Blackgrass: Alopecurus Myosuroides Huds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Within-Species Variation in Grass Weeds in Sweden
Within-species Variation in Grass Weeds in Sweden Dormancy, Herbicide Response, Genetic Relationships Liv Åkerblom Espeby Faculty of Natural Resources and Agricultural Sciences Department of Crop Production Ecology Uppsala Doctoral Thesis Swedish University of Agricultural Sciences Uppsala 2010 Acta Universitatis agriculturae Sueciae 2010:35 ISSN 1652-6880 ISBN 978-91-576-7448-7 © 2010 Liv Åkerblom Espeby, Uppsala Print: SLU Service/Repro, Uppsala 2010 Within-species Variation in Grass Weeds in Sweden. Dormancy, Herbicide Response, Genetic Relationships Abstract Variation within a weed species enables it to persist through varying conditions and is thus an important component of weediness. In this thesis, intra-specific variation in two agronomically important attributes - herbicide susceptibility and seed dormancy - are studied in Swedish Apera spica-venti (L.) Beauv. and Alopecurus myosuroides Huds., both serious annual weeds in winter cereals, and with many cases of herbicide resistance. Swedish Elymus repens (L.) Gould, a perennial, rhizomatous grass, is investigated for its genetic variability and variation in glyphosate response. The susceptibility to new and established herbicides in greenhouse studies in the two annual grasses ranged 0.5-4 orders of magnitude among populations, which mostly came from fields with no previous suspicion of resistance. The greatest variation was found in A. myosuroides in response to fenoxaprop-P-ethyl (an old herbicide in the sense that it had been used for a decade), with significant correlation with response to flupyrsulfuron-Na (a newly introduced herbicide). One fifth of the A. spica-venti populations were significantly less susceptible to isoproturon (old) than a susceptible reference population, but without correlation in response to sulfosulfuron (new). -
Types of American Grasses
z LIBRARY OF Si AS-HITCHCOCK AND AGNES'CHASE 4: SMITHSONIAN INSTITUTION UNITED STATES NATIONAL MUSEUM oL TiiC. CONTRIBUTIONS FROM THE United States National Herbarium Volume XII, Part 3 TXE&3 OF AMERICAN GRASSES . / A STUDY OF THE AMERICAN SPECIES OF GRASSES DESCRIBED BY LINNAEUS, GRONOVIUS, SLOANE, SWARTZ, AND MICHAUX By A. S. HITCHCOCK z rit erV ^-C?^ 1 " WASHINGTON GOVERNMENT PRINTING OFFICE 1908 BULLETIN OF THE UNITED STATES NATIONAL MUSEUM Issued June 18, 1908 ii PREFACE The accompanying paper, by Prof. A. S. Hitchcock, Systematic Agrostologist of the United States Department of Agriculture, u entitled Types of American grasses: a study of the American species of grasses described by Linnaeus, Gronovius, Sloane, Swartz, and Michaux," is an important contribution to our knowledge of American grasses. It is regarded as of fundamental importance in the critical sys- tematic investigation of any group of plants that the identity of the species described by earlier authors be determined with certainty. Often this identification can be made only by examining the type specimen, the original description being inconclusive. Under the American code of botanical nomenclature, which has been followed by the author of this paper, "the nomenclatorial t}rpe of a species or subspecies is the specimen to which the describer originally applied the name in publication." The procedure indicated by the American code, namely, to appeal to the type specimen when the original description is insufficient to identify the species, has been much misunderstood by European botanists. It has been taken to mean, in the case of the Linnsean herbarium, for example, that a specimen in that herbarium bearing the same name as a species described by Linnaeus in his Species Plantarum must be taken as the type of that species regardless of all other considerations. -
Phleum Alpinum L
Phleum alpinum L. Alpine Cat’s-tail A scarce alpine grass with distinctive purplish flower heads, long bristly awns and short, broad and glabrous leaves. It is associated with base- rich flushes and mires, more rarely with rocky habitats, and occasionally with weakly acid substrates enriched by flushing with base-rich water. In Britain it is more or less confined to above 610 m northern and central Scotland with two southern outliers in the North Pennines. It is assessed as of Least Concern in Great Britain, but in England it is assessed as Critically Endangered, due to very restricted numbers and recent decline. ©Pete Stroh IDENTIFICATION limit for both these species (540 m) is well below the lower limit for P. alpinum in Britain (610 m). However, P. pratense Phleum alpinum is a shortly rhizomatous, loosely tufted has been recorded as an introduction at 845 m near to the P. perennial alpine grass with short, broad, glabrous leaves (-6 alpinum on Great Dun Fell (Pearman & Corner 2004). mm) and short, blunt ligules (0.5–2 mm; Cope & Gray 2009). The uppermost leaf sheath is inflated. Alopecurus magellanicus, with which it often grows, has hairy, awnless glumes and ‘thunder-cloud’ coloured flower- The inflorescences are dark-blue or brownish purple, oval to heads (red-purple in P. alpinum; Raven & Walters 1956). oblong shaped (10-50 mm). The spikelets are purplish with long awns (2-3 mm) and the keels are fringed with stiff white bristles. HABITATS Phleum alpinum is a montane grass of open, rocky habitats or SIMILAR SPECIES of closed swards on base-rich substrates, or occasionally on more acidic materials enriched by flushing or down-washed Phleum alpinum is told from P. -
Weed Suppressive Ability of Cover Crop Mixtures Compared to Repeated Stubble Tillage and Glyphosate Treatments
agriculture Article Weed Suppressive Ability of Cover Crop Mixtures Compared to Repeated Stubble Tillage and Glyphosate Treatments Alexandra Schappert *, Miriam H. Messelhäuser, Marcus Saile, Gerassimos G. Peteinatos and Roland Gerhards Department of Weed Science, Institute of Phytomedicine, University of Hohenheim, 70599 Stuttgart, Germany; [email protected] (M.H.M.); [email protected] (M.S.); [email protected] (G.G.P.); [email protected] (R.G.) * Correspondence: [email protected]; Tel.: +49-711-459-23444 Received: 15 August 2018; Accepted: 13 September 2018; Published: 15 September 2018 Abstract: The utilization of an effective stubble management practice can reduce weed infestation before and in the following main crop. Different strategies can be used, incorporating mechanical, biological, and chemical measures. This study aims at estimating the effects of cover crop (CC) mixtures, various stubble tillage methods, and glyphosate treatments on black-grass, volunteer wheat and total weed infestation. Two experimental trials were conducted in Southwestern Germany including seven weed management treatments: flat soil tillage, deep soil tillage, ploughing, single glyphosate application, dual glyphosate application, and a CC mixture sown in a mulch-till and no-till system. An untreated control treatment without any processing was also included. Weed species were identified and counted once per month from October until December. The CC mixtures achieved a black-grass control efficacy of up to 100%, whereas stubble tillage and the single glyphosate treatment did not reduce the black-grass population, on the contrary it induced an increase of black-grass plants. The dual glyphosate application showed, similar to the CC treatments, best results for total weed and volunteer wheat reduction. -
FLORA from FĂRĂGĂU AREA (MUREŞ COUNTY) AS POTENTIAL SOURCE of MEDICINAL PLANTS Silvia OROIAN1*, Mihaela SĂMĂRGHIŢAN2
ISSN: 2601 – 6141, ISSN-L: 2601 – 6141 Acta Biologica Marisiensis 2018, 1(1): 60-70 ORIGINAL PAPER FLORA FROM FĂRĂGĂU AREA (MUREŞ COUNTY) AS POTENTIAL SOURCE OF MEDICINAL PLANTS Silvia OROIAN1*, Mihaela SĂMĂRGHIŢAN2 1Department of Pharmaceutical Botany, University of Medicine and Pharmacy of Tîrgu Mureş, Romania 2Mureş County Museum, Department of Natural Sciences, Tîrgu Mureş, Romania *Correspondence: Silvia OROIAN [email protected] Received: 2 July 2018; Accepted: 9 July 2018; Published: 15 July 2018 Abstract The aim of this study was to identify a potential source of medicinal plant from Transylvanian Plain. Also, the paper provides information about the hayfields floral richness, a great scientific value for Romania and Europe. The study of the flora was carried out in several stages: 2005-2008, 2013, 2017-2018. In the studied area, 397 taxa were identified, distributed in 82 families with therapeutic potential, represented by 164 medical taxa, 37 of them being in the European Pharmacopoeia 8.5. The study reveals that most plants contain: volatile oils (13.41%), tannins (12.19%), flavonoids (9.75%), mucilages (8.53%) etc. This plants can be used in the treatment of various human disorders: disorders of the digestive system, respiratory system, skin disorders, muscular and skeletal systems, genitourinary system, in gynaecological disorders, cardiovascular, and central nervous sistem disorders. In the study plants protected by law at European and national level were identified: Echium maculatum, Cephalaria radiata, Crambe tataria, Narcissus poeticus ssp. radiiflorus, Salvia nutans, Iris aphylla, Orchis morio, Orchis tridentata, Adonis vernalis, Dictamnus albus, Hammarbya paludosa etc. Keywords: Fărăgău, medicinal plants, human disease, Mureş County 1. -
Environmental Weeds of Coastal Plains and Heathy Forests Bioregions of Victoria Heading in Band
Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria Heading in band b Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria Heading in band Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria Contents Introduction 1 Purpose of the list 1 Limitations 1 Relationship to statutory lists 1 Composition of the list and assessment of taxa 2 Categories of environmental weeds 5 Arrangement of the list 5 Column 1: Botanical Name 5 Column 2: Common Name 5 Column 3: Ranking Score 5 Column 4: Listed in the CALP Act 1994 5 Column 5: Victorian Alert Weed 5 Column 6: National Alert Weed 5 Column 7: Weed of National Significance 5 Statistics 5 Further information & feedback 6 Your involvement 6 Links 6 Weed identification texts 6 Citation 6 Acknowledgments 6 Bibliography 6 Census reference 6 Appendix 1 Environmental weeds of coastal plains and heathy forests bioregions of Victoria listed alphabetically within risk categories. 7 Appendix 2 Environmental weeds of coastal plains and heathy forests bioregions of Victoria listed by botanical name. 19 Appendix 3 Environmental weeds of coastal plains and heathy forests bioregions of Victoria listed by common name. 31 Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria i Published by the Victorian Government Department of Sustainability and Environment Melbourne, March2008 © The State of Victoria Department of Sustainability and Environment 2009 This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968. -
Prairie Plant Profiles
Prairie Plant Profiles Freedom Trail Park Westfield, IN 1 Table of Contents The Importance of Prairies…………………………………………………… 3 Grasses and Sedges……………………………………………………….......... 4-9 Andropogon gerardii (Big Bluestem)…………………………………………………………. 4 Bouteloua curtipendula (Side-Oats Grama)…………………………………………………… 4 Carex bicknellii (Prairie Oval Sedge)…………………………………………………………. 5 Carex brevior (Plains Oval Sedge)……………………………………………………………. 5 Danthonia spicata (Poverty Oat Grass)……………………………………………………….. 6 Elymus canadensis (Canada Wild Rye)…………………………………….............................. 6 Elymus villosus (Silky Wild Rye)……………………………………………………………… 7 Elymus virginicus (Virginia Wild Rye)………………………………………........................... 7 Panicum virgatum (Switchgrass)……………………………………………………………… 8 Schizachyrium scoparium (Little Bluestem)…………………………………………............... 8 Sorghastrum nutans (Indian Grass)……………………………………...….............................. 9 Forbs……………………………………………………………………..……... 10-25 Asclepias incarnata (Swamp Milkweed)………………………………………………………. 10 Aster azureus (Sky Blue Aster)…………………………………………….….......................... 10 Aster laevis (Smooth Aster)………………………………………………….………………… 11 Aster novae-angliae (New England Aster)…………………………………..………………… 11 Baptisia leucantha (White False Indigo)………………………………………………………. 12 Coreopsis palmata (Prairie Coreopsis)………………………………………………………… 12 Coreopsis tripteris (Tall Coreopsis)…………………………………...………………………. 13 Echinacea pallida (Pale Purple Coneflower)……………………………….............................. 13 Echinacea purpurea (Purple Coneflower)……………………………………......................... -
11 the Evolutionary Strategy of Claviceps
Pažoutová S. (2002) Evolutionary strategy of Claviceps. In: Clavicipitalean Fungi: Evolutionary Biology, Chemistry, Biocontrol and Cultural Impacts. White JF, Bacon CW, Hywel-Jones NL (Eds.) Marcel Dekker, New York, Basel, pp.329-354. 11 The Evolutionary Strategy of Claviceps Sylvie Pažoutová Institute of Microbiology, Czech Academy of Sciences Vídeòská 1083, 142 20 Prague, Czech Republic 1. INTRODUCTION Members of the genus Claviceps are specialized parasites of grasses, rushes and sedges that specifically infect florets. The host reproductive organs are replaced with a sclerotium. However, it has been shown that after artificial inoculation, C. purpurea can grow and form sclerotia on stem meristems (Lewis, 1956) so that there is a capacity for epiphytic and endophytic growth. C. phalaridis, an Australian endemite, colonizes whole plants of pooid hosts in a way similar to Epichloë and it forms sclerotia in all florets of the infected plant, rendering it sterile (Walker, 1957; 1970). Until now, about 45 teleomorph species of Claviceps have been described, but presumably many species may exist only in anamorphic (sphacelial) stage and therefore go unnoticed. Although C. purpurea is type species for the genus, it is in many aspects untypical, because most Claviceps species originate from tropical regions, colonize panicoid grasses, produce macroconidia and microconidia in their sphacelial stage and are able of microcyclic conidiation from macroconidia. Species on panicoid hosts with monogeneric to polygeneric host ranges predominate. 329 2. PHYLOGENETIC TREE We compared sequences of ITS1-5.8S-ITS2 rDNA region for 19 species of Claviceps, Database sequences of Myrothecium atroviride (AJ302002) (outgroup from Bionectriaceae), Epichloe amarillans (L07141), Atkinsonella hypoxylon (U57405) and Myriogenospora atramentosa (U57407) were included to root the tree among other related genera. -
Introductory Grass Identification Workshop University of Houston Coastal Center 23 September 2017
Broadleaf Woodoats (Chasmanthium latifolia) Introductory Grass Identification Workshop University of Houston Coastal Center 23 September 2017 1 Introduction This 5 hour workshop is an introduction to the identification of grasses using hands- on dissection of diverse species found within the Texas middle Gulf Coast region (although most have a distribution well into the state and beyond). By the allotted time period the student should have acquired enough knowledge to identify most grass species in Texas to at least the genus level. For the sake of brevity grass physiology and reproduction will not be discussed. Materials provided: Dried specimens of grass species for each student to dissect Jewelry loupe 30x pocket glass magnifier Battery-powered, flexible USB light Dissecting tweezer and needle Rigid white paper background Handout: - Grass Plant Morphology - Types of Grass Inflorescences - Taxonomic description and habitat of each dissected species. - Key to all grass species of Texas - References - Glossary Itinerary (subject to change) 0900: Introduction and house keeping 0905: Structure of the course 0910: Identification and use of grass dissection tools 0915- 1145: Basic structure of the grass Identification terms Dissection of grass samples 1145 – 1230: Lunch 1230 - 1345: Field trip of area and collection by each student of one fresh grass species to identify back in the classroom. 1345 - 1400: Conclusion and discussion 2 Grass Structure spikelet pedicel inflorescence rachis culm collar internode ------ leaf blade leaf sheath node crown fibrous roots 3 Grass shoot. The above ground structure of the grass. Root. The below ground portion of the main axis of the grass, without leaves, nodes or internodes, and absorbing water and nutrients from the soil. -
ISTA List of Stabilized Plant Names 7Th Edition
ISTA List of Stabilized Plant Names th 7 Edition ISTA Nomenclature Committee Chair: Dr. M. Schori Published by All rights reserved. No part of this publication may be The Internation Seed Testing Association (ISTA) reproduced, stored in any retrieval system or transmitted Zürichstr. 50, CH-8303 Bassersdorf, Switzerland in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior ©2020 International Seed Testing Association (ISTA) permission in writing from ISTA. ISBN 978-3-906549-77-4 ISTA List of Stabilized Plant Names 1st Edition 1966 ISTA Nomenclature Committee Chair: Prof P. A. Linehan 2nd Edition 1983 ISTA Nomenclature Committee Chair: Dr. H. Pirson 3rd Edition 1988 ISTA Nomenclature Committee Chair: Dr. W. A. Brandenburg 4th Edition 2001 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 5th Edition 2007 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 6th Edition 2013 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 7th Edition 2019 ISTA Nomenclature Committee Chair: Dr. M. Schori 2 7th Edition ISTA List of Stabilized Plant Names Content Preface .......................................................................................................................................................... 4 Acknowledgements ....................................................................................................................................... 6 Symbols and Abbreviations .......................................................................................................................... -
The Mineral Composition of Wild-Type and Cultivated Varieties of Pasture Species
agronomy Article The Mineral Composition of Wild-Type and Cultivated Varieties of Pasture Species Tegan Darch 1,* , Steve P. McGrath 2 , Michael R. F. Lee 1,3 , Deborah A. Beaumont 1 , Martin S. A. Blackwell 1, Claire A. Horrocks 1, Jessica Evans 4 and Jonathan Storkey 2 1 Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB, UK; [email protected] (M.R.F.L.); [email protected] (D.A.B.); [email protected] (M.S.A.B.); [email protected] (C.A.H.) 2 Sustainable Agriculture Sciences, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK; [email protected] (S.P.M.); [email protected] (J.S.) 3 Bristol Veterinary School, University of Bristol, Langford, Somerset BS40 5DU, UK 4 Computational and Analytical Sciences, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK; [email protected] * Correspondence: [email protected] Received: 21 August 2020; Accepted: 22 September 2020; Published: 24 September 2020 Abstract: Mineral deficiencies in livestock are often prevented by using prophylactic supplementation, which is imprecise and inefficient. Instead, the trend for increased species diversity in swards is an opportunity to improve mineral concentrations in the basal diet. Currently, there are limited data on the mineral concentrations of different species and botanical groups, particularly for I and Se, which are among the most deficient minerals in livestock diets. We grew 21 pasture species, including some cultivar/wild type comparisons, of grasses, legumes and forbs, as single species stands in a pot study in a standard growth medium. -
Wet Meadow Plant Associations, Malheur National Wildlife Refuge, Harney County, Oregon
WET MEADOW PLANT ASSOCIATIONS, DOUBLE O UNIT, MALHEUR NATIONAL WILDLIFE REFUGE, HARNEY COUNTY, OREGON John A. Christy Oregon Biodiversity Information Center, Institute for Natural Resources Portland State University July 2016 Summary This report summarizes vegetation data collected in July 2015 in wet meadow and marshy habitats on the Double O Unit of Malheur National Wildlife Refuge (MNWR). Because vegetation sampled at the Double O was wetter and more alkaline than wet meadows sampled at the south end of the refuge in 2012 and 2013 (Christy 2014), data from the Double O Unit were analyzed and summarized separately. A total of 83 plots were sampled in 2015, and analysis of the data identified 14 plant associations: Alopecurus aequalis - Juncus balticus, Alopecurus pratensis - Potentilla anserina, Carex praegracilis - Juncus balticus, Cicuta douglasii - Carex nebrascensis, Distichlis spicata - Amphiscirpus nevadensis, Distichlis spicata - Nitrophila occidentalis, Eleocharis palustris - Juncus balticus, Eleocharis rostellata, Juncus balticus - Glaux maritima, Hippuris vulgaris - Triglochin maritima, Leymus triticoides - Juncus balticus, Schoenoplectus americanus, Spartina gracilis, and Triglochin maritima. Plant associations spanned a wetland gradient from seasonally moist to seasonally or perennially flooded, but surface water had left most stands at time of sampling. Mean Wetland Indicator Status scores and species composition help to place the plant associations within gradients in soil moisture and alkalinity. Seven of the 14 plant associations are listed in the International Vegetation Classification, and the remaining types are provisional. Acknowledgments Jess Wenick and Chad Karges of Malheur National Wildlife Refuge (MNWR) provided guidance, logistical support, and funding to The Wetlands Conservancy (TWC) for this project. Esther Lev of TWC coordinated the project and provided guidance as a member of the Ecology Woring Group (EWG).