Johnson Department of Wildlife and Fisheries Sciences Texas A&M University 90-601 (rev) Introduction 2 Shrimp Species 2 Shrimp Anatomy 2 Obvious Manifestations ofShrimp Disease 3 Damaged Shells , 3 Inflammation and Melanization 3 Emaciation and Nutritional Deficiency 4 Muscle Necrosis 5 Tumors and Other Tissue Problems 5 Surface Fouling 6 Cramped Shrimp 6 Unusual Behavior 6 Developmental Problems 6 Growth Problems 7 Color Anomalies 7 Microbes 8 Viruses 8 Baceteria and Rickettsia 10 Fungus 12 Protozoa 12 Haplospora 13 Gregarina 15 Body Invaders 16 Surface Infestations 16 Worms 18 Trematodes 18 Cestodes 18 Nematodes 18 Environment 20 Publication of this handbook is a coop erative effort of the Texas A&M Univer sity Sea Grant College Program, the Texas A&M Department of Wildlife and $2.00 Fisheries Sciences and the Texas Additional copies available from: Agricultural Extension Service. Produc Sea Grant College Program tion is supported in part by Institutional 1716 Briarcrest Suite 603 Grant No. NA16RG0457-01 to Texas Bryan, Texas 77802 A&M University by the National Sea TAMU-SG-90-601(r) Grant Program, National Oceanic and 2M August 1995 Atmospheric Administration, U.S. De NA89AA-D-SG139 partment of Commerce. A/1-1 Handbook ofShrimp Diseases S.K. Johnson Extension Fish Disease Specialist This handbook is designed as an information source and tail end (abdomen). The parts listed below are apparent upon field guide for shrimp culturists, commercial fishermen, and outside examination (Fig. 1). others interested in diseases or abnormal conditions of shrimp. -
Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes
University of Rhode Island DigitalCommons@URI Biological Sciences Faculty Publications Biological Sciences 9-26-2018 Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes Christopher E. Lane Et Al Follow this and additional works at: https://digitalcommons.uri.edu/bio_facpubs Journal of Eukaryotic Microbiology ISSN 1066-5234 ORIGINAL ARTICLE Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes Sina M. Adla,* , David Bassb,c , Christopher E. Laned, Julius Lukese,f , Conrad L. Schochg, Alexey Smirnovh, Sabine Agathai, Cedric Berneyj , Matthew W. Brownk,l, Fabien Burkim,PacoCardenas n , Ivan Cepi cka o, Lyudmila Chistyakovap, Javier del Campoq, Micah Dunthornr,s , Bente Edvardsent , Yana Eglitu, Laure Guillouv, Vladimır Hamplw, Aaron A. Heissx, Mona Hoppenrathy, Timothy Y. Jamesz, Anna Karn- kowskaaa, Sergey Karpovh,ab, Eunsoo Kimx, Martin Koliskoe, Alexander Kudryavtsevh,ab, Daniel J.G. Lahrac, Enrique Laraad,ae , Line Le Gallaf , Denis H. Lynnag,ah , David G. Mannai,aj, Ramon Massanaq, Edward A.D. Mitchellad,ak , Christine Morrowal, Jong Soo Parkam , Jan W. Pawlowskian, Martha J. Powellao, Daniel J. Richterap, Sonja Rueckertaq, Lora Shadwickar, Satoshi Shimanoas, Frederick W. Spiegelar, Guifre Torruellaat , Noha Youssefau, Vasily Zlatogurskyh,av & Qianqian Zhangaw a Department of Soil Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, S7N 5A8, SK, Canada b Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, United Kingdom -
Phylogenetic Position of the Apostome Ciliates (Phylum Ciliophora, Subclass Apostomatia) Tested Using Small Subunit Rrna Gene Sequences*
©Biologiezentrum Linz/Austria, download unter www.biologiezentrum.at Phylogenetic position of the apostome ciliates (Phylum Ciliophora, Subclass Apostomatia) tested using small subunit rRNA gene sequences* J o h n C . C L AM P , P h y l l i s C . B RADB UR Y , M i c h a e l a C . S TR ÜDER -K Y P KE & D e n i s H . L Y N N Abstract: The apostomes have been assigned historically to two major groups of ciliates – now called the Class Phyllopharyngea and Class Oligohymenophorea. We set about to test these competing hypotheses of relationship using sequences of the small sub- unit rRNA gene from isolates of five species of apostomes: Gymnodinioides pitelkae from Maine; Gymnodinioides sp. from North Ca- rolina; Hyalophysa chattoni from Florida and from North Carolina; H. lwoffi from North Carolina; and Vampyrophrya pelagica from North Carolina. These apostome ciliates were unambiguously related to taxa in the Class Oligohymenophorea using Bayesian in- ference, maximum parsimony, and neighbor-joining algorithms to infer phylogenetic relationship. Thus, their assignment as the Subclass Apostomatia within this class is confirmed by these genetic data. The two isolates of Hyalophysa chattoni were harvested from the same crustacean host, Palaemonetes pugio, at localities separated by slightly more than 1225 km, and yet they showed only 0.06% genetic divergence, suggesting that they represent a single population. Key words: Apostomes, crustacean, exuviotroph, Gammarus mucronatus, Marinogammarus obtusatus, Oligohymenophorea. Introduction In morphologically-based classifications, apostome ciliates have been placed with either one or the other Over the past 20 years, sequences of the small sub- of two major taxa, now considered classes (BRADBURY unit rRNA (SSrRNA) gene have been used to confirm 1989). -
Artículo Julio Cesar Marín Y Col
Universidad del Zulia ppi 201502ZU4641 Esta publicación científica en formato digital Junio 2017 es continuidad de la revista impresa Vol. 12 Nº 1 Depósito Legal: pp 200602ZU2811 / ISSN:1836-5042 Vol. 12. N°1. Junio 2017. pp. 157-170 Cultivo de protozoarios ciliados de vida libre a partir de muestras de agua del Lago de Maracaibo Julio César Marín, Neil Rincón, Laugeny Díaz-Borrego, Ever Morales Universidad del Zulia, Facultad de Ingeniería, Escuela de Ingeniería Civil, Departamento de Ingeniería Sanitaria y Ambiental (DISA), estado Zulia, Venezuela. [email protected] Universidad del Zulia, Facultad Experimental de Ciencias, Departamento de Biología, Laboratorio de Microorganismos Fotosintéticos, estado Zulia, Venezuela. Resumen El cultivo de protozoarios ciliados de vida libre a nivel de laboratorio es una tarea minuciosa y compleja, puesto que muchas veces los individuos no se adaptan a las condiciones impuestas, además de requerir una supervisión constante para no perder la cepa “semilla” por condiciones adversas dentro del cultivo. En el presente trabajo se describe una metodología práctica, sencilla y económica para el cultivo de protozoarios ciliados de vida libre, a partir de muestras de agua superficial del Lago de Maracaibo, estableciendo los criterios de aislamiento e identificación taxonómica para obtener cultivos mono específicos. Para ello, se cuantificó la densidad de los protozoarios presentes (cámara Sedgwick-Rafter), así como los parámetros: temperatura, pH, potencial red ox, salinidad, conductividad eléctrica y oxígeno disuelto (sonda multi- paramétrica). La identificación taxonómica se realizó aplicando claves taxonómicas convencionales. La densidad de los protozoarios ciliados estuvo entre 1,98x105 y 2,60x106 cél/L, con una densidad relativa de 82,3% para el género Uronema, de 12,4% para Euplotes y de 5,3% para Loxodes. -
Fusiforma Themisticola N. Gen., N. Sp., a New Genus and Species Of
Protist, Vol. 164, 793–810, November 2013 http://www.elsevier.de/protis Published online date 23 October 2013 ORIGINAL PAPER Fusiforma themisticola n. gen., n. sp., a New Genus and Species of Apostome Ciliate Infecting the Hyperiid Amphipod Themisto libellula in the Canadian Beaufort Sea (Arctic Ocean), and Establishment of the Pseudocolliniidae (Ciliophora, Apostomatia) a,1 b,c d Chitchai Chantangsi , Denis H. Lynn , Sonja Rueckert , e a f Anna J. Prokopowicz , Somsak Panha , and Brian S. Leander a Department of Biology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand b Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada c Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada d School of Life, Sport and Social Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh EH11 4BN, Scotland, United Kingdom e Québec-Océan, Département de Biologie, Université Laval, Quebec, QC G1V 0A6, Canada f Canadian Institute for Advanced Research, Departments of Zoology and Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada Submitted May 30, 2013; Accepted September 16, 2013 Monitoring Editor: Genoveva F. Esteban A novel parasitic ciliate Fusiforma themisticola n. gen., n. sp. was discovered infecting 4.4% of the hyperiid amphipod Themisto libellula. Ciliates were isolated from a formaldehyde-fixed whole amphi- pod and the DNA was extracted for amplification of the small subunit (SSU) rRNA gene. Sequence and phylogenetic analyses showed unambiguously that this ciliate is an apostome and about 2% diver- gent from the krill-infesting apostome species assigned to the genus Pseudocollinia. Protargol silver impregnation showed a highly unusual infraciliature for an apostome. -
Classification of the Phylum Ciliophora (Eukaryota, Alveolata)
1! The All-Data-Based Evolutionary Hypothesis of Ciliated Protists with a Revised 2! Classification of the Phylum Ciliophora (Eukaryota, Alveolata) 3! 4! Feng Gao a, Alan Warren b, Qianqian Zhang c, Jun Gong c, Miao Miao d, Ping Sun e, 5! Dapeng Xu f, Jie Huang g, Zhenzhen Yi h,* & Weibo Song a,* 6! 7! a Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 8! China; b Department of Life Sciences, Natural History Museum, London, UK; c Yantai 9! Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; d 10! College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China; 11! e Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, 12! Xiamen University, Xiamen, China; f State Key Laboratory of Marine Environmental 13! Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, 14! China; g Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; h 15! School of Life Science, South China Normal University, Guangzhou, China. 16! 17! Running Head: Phylogeny and evolution of Ciliophora 18! *!Address correspondence to Zhenzhen Yi, [email protected]; or Weibo Song, 19! [email protected] 20! ! ! 1! Table S1. List of species for which SSU rDNA, 5.8S rDNA, LSU rDNA, and alpha-tubulin were newly sequenced in the present work. ! ITS1-5.8S- Class Subclass Order Family Speicies Sample sites SSU rDNA LSU rDNA a-tubulin ITS2 A freshwater pond within the campus of 1 COLPODEA Colpodida Colpodidae Colpoda inflata the South China Normal University, KM222106 KM222071 KM222160 Guangzhou (23° 09′N, 113° 22′ E) Climacostomum No. -
Systematic Studies on Ciliates (Alveolata, Ciliophora) in China: Progress
Available online at www.sciencedirect.com ScienceDirect European Journal of Protistology 61 (2017) 409–423 Review Systematic studies on ciliates (Alveolata, Ciliophora) in China: Progress and achievements based on molecular information a,1 a,b,1 a,c,1 a,d,1 a,e,1 Feng Gao , Jie Huang , Yan Zhao , Lifang Li , Weiwei Liu , a,f,1 a,g,1 a,1 a,h,∗ Miao Miao , Qianqian Zhang , Jiamei Li , Zhenzhen Yi , i j a,k Hamed A. El-Serehy , Alan Warren , Weibo Song a Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China b Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China c Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China d Marine College, Shandong University, Weihai 264209, China e Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, China f College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China g Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China h Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, China i Department of Zoology, King Saud University, Riyadh 11451, Saudi Arabia j Department of Life Sciences, Natural History Museum, London SW7 5BD, UK k Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China Available online 6 May 2017 Abstract Due to complex morphological and convergent morphogenetic characters, the systematics of ciliates has long been ambiguous. -
Comparative Study of the Population Dynamics, Secondary Productivity
AN ABSTRACT OF THE DISSERTATION OF Jaime Gómez Gutiérrez for the degree of Doctor of Philosophy in Oceanography presented on December 12, 2003. Title: Comparative Study of the Population Dynamics, Secondary Productivity, and Reproductive Ecology of the Euphausiids Euphausia pacifica and Thysanoessa spinifera in the Oregon Upwelling Region Redacted for Privacy Redacted for Privacy Abstract approved I compare the seasonal abundance variation, population dynamics, fecundity, egg hatching mechanism and success, and apostome ciliate parasites of the euphausiids Euphausia pac?fica and Thysanoessa spinfera from the Oregon coast, USA. Community structure and nearshore distributions were examined from bi-weekly oceanographic surveys (1970-1972). This region has a strong cross-shelf change in euphausiid assemblages located about 45 km from shore. Euphausia pacflca and T. spinfera have life stage-segregated distributions, suggesting active location-maintenance strategies. Morphology and biometry of all the post-spawning embryonic stages and the hatching mechanisms of three broadcast-spawning (E. pacfica, T. spinfera and Thysanoe;sa inspinata) and one sac-spawning (Nematoscelisdjfficilis)euphausiids are described. The average embryo and chorion diameters were significantly larger for E. pacca (0.378,0.407 mm) than for T. spinfera (0.35 3, 0.363 mm) and T. inspinata (0.312, 0.333 mm). There are four hatching mechanisms. Some broadcast-spawning species have delayed hatching schedules, hatching as nauplius 2, metanauplius or calyptopis 1, rather than as the usual nauplius 1. Sac-spawning species sometimes hatch early as nauplius 2, rather than as the normal pseudometanauplius or metanauplius. Late and early hatching schedules were associated with low hatching success and small brood size. -
That Miamiensis Avidus and Philasterides Dicentrarchi Are Different Species
This article has been published in a revised form in Parasitology [http://doi.org/10.1017/S0031182017000749]. This version is free to view and download for private research and study only. Not for re-distribution, re-sale or use in derivative works. © 2017 Cambridge University Press Parasitology Ne w data on flatfish scuticociliatosis reveal that Miamiensis avidus and Philasterides dicentrarchi are different species Journal: Parasitology ManuscriptFor ID PAR-2017-0052 Peer Review Manuscript Type: Research Article - Standard Date Submitted by the Author: 01-Feb-2017 Complete List of Authors: de Felipe, Ana; University of Santiago de Compostela, Microbiology and Parasitology Lamas, Jesús; University of Santiago de Compostela, Department of Cell Biology and Ecology Sueiro, Rosa; University of Santiago de Compostela, Microbiology and Parasitology Folgueira, Iria; Universidad de Santiago de Compostela, Instituto Análisis Alimentarios Leiro, Jose; Universidad de Santiago de Compostela, Instituto Análisis Alimentarios; Paralichthys adspersus, Scophthalmus maximus, scuticociliates, SSUrRNA Key Words: gene, α- β-tubulin gene Cambridge University Press Page 1 of 57 Parasitology 1 New data on flatfish scuticociliatosis reveal 2 that Miamiensis avidus and Philasterides 3 dicentrarchi are different species 4 ANA-PAULA DEFELIPE 1, JESÚS LAMAS 2, ROSA-ANA SUEIRO 1,2, 5 IRIA FOLGUEIRAFor1 and Peer JOSÉ-MANUEL Review LEIRO 1* 6 1Departamento de Microbiología y Parasitología, Instituto de Investigación y Análisis Alimentarios, 7 Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain 8 2Departamento de Biología Celular y Ecología, Instituto de Acuicultura, Universidad de Santiago de 9 Compostela, 15782 Santiago de Compostela, Spain 10 11 12 13 14 15 SHORT TITLE: Scuticociliatosis in flatfish 16 17 18 19 20 21 *Correspondence 22 José M.