Forestry Department Food and Agriculture Organization of the United Nations

Total Page:16

File Type:pdf, Size:1020Kb

Forestry Department Food and Agriculture Organization of the United Nations Forestry Department Food and Agriculture Organization of the United Nations Forest Genetic Resources Working Papers State of Forest and Tree Genetic Resources in Mauritius SADC regional workshop on the conservation, management, sustainable utilization and enhancement of forest genetic resources Arusha, Tanzania, 5-9 June 2002 By Kevin Ruhomaun September 2003 Forest Resources Development Service Forest Resources Division Working Paper FGR/58E Forestry Department FAO, Rome, Italy Disclaimer The Forest Genetic Resources Working Papers report on issues and activities in related to the conservation, sustainable use and management of forest genetic resources. The purpose of these papers is to provide early information on on-going activities and programmes, and to stimulate discussion. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Quantitative information regarding the status of forest resources has been compiled according to sources, methodologies and protocols identified and selected by the authors, for assessing the diversity and status of genetic resources. For standardized methodologies and assessments on forest resources, please refer to FAO, 2003. State of the World’s Forests 2003; and to FAO, 2001. Global Forest Resources Assessment 2000 (FRA2000). FAO Forestry Paper No 140. Official information can also be found at the FAO Internet site (http://www.fao.org/forestry/Forestry.asp). Comments and feedback are welcome. For further information please contact: Pierre Sigaud Forestry Officer (Forest Genetic Resources) Forest Resources Division Forestry Department FAO, Viale delle Terme di Caracalla 00100 Rome, Italy Fax: + 39 06 570 55 137 Email: [email protected] For quotation: Ruhomaun, K. 2003. State of Forest and Tree Genetic Resources in Mauritius. Prepared for the SADC regional workshop on the conservation, management, sustainable utilization and enhancement of forest genetic resources, 5-9 June 2002, Arusha, Tanzania.Forest Genetic Resources Working Papers, Working Paper FGR/58E. Forest Resources Development Service, Forest Resources Division. FAO, Rome (unpublished). TABLE OF CONTENTS 1. INTRODUCTION.................................................................................................................. 1 2. STATUS OF THE FOREST RESOURCES........................................................................ 1 2.1. LOCAL FORESTS ................................................................................................................. 1 2.2. LOCAL TREE USE................................................................................................................ 2 2.3. THE THREATS..................................................................................................................... 2 2.4. LINKS WITH AGRICULTURE ................................................................................................ 2 3. INSTITUTIONAL FRAMEWORK..................................................................................... 3 3.1. THE FORESTRY SERVICE .................................................................................................... 3 3.1.1. The Biodiversity Unit................................................................................................ 3 3.1.2. The Tree Seed Centre................................................................................................ 3 3.1.3. The Greenhouse Unit................................................................................................ 3 3.2. NATIONAL PARKS AND CONSERVATION SERVICE.............................................................. 4 3.3. OTHER INSTITUTIONS......................................................................................................... 4 4. FOREST POLICY AND LEGAL FRAMEWORK............................................................ 4 5. GOVERNMENT PRIORITIES............................................................................................ 5 6. CONSERVATION WORK ................................................................................................... 5 7. POTENTIAL OF LOCAL SPECIES................................................................................... 6 8. RESEARCH............................................................................................................................ 6 9. TRAINING ............................................................................................................................. 7 10. CONCLUSION..................................................................................................................... 7 LITERATURE AND REFERENCES...................................................................................... 8 APPENDICES ............................................................................................................................ 9 Appendix 1: list of abbreviations and acronyms............................................................ 10 Appendix 2: list of the most vigourous weeds............................................................... 11 Appendix 3: list of indigenous plants with potential as hard wood ............................... 12 Appendix 4: list of indigenous medicinal plants............................................................ 13 State of forest and tree genetic resources in Mauritius 1. INTRODUCTION Mauritius island is found in the Indian Ocean and has an area of about 1 860 km2. It forms, with Reunion and Rodrigues, the Mascarene group of islands. It is situated 890 kilometer east of Madagascar and has a unique flora and fauna characterized by a very high level of endemism. Of the 711 native plants present in Mauritius, 246 are endemic to the island and most of the rest are endemic to the Mascarene. Through three successive waves of colonization by the Dutch, French and English, the destruction of the local forests has been such that by 1935, the original forests had been reduced to about 1 percent (Personal communication, Conservator of Forests). Exploitation for wood by the Dutch, followed by successive land clearing to make way for agriculture and settlements have left us with very little of the original forests. These are mainly found in the highlands and on mountain slopes, areas that are inaccessible or not suitable for agriculture. Eventually, all the coastal forests have been lost with only remnants left on the small islets and even these are severely degraded. Compulsory land acquisition to recreate forest areas was then enforced and today, around 30 percent of the local area is now covered with forests of which, only 2 to 3 percent consist of the original indigenous forest. However, this is badly degraded. 2. STATUS OF THE FOREST RESOURCES 2.1. Local forests The local forest of the island covers an area of around 57 000 hectares (Ministry of Agriculture, Fisheries and Natural Resources, 1998). This is concentrated mainly in the centre of the island and consists of the following species: - Pine trees (Pinus elliottii) - Cedar trees (Cryptomeria japonica) - Eucalyptus trees (mainly Eucalyptus robusta, E. kirtoniana) - Filao trees (Casuarina equisetifolia) on the belt around the island Forest lands are both publicly and privately owned. The publicly owned forests, termed state land, consists of: - planted areas (mainly with the above species); - land inside the national parks (severely degraded indigenous forests); - nature and mountain reserves. It also includes, the Pas Geometriques, a narrow belt of land 81,21 meters in width all around the coast which is mainly planted with filao trees (Casuarina equisetifolia). Private forest land consists of: - mountain and river reserves, protected by law; - other forest lands, including scrub and grazing lands mainly used for deer ranching. 1 State of forest and tree genetic resources in Mauritius 2.2. Local tree use Trees are mainly used for timber. Wood is also used in the construction industry as poles for scaffoldings. The use of trees as fuel has diminished over the years especially with the introduction of cheap gas for cooking. Some wood is converted to charcoal. Pine trees are also used as Christmas trees. It must be noted though that the island will not become self-sufficient in timber produce. We import around 70 percent of our timber every year. Our annual timber production is around 3 500 m3. Maximum exploitation is not carried out as the forested areas are situated in key catchment areas for our main reservoirs. The use of the indigenous flora is also quite important. Several species are collected for medicinal plants. Some indigenous species are quite popular in the floricultural industry. 2.3. The threats Monkeys (Macaca fascicularis) are a serious pest. They ringbark the trees in the plantations. They eat seeds of indigenous plants as well as destroy nests of native bird species. Nearly all state forest lands under plantation are leased for deer (Cervus timorensis russa) ranching. The animals cause damage to new plantations. The leasees however spend money on fencing, gamekeepers and opening of paths. This added protection offsets the damage that the deer cause to the plantations. Invasive exotic species growing in the indigenous forest are probably the most
Recommended publications
  • Ethnoeconomical, Ethnomedical, and Phytochemical Study of Argania Spinosa (L.) Skeels: a Review
    ELSEVIER - Journal of Ethnopharmacology Review Article Ethnoeconomical, Ethnomedical, and Phytochemical Study of Argania spinosa (L.) Skeels: A Review. Zoubida Charrouf Dominique Guillaume ABSTRACT. Populations of Morocco South-western part traditionally use the fruits of Argania spinosa (L.) Skeels to prepare an edible oil whose obtention also furnishes, as side product, a cake used to feed the cattle and complements the forage furnished by the leaves of this same plant. Unfortunately, the wood of Argania spinosa is also used for fuel and deforestation is subsequently accelerated since populations are generally eager to replace argan groves by cultures of higher and immediate benefit. However, argan tree, that is particularly well adapted to grow in arid lands, has been proposed by several agencies to slow down the desert progress in northern Africa. In order to incite the South-western Morocco dwellers to reintroduce argan trees, a program aimed to increase the industrial value of Argania spinosa, and beginning by its phytochemical study, is currently carried out in Morocco. The results of these recent studies together with previous knowledge are summarised in this review. KEYWORDS. Morocco, Argania spinosa, argan tree, argan oil, ethnopharmacology, phytochemistry, saponins INTRODUCTION Argan tree (Argania spinosa (L.) Skeels), of the family sapotaceae, is endemic in South- western Morocco where it grows over about 320,000 square miles. For centuries, this slow growing and spiny tree, that may be either shrubby or up to seven or ten meters has played an essential ecological function in this part of Morocco. Indeed, it effectively protects the soil against heavy rain or wind-induced erosion and, furthermore, by shading all kind of cultures, maintains soil fertility.
    [Show full text]
  • Rapid Degradation of a Mauritian Rainforest Following the First 60 Years
    Rapid degradation of a Mauritian rainforest following the first 60 years of plant invasion M alika V irah-Sawmy,John M auremootoo,Doreen M arie,Saoud M otala and J ean-Claude S evathian Abstract Biological invasions by non-indigenous species (Vitousek et al., 1987; Vitousek, 1990; Ehrenfeld et al., 2001) are widely recognized as an important threat to biodiver- and hydrological cycles (Dyer & Rice, 1999; Zavaleta, 2000), sity. However, the dimension, magnitude and mechanism trophic structure and disturbance intensity and frequency of the impacts of invasive species remains poorly under- (D’Antonio, 2000; Brooks et al., 2004). stood. We assessed the role of invasive plants by compar- However, the magnitude of the impacts of most invasive ing vegetation changes that occurred between 1939 and species remains poorly documented and difficult to quan- 1999, a snapshot period that coincides with the onset of tify (Hulme, 2003). Of central importance, we still do not invasion, in Macabe´ Reserve in Mauritius. This Reserve know whether the positive correlation between native was described as biotically homogeneous in 1939. In both species decline and invasive species dominance in many surveys all native trees (. 10 DBH) were recorded from 10 ecosystems is cause or effect (Gurevitch & Padilla, 2004; 2 1,000 m random plots. In 1999 the mean richness of plant Didham et al., 2005) or whether invasive species ‘actively species in plots was significantly lower: 15 species com- suppress or exclude subordinates (natives) by lowering pared to 28 in 1939. The density and basal area of native resource availability to levels that only they can tolerate ..
    [Show full text]
  • Illustrated Flora of East Texas Illustrated Flora of East Texas
    ILLUSTRATED FLORA OF EAST TEXAS ILLUSTRATED FLORA OF EAST TEXAS IS PUBLISHED WITH THE SUPPORT OF: MAJOR BENEFACTORS: DAVID GIBSON AND WILL CRENSHAW DISCOVERY FUND U.S. FISH AND WILDLIFE FOUNDATION (NATIONAL PARK SERVICE, USDA FOREST SERVICE) TEXAS PARKS AND WILDLIFE DEPARTMENT SCOTT AND STUART GENTLING BENEFACTORS: NEW DOROTHEA L. LEONHARDT FOUNDATION (ANDREA C. HARKINS) TEMPLE-INLAND FOUNDATION SUMMERLEE FOUNDATION AMON G. CARTER FOUNDATION ROBERT J. O’KENNON PEG & BEN KEITH DORA & GORDON SYLVESTER DAVID & SUE NIVENS NATIVE PLANT SOCIETY OF TEXAS DAVID & MARGARET BAMBERGER GORDON MAY & KAREN WILLIAMSON JACOB & TERESE HERSHEY FOUNDATION INSTITUTIONAL SUPPORT: AUSTIN COLLEGE BOTANICAL RESEARCH INSTITUTE OF TEXAS SID RICHARDSON CAREER DEVELOPMENT FUND OF AUSTIN COLLEGE II OTHER CONTRIBUTORS: ALLDREDGE, LINDA & JACK HOLLEMAN, W.B. PETRUS, ELAINE J. BATTERBAE, SUSAN ROBERTS HOLT, JEAN & DUNCAN PRITCHETT, MARY H. BECK, NELL HUBER, MARY MAUD PRICE, DIANE BECKELMAN, SARA HUDSON, JIM & YONIE PRUESS, WARREN W. BENDER, LYNNE HULTMARK, GORDON & SARAH ROACH, ELIZABETH M. & ALLEN BIBB, NATHAN & BETTIE HUSTON, MELIA ROEBUCK, RICK & VICKI BOSWORTH, TONY JACOBS, BONNIE & LOUIS ROGNLIE, GLORIA & ERIC BOTTONE, LAURA BURKS JAMES, ROI & DEANNA ROUSH, LUCY BROWN, LARRY E. JEFFORDS, RUSSELL M. ROWE, BRIAN BRUSER, III, MR. & MRS. HENRY JOHN, SUE & PHIL ROZELL, JIMMY BURT, HELEN W. JONES, MARY LOU SANDLIN, MIKE CAMPBELL, KATHERINE & CHARLES KAHLE, GAIL SANDLIN, MR. & MRS. WILLIAM CARR, WILLIAM R. KARGES, JOANN SATTERWHITE, BEN CLARY, KAREN KEITH, ELIZABETH & ERIC SCHOENFELD, CARL COCHRAN, JOYCE LANEY, ELEANOR W. SCHULTZE, BETTY DAHLBERG, WALTER G. LAUGHLIN, DR. JAMES E. SCHULZE, PETER & HELEN DALLAS CHAPTER-NPSOT LECHE, BEVERLY SENNHAUSER, KELLY S. DAMEWOOD, LOGAN & ELEANOR LEWIS, PATRICIA SERLING, STEVEN DAMUTH, STEVEN LIGGIO, JOE SHANNON, LEILA HOUSEMAN DAVIS, ELLEN D.
    [Show full text]
  • CIRCULAR Issue No
    FDACS-P-01915 CIRCULAR Issue No. 40 | October 2018 Florida Department of Agriculture and Consumer Services Division of Plant Industry The Buckthorns (Genus Sideroxylon): An Underappreciated Group of Florida Native Plants Paul T. Corogin; Bureau of Entomology, Nematology and Plant Pathology [email protected] or 1-888-397-1517 INTRODUCTION Tucked away amongst the rich diversity of Florida plant life surrounding us, one plant group can easily escape our notice: the genus Sideroxylon, belonging to the pantropical family Sapotaceae (sapodilla family). This circular will introduce the Sideroxylon species native to North America, featuring in detail species adapted to the temperate zone that may be of interest to the southern United States (U.S.). Some are endangered in Florida, and some are Florida endemics. Certain species have landscaping potential, but have long been ignored, but a few species are occasionally available from native plant nurseries (Betrock’s Plant Search 2018; FNPS 2018). Species of Sideroxylon attract pollinators when blooming, and birds and wildlife when fruiting; thus, they can be desirable additions to any Florida landscape. Sapotaceae are recognized by the presence of milky sap, brownish T-shaped hairs, fasciculate inflorescences (flowers in a bundle) and seeds with a large scar at one end (Pennington 1990, 1991). This woody family makes a large contribution to tropical plant biodiversity, being a major floristic component of tropical lowland wet forests in the Americas, Asia, Africa and the Pacific Islands (Gentry 1988). Sapotaceous plants are also economically important to humans. “Sapote” comes from the Nahuatl word meaning sweet fruit; most species bear such a fruit (e.g., the sapodilla and mamey sapote) (Smith et al.
    [Show full text]
  • Accounting for Variation of Substitution Rates Through Time in Bayesian Phylogeny Reconstruction of Sapotoideae (Sapotaceae)
    Molecular Phylogenetics and Evolution 39 (2006) 706–721 www.elsevier.com/locate/ympev Accounting for variation of substitution rates through time in Bayesian phylogeny reconstruction of Sapotoideae (Sapotaceae) Jenny E.E. Smedmark ¤, Ulf Swenson, Arne A. Anderberg Department of Phanerogamic Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden Received 9 September 2005; revised 4 January 2006; accepted 12 January 2006 Available online 21 February 2006 Abstract We used Bayesian phylogenetic analysis of 5 kb of chloroplast DNA data from 68 Sapotaceae species to clarify phylogenetic relation- ships within Sapotoideae, one of the two major clades within Sapotaceae. Variation in substitution rates through time was shown to be a very important aspect of molecular evolution for this data set. Relative rates tests indicated that changes in overall rate have taken place in several lineages during the history of the group and Bayes factors strongly supported a covarion model, which allows the rate of a site to vary over time, over commonly used models that only allow rates to vary across sites. Rate variation over time was actually found to be a more important model component than rate variation across sites. The covarion model was originally developed for coding gene sequences and has so far only been tested for this type of data. The fact that it performed so well with the present data set, consisting mainly of data from noncoding spacer regions, suggests that it deserves a wider consideration in model based phylogenetic inference. Repeatability of phylogenetic results was very diYcult to obtain with the more parameter rich models, and analyses with identical settings often supported diVerent topologies.
    [Show full text]
  • Taxonomic Revision of the Genus Manilkara ( Sapotaceae) in Madagascar
    E D I N B U R G H J O U R N A L O F B O T A N Y 65 (3): 433–446 (2008) 433 Ó Trustees of the Royal Botanic Garden Edinburgh (2008) doi:10.1017/S096042860800485X TAXONOMIC REVISION OF THE GENUS MANILKARA ( SAPOTACEAE) IN MADAGASCAR V. PLANA1 &L.GAUTIER2 A revision of the five Madagascan species of the genus Manilkara (Sapotaceae)is presented, including a key, descriptions, diagnostic characters, ecological notes and a distribution map. Of the seven species originally described by Aubre´ville, Manilkara tampoloensis is placed in synonymy with M. boivinii, and M. sohihy is removed from the genus and placed within the existing Labramia boivinii (Pierre) Aubre´v. Keywords. Madagascar, Manilkara, Sapotaceae, taxonomic revision. Introduction The genus Manilkara Adans., probably best known for American species such as M. zapota (sapodilla) and M. chicle (chicle), is a pantropical genus comprising c.82 species (Govaerts et al., 2001). Of these, approximately one third are found in Africa (Plana, in prep.) and Madagascar. Although the Madagascan species of Manilkara share some characteristics with mainland African species, none are found in Africa. Afro-Madagascan species can be divided, according to their gross morphology, into three broad biogeographic regions: Madagascar, East and South Africa, and Central and West Africa. Malagasy species share characteristics with species in both regions, where they are commonly constituents of evergreen forest. Manilkara is one of six genera constituting the subtribe Manilkarinae H.J.Lam (tribe Mimusopeae Hartog) (Pennington, 1991) which also includes Labramia A.DC., Faucherea Lecomte, Northia Hook.f., Labourdonnaisia Bojer and Letestua Lecomte.
    [Show full text]
  • Castlereagh, Agnes Banks and Windsor Downs Nature Reserves Draft Amendment to the Plan of Management
    NSW NATIONAL PARKS & WILDLIFE SERVICE Castlereagh, Agnes Banks and Windsor Downs Nature Reserves Draft Amendment to the Plan of Management Return of threatened and declining species and improving ecosystem health environment.nsw.gov.au © 2021 State of NSW and Department of Planning, Industry and Environment With the exception of photographs, the State of NSW and Department of Planning, Industry and Environment are pleased to allow this material to be reproduced in whole or in part for educational and non-commercial use, provided the meaning is unchanged and its source, publisher and authorship are acknowledged. Specific permission is required for the reproduction of photographs. The Department of Planning, Industry and Environment (DPIE) has compiled this report in good faith, exercising all due care and attention. No representation is made about the accuracy, completeness or suitability of the information in this publication for any particular purpose. DPIE shall not be liable for any damage which may occur to any person or organisation taking action or not on the basis of this publication. Readers should seek appropriate advice when applying the information to their specific needs. All content in this publication is owned by DPIE and is protected by Crown Copyright, unless credited otherwise. It is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0), subject to the exemptions contained in the licence. The legal code for the licence is available at Creative Commons. DPIE asserts the right to be attributed as author of the original material in the following manner: © State of New South Wales and Department of Planning, Industry and Environment 2021.
    [Show full text]
  • Wood Anatomy of the Neotropical Sapotaceae Ii
    WOOD ANATOMY OF THE NEOTROPICAL SAPOTACEAE II. MASTICHODENDRON RESEARCH PAPER FPL 326 FOREST PRODUCTS LABORATORY FOREST SERVICE U.S. DEPARTMENT OF AGRICULTURE MADISON. WIS. 1978 Preface The Sapotaceae form an important part of the ecosystem in the neotropics; for example, limited inventories made in the Amazon Basin indicate that this family makes up about 25% of the standing timber volume there. This would represent an astronomical volume of timber but at present only a very small fraction is being utilized. Obviously, better information would help utilization--especially if that information can result in clear identification of species. The Sapotaceae represent a well-marked and natural family but the homogeneous nature of their floral characters makes generic identifi­ cation extremely difficult. This in turn is responsible for the extensive synonomy. Baehni and Bernardi (3) state the situation with respect to Peru but this would hold equally well for all of the neotropics: "For instance, of the 39 species and one variety described hereunder, 13 are known only from the Peruvian type; and 23 taxa here presented have no fruit or seed. It is universally admitted that the taxonomy of this family is almost impossible without--for the same species--leaves, flowers, fruits, and seeds." Unfortunately, species continue to be named on the basis of flowering or fruiting material alone and this continues to add to the already confused state of affairs. This paper on Mastichodendron is the second in a series describing the anatomy of the secondary xylem. The first was on Bumelia and is listed in the literature cited at the end of this paper.
    [Show full text]
  • DNA Barcoding Identifies Cryptic Animal Tool Materials
    DNA barcoding identifies cryptic animal tool materials Matthew Steele, Linda Neaves, Barbara Klump, James St Clair, Joana Fernandes, Vanessa Hequet, Phil Shaw, Peter Hollingsworth, Christian Rutz To cite this version: Matthew Steele, Linda Neaves, Barbara Klump, James St Clair, Joana Fernandes, et al.. DNA barcoding identifies cryptic animal tool materials. Proceedings of the National Academy of Sciences of the United States of America , National Academy of Sciences, 2021, 118 (29), pp.e2020699118. hal-03285541 HAL Id: hal-03285541 https://hal.inrae.fr/hal-03285541 Submitted on 13 Jul 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License DNA barcoding identifies cryptic animal tool materials BRIEF REPORT Matthew P. Steelea,1, Linda E. Neavesb,c,1, Barbara C. Klumpa,2, James J. H. St Claira, Joana R. S. M. Fernandesa, Vanessa Hequetd, Phil Shawa, Peter M. Hollingsworthb, and Christian Rutza,3 aCentre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, United Kingdom; bRoyal Botanic Garden Edinburgh, Edinburgh EH3 5LR, United Kingdom; cThe Fenner School of Environment and Society, The Australian National University, Canberra, ACT 2600, Australia; and dInstitut de Recherche pour le Développement, Centre de Nouméa, 98848 Nouméa, New Caledonia, France Edited by Scott V.
    [Show full text]
  • Perennial Edible Fruits of the Tropics: an and Taxonomists Throughout the World Who Have Left Inventory
    United States Department of Agriculture Perennial Edible Fruits Agricultural Research Service of the Tropics Agriculture Handbook No. 642 An Inventory t Abstract Acknowledgments Martin, Franklin W., Carl W. Cannpbell, Ruth M. Puberté. We owe first thanks to the botanists, horticulturists 1987 Perennial Edible Fruits of the Tropics: An and taxonomists throughout the world who have left Inventory. U.S. Department of Agriculture, written records of the fruits they encountered. Agriculture Handbook No. 642, 252 p., illus. Second, we thank Richard A. Hamilton, who read and The edible fruits of the Tropics are nnany in number, criticized the major part of the manuscript. His help varied in form, and irregular in distribution. They can be was invaluable. categorized as major or minor. Only about 300 Tropical fruits can be considered great. These are outstanding We also thank the many individuals who read, criti- in one or more of the following: Size, beauty, flavor, and cized, or contributed to various parts of the book. In nutritional value. In contrast are the more than 3,000 alphabetical order, they are Susan Abraham (Indian fruits that can be considered minor, limited severely by fruits), Herbert Barrett (citrus fruits), Jose Calzada one or more defects, such as very small size, poor taste Benza (fruits of Peru), Clarkson (South African fruits), or appeal, limited adaptability, or limited distribution. William 0. Cooper (citrus fruits), Derek Cormack The major fruits are not all well known. Some excellent (arrangements for review in Africa), Milton de Albu- fruits which rival the commercialized greatest are still querque (Brazilian fruits), Enriquito D.
    [Show full text]
  • Parmananda Ragen Thesis
    International Master Programme at the Swedish Biodiversity Centre Master theses No. 48 Uppsala 2007 ISSN: 1653-834X Tree diversity and alien encroachment in the native forest of Black River Gorges National Park, Mauritius SERIES SERIES SERIES SERIES Parmananda Ragen Supervisors Jan Olof Helldin Hassambhye Rojoa MASTER THESES MASTER THESES MASTER THESES MASTER THESES CBM CBM CBM CBM Ragen. P/Tree diversity and alien encroachment in the native forest of Black River Gorges National Park, Mauritius CBM Master Theses No. 48 - 1 - Ragen. P/Tree diversity and alien encroachment in the native forest of Black River Gorges National Park, Mauritius Abstract Because native forests of oceanic islands, including Mauritius, have almost always been destroyed soon after human colonization, there exist few quantitative descriptions of species composition and diversity in such forests. For this reason, the diversity and structure of a tropical rain forest were studied in 207 plots of 100 m 2, randomly selected, in the Black River Gorges National Park, Mauritius. The number of species recorded was 88 for native and 43 for alien species. On average there were 2375 native stems per hectare (SD = 21.8) whereas for the alien species there were 15321(SD = 101.6). The basal area for native and alien stems was calculated to be 20.2 m2ha -1 and 67.8 m 2ha -1 respectively and was significantly different. This study clearly demonstrated that the alien species, especially Psidium cattleianum , were affecting the native forests negatively. The data supported the hypothesis that alien species reduce diversity, basal area and density of native species. Keywords: Diversity, Black River Gorges National Park, Native, alien, Basal area, Psidium cattleianum .
    [Show full text]
  • James R. Allison P.O
    BIG-FRUITED BUCKTHORN, SIDEROXYLON MACROCARPUM (SAPOTACEAE), A LONG-FORGOTTEN GEORGIA ENDEMIC James R. Allison P.O. Box 511 Rutledge, Georgia 30663-0511, U.S.A. [email protected] ABSTRACT Bumelia macrocarpa Nutt. languished in obscurity for more than 150 years. Thomas Nuttall (1786– 1859) collected this low shrub in 1830 and described it in 1849. Asa Gray relegated it to the syn- onymy of B. lanuginosa (Michx.) Pers. in 1886, apparently due to the lack of subsequent collections and without seeing any material of Nuttall’s plant. In 1940 Robert Clark identified type material of B. macrocarpa as B. reclinata (Michx.) Vent., failing to notice the fact that more than one species had been mounted on the sheet, with only one small fragment actually representing B. macrocarpa. Since Bumelia Swartz is now considered to be a synonym of Sideroxylon L., the restoration of this distinc- tive species, endemic to southeastern Georgia (U.S.A.), requires a new combination, S. macrocarpum (Nutt.) J.R. Allison. RESUMEN Bumelia macrocarpa Nutt. languideció en la oscuridad durante más de 150 años. Thomas Nuttall (1786-1859) coleccionó este arbusto bajo en 1830 y lo describió en 1849. Asa Gray lo relegó a la sinonimia de B. lanuginosa (Michx.) Pers. en 1886, aparentemente debido a la carencia de colecciones subsiguientes y sin ver ningún material de la planta de Nuttall. En 1940 Robert Clark identificó el material tipo de B. macrocarpa como B. reclinata (Michx.) Vent., al no notar el hecho que se había montado en la lámina más de una especie, con un solo fragmento pequeño que representa en realidad B.
    [Show full text]