Comparative Study of the Population Dynamics, Secondary Productivity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Special Issue Featuring: a Case Study on Black Gill in Georgia Shrimp
Volume 29 • Number 4 • Winter 2015 Special Issue Featuring: A Case Study on Black Gill in Georgia Shrimp Volume 29 • Number 4 • Winter 2015 The Mystery of Black Gill: Shrimpers in the South Atlantic Face Off with a Cryptic Parasite BY JILL M. GAMBILL, ALLISON E. DOYLE, RICHARD F. LEE, PH.D., PATRICK J. GEER, ANNA N. WALKER, PH.D., LINDSEY G. PARKER, PH.D., AND MARC E. FRISCHER, PH.D. ABSTRACT In the Southeast United States, an unidentified parasite is infecting shrimp and presenting new challenges for an already struggling industry. Emerging research in Georgia is investigating the resulting condition, known as Black Gill, to better understand this newest threat to the state’s most valuable commercial fishery. Researchers, shrimpers, extension agents, and fishery managers are working collaboratively to gather baseline data on where, when, and how frequently Black Gill is occurring, as well as partnering to determine its epidemiology, dispersal, and possible intervention strategies. Savannah, Ga. – In 2013, after years of intense competition from lower priced imports and financial pressures stemming Figure 1. A Georgia white shrimp displays symptoms of the from the rising cost of fuel and insurance, Georgia shrimpers Black Gill condition around its gills. Courtesy of Rachael were poised for a comeback as they looked forward to a Randall and Chelsea Parrish, 2015 profitable year. Shrimp prices had tripled, as a consequence of a bacterial disease infecting the supply of farmed shrimp A LANDMARK YEAR from Asia (Loc et al. 2013). Commercial food shrimp landings in 2013 were the lowest Georgia shrimpers took to the water with high expectations, in recent history. -
Penaeid Shrimp in Chesapeake Bay: Population Growth and Black Gill Disease Syndrome
W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 2021 Penaeid Shrimp in Chesapeake Bay: Population Growth and Black Gill Disease Syndrome Troy D. Tuckey Virginia Institute of Marine Science Jillian L. Swinford Mary C. Fabrizio Virginia Institute of Marine Science Hamish J. Small Virginia Institute of Marine Science Jeffrey D. Shields Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Aquaculture and Fisheries Commons, and the Marine Biology Commons Recommended Citation Tuckey, Troy D.; Swinford, Jillian L.; Fabrizio, Mary C.; Small, Hamish J.; and Shields, Jeffrey D., Penaeid Shrimp in Chesapeake Bay: Population Growth and Black Gill Disease Syndrome (2021). Marine and Coastal Fisheries, 13, 159-173. DOI: 10.1002/mcf2.10143 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Marine and Coastal Fisheries 13:159–173, 2021 © 2021 The Authors. Marine and Coastal Fisheries published by Wiley Periodicals LLC on behalf of American Fisheries Society ISSN: 1942-5120 online DOI: 10.1002/mcf2.10143 ARTICLE Penaeid Shrimp in Chesapeake Bay: Population Growth and Black Gill Disease Syndrome Troy D. Tuckey* Virginia Institute of Marine Science, William & Mary, 1370 Greate Road, Gloucester Point, Virginia 23062, USA Jillian L. Swinford Texas Parks and Wildlife, Coastal Fisheries Division, Perry R. Bass Marine Fisheries Research Center, 3864 Farm to Market Road 3280, Palacios, Texas 77465, USA Mary C. -
Prevalent Ciliate Symbiosis on Copepods: High Genetic Diversity and Wide Distribution Detected Using Small Subunit Ribosomal RNA Gene
Prevalent Ciliate Symbiosis on Copepods: High Genetic Diversity and Wide Distribution Detected Using Small Subunit Ribosomal RNA Gene Zhiling Guo1,2, Sheng Liu1, Simin Hu1, Tao Li1, Yousong Huang4, Guangxing Liu4, Huan Zhang2,4*, Senjie Lin2,3* 1 Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, Guangdong, China, 2 Department of Marine Sciences, University of Connecticut, Groton, Connecticut, United States of America, 3 Marine Biodiversity and Global Change Laboratory, Xiamen University, Xiamen, Fujian, China, 4 Department of Environmental Science, Ocean University of China, Qingdao, Shandong, China Abstract Toward understanding the genetic diversity and distribution of copepod-associated symbiotic ciliates and the evolutionary relationships with their hosts in the marine environment, we developed a small subunit ribosomal RNA gene (18S rDNA)- based molecular method and investigated the genetic diversity and genotype distribution of the symbiotic ciliates on copepods. Of the 10 copepod species representing six families collected from six locations of Pacific and Atlantic Oceans, 9 were found to harbor ciliate symbionts. Phylogenetic analysis of the 391 ciliate 18S rDNA sequences obtained revealed seven groups (ribogroups), six (containing 99% of all the sequences) belonging to subclass Apostomatida, the other clustered with peritrich ciliate Vorticella gracilis. Among the Apostomatida groups, Group III were essentially identical to Vampyrophrya pelagica, and the other five groups represented the undocumented ciliates that were close to Vampyrophrya/ Gymnodinioides/Hyalophysa. Group VI ciliates were found in all copepod species but one (Calanus sinicus), and were most abundant among all ciliate sequences obtained, indicating that they are the dominant symbiotic ciliates universally associated with copepods. -
Handbook of Shrimp Diseases
LOAN COPY ONLY TAMU-H-95-001 C3 Handbook of Shrimp Diseases Aquaculture S.K. Johnson Department of Wildlife and Fisheries Sciences Texas A&M University 90-601 (rev) Introduction 2 Shrimp Species 2 Shrimp Anatomy 2 Obvious Manifestations ofShrimp Disease 3 Damaged Shells , 3 Inflammation and Melanization 3 Emaciation and Nutritional Deficiency 4 Muscle Necrosis 5 Tumors and Other Tissue Problems 5 Surface Fouling 6 Cramped Shrimp 6 Unusual Behavior 6 Developmental Problems 6 Growth Problems 7 Color Anomalies 7 Microbes 8 Viruses 8 Baceteria and Rickettsia 10 Fungus 12 Protozoa 12 Haplospora 13 Gregarina 15 Body Invaders 16 Surface Infestations 16 Worms 18 Trematodes 18 Cestodes 18 Nematodes 18 Environment 20 Publication of this handbook is a coop erative effort of the Texas A&M Univer sity Sea Grant College Program, the Texas A&M Department of Wildlife and $2.00 Fisheries Sciences and the Texas Additional copies available from: Agricultural Extension Service. Produc Sea Grant College Program tion is supported in part by Institutional 1716 Briarcrest Suite 603 Grant No. NA16RG0457-01 to Texas Bryan, Texas 77802 A&M University by the National Sea TAMU-SG-90-601(r) Grant Program, National Oceanic and 2M August 1995 Atmospheric Administration, U.S. De NA89AA-D-SG139 partment of Commerce. A/1-1 Handbook ofShrimp Diseases S.K. Johnson Extension Fish Disease Specialist This handbook is designed as an information source and tail end (abdomen). The parts listed below are apparent upon field guide for shrimp culturists, commercial fishermen, and outside examination (Fig. 1). others interested in diseases or abnormal conditions of shrimp. -
Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes
University of Rhode Island DigitalCommons@URI Biological Sciences Faculty Publications Biological Sciences 9-26-2018 Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes Christopher E. Lane Et Al Follow this and additional works at: https://digitalcommons.uri.edu/bio_facpubs Journal of Eukaryotic Microbiology ISSN 1066-5234 ORIGINAL ARTICLE Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes Sina M. Adla,* , David Bassb,c , Christopher E. Laned, Julius Lukese,f , Conrad L. Schochg, Alexey Smirnovh, Sabine Agathai, Cedric Berneyj , Matthew W. Brownk,l, Fabien Burkim,PacoCardenas n , Ivan Cepi cka o, Lyudmila Chistyakovap, Javier del Campoq, Micah Dunthornr,s , Bente Edvardsent , Yana Eglitu, Laure Guillouv, Vladimır Hamplw, Aaron A. Heissx, Mona Hoppenrathy, Timothy Y. Jamesz, Anna Karn- kowskaaa, Sergey Karpovh,ab, Eunsoo Kimx, Martin Koliskoe, Alexander Kudryavtsevh,ab, Daniel J.G. Lahrac, Enrique Laraad,ae , Line Le Gallaf , Denis H. Lynnag,ah , David G. Mannai,aj, Ramon Massanaq, Edward A.D. Mitchellad,ak , Christine Morrowal, Jong Soo Parkam , Jan W. Pawlowskian, Martha J. Powellao, Daniel J. Richterap, Sonja Rueckertaq, Lora Shadwickar, Satoshi Shimanoas, Frederick W. Spiegelar, Guifre Torruellaat , Noha Youssefau, Vasily Zlatogurskyh,av & Qianqian Zhangaw a Department of Soil Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, S7N 5A8, SK, Canada b Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, United Kingdom -
Antarctica) During an Extensive Phaeocystis Antarctica Bloom
bioRxiv preprint doi: https://doi.org/10.1101/271635; this version posted February 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Microzooplankton distribution in the Amundsen Sea Polynya (Antarctica) during an extensive Phaeocystis antarctica bloom Rasmus Swalethorp*1,2,3, Julie Dinasquet*1,4,5, Ramiro Logares6, Stefan Bertilsson7, Sanne Kjellerup2,3, Anders K. Krabberød8, Per-Olav Moksnes3, Torkel G. Nielsen2, and Lasse Riemann4 1 Scripps Institution of Oceanography, University of California San Diego, USA 2 National Institute of Aquatic Resources (DTU Aqua), Technical University of Denmark, Denmark 3 Department of Marine Sciences, University of Gothenburg, Sweden 4 Marine Biological Section, Department of Biology, University of Copenhagen, Denmark 5 Department of Natural Sciences, Linnaeus University, Sweden 6 Institute of Marine Sciences (ICM), CSIC, Spain 7 Department of Ecology and Genetics: Limnology and Science for Life Laboratory, Uppsala University, Sweden 8 Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), University of Oslo, Norway *Equal contribution, correspondence: [email protected], [email protected] Key words: ciliate; dinoflagellate; growth rates; Southern Ocean; Antarctica; Amundsen Sea polynya; Gymnodinium spp. 1 bioRxiv preprint doi: https://doi.org/10.1101/271635; this version posted February 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. -
Phylogenetic Position of the Apostome Ciliates (Phylum Ciliophora, Subclass Apostomatia) Tested Using Small Subunit Rrna Gene Sequences*
©Biologiezentrum Linz/Austria, download unter www.biologiezentrum.at Phylogenetic position of the apostome ciliates (Phylum Ciliophora, Subclass Apostomatia) tested using small subunit rRNA gene sequences* J o h n C . C L AM P , P h y l l i s C . B RADB UR Y , M i c h a e l a C . S TR ÜDER -K Y P KE & D e n i s H . L Y N N Abstract: The apostomes have been assigned historically to two major groups of ciliates – now called the Class Phyllopharyngea and Class Oligohymenophorea. We set about to test these competing hypotheses of relationship using sequences of the small sub- unit rRNA gene from isolates of five species of apostomes: Gymnodinioides pitelkae from Maine; Gymnodinioides sp. from North Ca- rolina; Hyalophysa chattoni from Florida and from North Carolina; H. lwoffi from North Carolina; and Vampyrophrya pelagica from North Carolina. These apostome ciliates were unambiguously related to taxa in the Class Oligohymenophorea using Bayesian in- ference, maximum parsimony, and neighbor-joining algorithms to infer phylogenetic relationship. Thus, their assignment as the Subclass Apostomatia within this class is confirmed by these genetic data. The two isolates of Hyalophysa chattoni were harvested from the same crustacean host, Palaemonetes pugio, at localities separated by slightly more than 1225 km, and yet they showed only 0.06% genetic divergence, suggesting that they represent a single population. Key words: Apostomes, crustacean, exuviotroph, Gammarus mucronatus, Marinogammarus obtusatus, Oligohymenophorea. Introduction In morphologically-based classifications, apostome ciliates have been placed with either one or the other Over the past 20 years, sequences of the small sub- of two major taxa, now considered classes (BRADBURY unit rRNA (SSrRNA) gene have been used to confirm 1989). -
140 Cor Frontale Supraesophageal Ganglion . . K Antennary Optic
140 Cor Pyloric Dorsal frontalle stomach abdominal Supraesophageal art ry ganglion . K Ophthalmic / Ostium ® Antennary artery Cardiac / / Heart \ Segmental Optic \ artery i stomach/Cecum / / Hepato- \ artery nerve I / / / / / pancreas\ Hindgut Antennal nerve Rectum ganglion Hepatic artery Subesophageal Ventral Midgut ganglion nerve cord dorsomedial branchiocardiac dorsomedial Antenna Antennule intestinal / urogastric Compound eye posterior margina hepatic Th°racopods lateromarginal I inferior \ intercervical parabranchial postcervical B Uropod Telson Figure 47 Decapoda: A. Diagrammatic astacidean with gills and musculature removed to show major organ systems; B. Diagrammatic nephropoidean carapace illustrating carapace grooves [after Holthuis, 1974]; C. Phyllosoma larva. ORDER DECAPODA 141 midgut or the other, pierces the ventral nerve cord, and indistinct from the fused ganglia of the mandibles, maxil- then branches anteriorly and posteriorly. The anterior lulae, maxillae, and first 2 pairs of maxillipeds. The gang branch, the ventral thoracic artery, supplies blood to the lia of the first 3 pairs of pereopods are segmental; the mouthparts, nerve cord, and 1st 3 pairs of pereopods. ganglia of the 4th and 5th pairs lie very close together. The course of this artery cannot be traced until the Follow the ventral nerve cord into the abdomen and stomach and hepatic cecum have been removed. The identify the abdominal ganglia. posterior branch, the ventral abdominal artery, which Larval development is direct (epimorphic) in all fresh also should be traced later, provides blood to the 4th and water taxa; in marine taxa early developmental stages 5th pairs of pereopods, nerve cord, and parts of the ven are passed through in the egg and hatching usually occurs tral abdomen. -
Euphausiacea (Crustacea) of the North Pacific
UC San Diego Bulletin of the Scripps Institution of Oceanography Title Euphausiacea (Crustacea) of the North Pacific Permalink https://escholarship.org/uc/item/62h3k734 Authors Boden, Brian P Johnson, Martin W Brinton, Edward Publication Date 1955-11-15 Peer reviewed eScholarship.org Powered by the California Digital Library University of California THE EUPHAUSIACEA (CRUSTACEA) OF THE NORTH PACIFIC BY BRIAN P. BODEN, MARTIN W. JOHNSON, AND EDWARD BRINTON UNIVERSITY OF CALIFORNIA PRESS BERKELEY AND LOS ANGELES 1955 BULLETIN OF THE SCRIPPS INSTITUTION OF OCEANOGRAPHY OF THE UNIVERSITY OF CALIFORNIA LA JOLLA, CALIFORNIA EDITORS: CLAUDE E. ZOBELL, ROBERT S. ARTHUR, DENIS L. FOX Volume 6, No. 8, pp. 287–400, 55 figures in text Submitted by editors November 5,1954 Issued November 15, 1955 Price, $1.50 UNIVERSITY OF CALIFORNIA PRESS BERKELEY AND LOS ANGELES CALIFORNIA CAMBRIDGE UNIVERSITY PRESS LONDON, ENGLAND [CONTRIBUTION FROM THE SCRIPPS INSTITUTION OF OCEANOGRAPHY, NO. 796] PRINTED IN THE UNITED STATES OF AMERICA CONTENTS THE EUPHAUSIACEA (CRUSTACEA) OF THE NORTH PACIFIC BY BRIAN P. BODEN, MARTIN W. JOHNSON, AND EDWARD BRINTON INTRODUCTION AS A PART of the Marine Life Research Program of the Scripps Institution of Oceanography (a member of the California Coöperative Oceanic Fisheries Investigations) an increased effort is being made to describe and evaluate the various organic factors that are important in the biological economy of the sea. In attacking the problem, the most expedient procedure is to study in detail the various components of the plankton, for it is well known that these components in varying degrees of importance provide directly the basic food for the Fig. -
Fusiforma Themisticola N. Gen., N. Sp., a New Genus and Species Of
Protist, Vol. 164, 793–810, November 2013 http://www.elsevier.de/protis Published online date 23 October 2013 ORIGINAL PAPER Fusiforma themisticola n. gen., n. sp., a New Genus and Species of Apostome Ciliate Infecting the Hyperiid Amphipod Themisto libellula in the Canadian Beaufort Sea (Arctic Ocean), and Establishment of the Pseudocolliniidae (Ciliophora, Apostomatia) a,1 b,c d Chitchai Chantangsi , Denis H. Lynn , Sonja Rueckert , e a f Anna J. Prokopowicz , Somsak Panha , and Brian S. Leander a Department of Biology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand b Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada c Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada d School of Life, Sport and Social Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh EH11 4BN, Scotland, United Kingdom e Québec-Océan, Département de Biologie, Université Laval, Quebec, QC G1V 0A6, Canada f Canadian Institute for Advanced Research, Departments of Zoology and Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada Submitted May 30, 2013; Accepted September 16, 2013 Monitoring Editor: Genoveva F. Esteban A novel parasitic ciliate Fusiforma themisticola n. gen., n. sp. was discovered infecting 4.4% of the hyperiid amphipod Themisto libellula. Ciliates were isolated from a formaldehyde-fixed whole amphi- pod and the DNA was extracted for amplification of the small subunit (SSU) rRNA gene. Sequence and phylogenetic analyses showed unambiguously that this ciliate is an apostome and about 2% diver- gent from the krill-infesting apostome species assigned to the genus Pseudocollinia. Protargol silver impregnation showed a highly unusual infraciliature for an apostome. -
Microzooplankton Distribution in the Amundsen Sea Polynya (Antarctica) During an Extensive Phaeocystis Antarctica Bloom
Microzooplankton distribution in the Amundsen Sea Polynya (Antarctica) during an extensive Phaeocystis antarctica bloom Rasmus Swalethorp *1,2,3 , Julie Dinasquet *1,4,5 , Ramiro Logares 6, Stefan Bertilsson 7, Sanne Kjellerup 2,3 , Anders K. Krabberød 8, Per-Olav Moksnes 3, Torkel G. Nielsen 2, and Lasse Riemann 4 1 Scripps Institution of Oceanography, University of California San Diego, USA 2 National Institute of Aquatic Resources (DTU Aqua), Technical University of Denmark, Denmark 3 Department of Marine Sciences, University of Gothenburg, Sweden 4 Marine Biological Section, Department of Biology, University of Copenhagen, Denmark 5 Department of Natural Sciences, Linnaeus University, Sweden 6 Institute of Marine Sciences (ICM), CSIC, Spain 7 Department of Ecology and Genetics: Limnology and Science for Life Laboratory, Uppsala University, Sweden 8 Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), University of Oslo, Norway *Equal contribution, correspondence: [email protected], [email protected] Key words: ciliate; dinoflagellate; growth rates; Southern Ocean; Antarctica; Amundsen Sea polynya; Gymnodinium spp. 1 Abbreviations: ASP: Amundsen Sea Polynya; SO: Southern Ocean; HNF: Heterotrophic nanoflagellates; OTU: Operational Taxonomic Unit, DFM: Deep Fluorescence Maximum 2 Abstract In Antarctica, summer is a time of extreme environmental shifts resulting in large coastal phytoplankton blooms fueling the food web. Despite the importance of the microbial loop in remineralizing biomass from primary production, studies of how microzooplankton communities respond to such blooms in the Southern Ocean are rather scarce. Microzooplankton (ciliate and dinoflagellate) communities were investigated combining microscopy and 18S rRNA sequencing analyses in the Amundsen Sea Polynya during an extensive summer bloom of Phaeocystis antarctica . -
Protista (PDF)
1 = Astasiopsis distortum (Dujardin,1841) Bütschli,1885 South Scandinavian Marine Protoctista ? Dingensia Patterson & Zölffel,1992, in Patterson & Larsen (™ Heteromita angusta Dujardin,1841) Provisional Check-list compiled at the Tjärnö Marine Biological * Taxon incertae sedis. Very similar to Cryptaulax Skuja Laboratory by: Dinomonas Kent,1880 TJÄRNÖLAB. / Hans G. Hansson - 1991-07 - 1997-04-02 * Taxon incertae sedis. Species found in South Scandinavia, as well as from neighbouring areas, chiefly the British Isles, have been considered, as some of them may show to have a slightly more northern distribution, than what is known today. However, species with a typical Lusitanian distribution, with their northern Diphylleia Massart,1920 distribution limit around France or Southern British Isles, have as a rule been omitted here, albeit a few species with probable norhern limits around * Marine? Incertae sedis. the British Isles are listed here until distribution patterns are better known. The compiler would be very grateful for every correction of presumptive lapses and omittances an initiated reader could make. Diplocalium Grassé & Deflandre,1952 (™ Bicosoeca inopinatum ??,1???) * Marine? Incertae sedis. Denotations: (™) = Genotype @ = Associated to * = General note Diplomita Fromentel,1874 (™ Diplomita insignis Fromentel,1874) P.S. This list is a very unfinished manuscript. Chiefly flagellated organisms have yet been considered. This * Marine? Incertae sedis. provisional PDF-file is so far only published as an Intranet file within TMBL:s domain. Diplonema Griessmann,1913, non Berendt,1845 (Diptera), nec Greene,1857 (Coel.) = Isonema ??,1???, non Meek & Worthen,1865 (Mollusca), nec Maas,1909 (Coel.) PROTOCTISTA = Flagellamonas Skvortzow,19?? = Lackeymonas Skvortzow,19?? = Lowymonas Skvortzow,19?? = Milaneziamonas Skvortzow,19?? = Spira Skvortzow,19?? = Teixeiromonas Skvortzow,19?? = PROTISTA = Kolbeana Skvortzow,19?? * Genus incertae sedis.