Parmananda Ragen Thesis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Annex 3A AERIAL VIEW PLAN
Annex 3A AERIAL VIEW PLAN Plan showing a plot land situate at Bois Sec, in the District of Savanne, of the original extent of +DPò belonging to "LIGNECALISTE PROPERTY COMPANY LIMITED" as evidenced by Title Deed transcribed in volume TV 8272 no.23 Scale 1:12,500 Date: December 2011 Annex 3B CONTOUR/TOPOGRAPHICAL PLAN Annex 3C FLORA & FAUNAL SURVEY REPORT Report on Terrestrial Flora and Fauna at Proposed Golf Course Site at Bois Sec Introduction The proposed Avalon Golf Course site is roughly in the shape of a parallelogram under extensive sugarcane ( Saccharum sp. ) plantation with six feeders (5 named and one unnamed) and two rivers flowing South- easterly along its longer sides. Feeder Cresson and Feeder Edmond flow almost along two thirds of the site before joining to form Riviere Gros Ruisseau. Feeder Augustin which starts half way in the East of the site flows South –easterly to join Riviere Gros Ruisseau just before the latter flows outside the site at its South eastern boundary with St Aubin Sugar Estate. Two tributaries, Feeder Rivet and an unnamed Feeder flow along about a quarter of the site before joining to form Riviere Ruisseau Marron which winds down and out of the site with three to four loops flowing inside and out along the Eastern edge of the site. Feeder Enterrement starts in the middle of the last southern quarter of the site and flows more or less straight out of its eastern boundary with St Aubin Sugar Estate. The escarpments of the feeders and the Rivers vary from smooth slopes, steep slopes to almost vertical slopes and the vegetation consists predominantly of almost the same type of introduced species but with Ravenale ( Ravenala madacascariensis ) as the most dominant species, (see Fig. -
Ethnoeconomical, Ethnomedical, and Phytochemical Study of Argania Spinosa (L.) Skeels: a Review
ELSEVIER - Journal of Ethnopharmacology Review Article Ethnoeconomical, Ethnomedical, and Phytochemical Study of Argania spinosa (L.) Skeels: A Review. Zoubida Charrouf Dominique Guillaume ABSTRACT. Populations of Morocco South-western part traditionally use the fruits of Argania spinosa (L.) Skeels to prepare an edible oil whose obtention also furnishes, as side product, a cake used to feed the cattle and complements the forage furnished by the leaves of this same plant. Unfortunately, the wood of Argania spinosa is also used for fuel and deforestation is subsequently accelerated since populations are generally eager to replace argan groves by cultures of higher and immediate benefit. However, argan tree, that is particularly well adapted to grow in arid lands, has been proposed by several agencies to slow down the desert progress in northern Africa. In order to incite the South-western Morocco dwellers to reintroduce argan trees, a program aimed to increase the industrial value of Argania spinosa, and beginning by its phytochemical study, is currently carried out in Morocco. The results of these recent studies together with previous knowledge are summarised in this review. KEYWORDS. Morocco, Argania spinosa, argan tree, argan oil, ethnopharmacology, phytochemistry, saponins INTRODUCTION Argan tree (Argania spinosa (L.) Skeels), of the family sapotaceae, is endemic in South- western Morocco where it grows over about 320,000 square miles. For centuries, this slow growing and spiny tree, that may be either shrubby or up to seven or ten meters has played an essential ecological function in this part of Morocco. Indeed, it effectively protects the soil against heavy rain or wind-induced erosion and, furthermore, by shading all kind of cultures, maintains soil fertility. -
Rapid Degradation of a Mauritian Rainforest Following the First 60 Years
Rapid degradation of a Mauritian rainforest following the first 60 years of plant invasion M alika V irah-Sawmy,John M auremootoo,Doreen M arie,Saoud M otala and J ean-Claude S evathian Abstract Biological invasions by non-indigenous species (Vitousek et al., 1987; Vitousek, 1990; Ehrenfeld et al., 2001) are widely recognized as an important threat to biodiver- and hydrological cycles (Dyer & Rice, 1999; Zavaleta, 2000), sity. However, the dimension, magnitude and mechanism trophic structure and disturbance intensity and frequency of the impacts of invasive species remains poorly under- (D’Antonio, 2000; Brooks et al., 2004). stood. We assessed the role of invasive plants by compar- However, the magnitude of the impacts of most invasive ing vegetation changes that occurred between 1939 and species remains poorly documented and difficult to quan- 1999, a snapshot period that coincides with the onset of tify (Hulme, 2003). Of central importance, we still do not invasion, in Macabe´ Reserve in Mauritius. This Reserve know whether the positive correlation between native was described as biotically homogeneous in 1939. In both species decline and invasive species dominance in many surveys all native trees (. 10 DBH) were recorded from 10 ecosystems is cause or effect (Gurevitch & Padilla, 2004; 2 1,000 m random plots. In 1999 the mean richness of plant Didham et al., 2005) or whether invasive species ‘actively species in plots was significantly lower: 15 species com- suppress or exclude subordinates (natives) by lowering pared to 28 in 1939. The density and basal area of native resource availability to levels that only they can tolerate .. -
Morphology and Vascular Anatomy of the Flower of Angophora Intermedia
© Landesmuseum für Kärnten; download www.landesmuseum.ktn.gv.at/wulfenia; www.biologiezentrum.at Wulfenia 13 (2006): 11–19 Mitteilungen des Kärntner Botanikzentrums Klagenfurt Morphology and vascular anatomy of the fl ower of Angophora intermedia DC. (Myrtaceae) with special emphasis on the innervation of the fl oral axis Sergey A. Volgin & Anastasiya Stepanova Summary: A peculiar receptacle structure in Angophora intermedia DC. (Myrtaceae) has been determined by a vascular-anatomical method. The vascular system of the fl ower of A. intermedia consists of numerous ascending bundles and girdling bundles in the hypanthium and the inferior ovary wall. In the central column of the trilocular ovary we found a dense conical plexus of vascular bundles supplying the placentae (infralocular plexus). It is connected with ascending bundles of the receptacle in the ovary base. In its central part it contains “hanged” bundles and blind bundles, so it seems to be a residual stele of a rudimentary fl oral apex. Thus, the receptacle ofA. intermedia is toroidal at the level of fl oral organs and conical above the carpel node. Keywords: Angophora intermedia, Myrtaceae, fl ower morphology, vascular system, fl oral axis, innervation, anatomy The fl oral development in different species of Myrtaceae has been studied precisely to elucidate the homology of the inferior ovary, hypanthium, operculate perianth and stamens of the polymerous androecium (PAYER 1857; MAYR 1969; BUNNIGER 1972; DRINNAN & LADIGES 1988; RONSE DECRAENE & SMETS 1991; ORLOVICH et al. 1996). Developmental and histogenetical studies have shown, that the receptacle in the fl ower of Myrtaceae is cup-like and take part to certain extent in the formation of the inferior ovary wall and the hypanthium (PAYER 1857; BUNNIGER 1972; RONSE DECRAENE & SMETS 1991). -
Potent and Non-Cytotoxic Antibacterial Compounds Against
Potent and Non-Cytotoxic Antibacterial Compounds Against Methicillin-Resistant Staphylococcus aureus Isolated from Psiloxylon mauritianum, A Medicinal Plant from Reunion Island Jonathan Sorres, Amandine André, Elsa Van Elslande, Didier Stien, Véronique Eparvier To cite this version: Jonathan Sorres, Amandine André, Elsa Van Elslande, Didier Stien, Véronique Eparvier. Potent and Non-Cytotoxic Antibacterial Compounds Against Methicillin-Resistant Staphylococcus aureus Isolated from Psiloxylon mauritianum, A Medicinal Plant from Reunion Island. Molecules, MDPI, 2020, 25 (16), pp.3565. 10.3390/molecules25163565. hal-02915954 HAL Id: hal-02915954 https://hal.archives-ouvertes.fr/hal-02915954 Submitted on 5 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. molecules Communication Potent and Non-Cytotoxic Antibacterial Compounds against Methicillin-Resistant Staphylococcus aureus Isolated from Psiloxylon mauritianum, A Medicinal Plant from Reunion Island Jonathan Sorres 1,2,*, Amandine André 2,3 , Elsa Van Elslande 2 , Didier Stien 2,4 and Véronique -
Illustrated Flora of East Texas Illustrated Flora of East Texas
ILLUSTRATED FLORA OF EAST TEXAS ILLUSTRATED FLORA OF EAST TEXAS IS PUBLISHED WITH THE SUPPORT OF: MAJOR BENEFACTORS: DAVID GIBSON AND WILL CRENSHAW DISCOVERY FUND U.S. FISH AND WILDLIFE FOUNDATION (NATIONAL PARK SERVICE, USDA FOREST SERVICE) TEXAS PARKS AND WILDLIFE DEPARTMENT SCOTT AND STUART GENTLING BENEFACTORS: NEW DOROTHEA L. LEONHARDT FOUNDATION (ANDREA C. HARKINS) TEMPLE-INLAND FOUNDATION SUMMERLEE FOUNDATION AMON G. CARTER FOUNDATION ROBERT J. O’KENNON PEG & BEN KEITH DORA & GORDON SYLVESTER DAVID & SUE NIVENS NATIVE PLANT SOCIETY OF TEXAS DAVID & MARGARET BAMBERGER GORDON MAY & KAREN WILLIAMSON JACOB & TERESE HERSHEY FOUNDATION INSTITUTIONAL SUPPORT: AUSTIN COLLEGE BOTANICAL RESEARCH INSTITUTE OF TEXAS SID RICHARDSON CAREER DEVELOPMENT FUND OF AUSTIN COLLEGE II OTHER CONTRIBUTORS: ALLDREDGE, LINDA & JACK HOLLEMAN, W.B. PETRUS, ELAINE J. BATTERBAE, SUSAN ROBERTS HOLT, JEAN & DUNCAN PRITCHETT, MARY H. BECK, NELL HUBER, MARY MAUD PRICE, DIANE BECKELMAN, SARA HUDSON, JIM & YONIE PRUESS, WARREN W. BENDER, LYNNE HULTMARK, GORDON & SARAH ROACH, ELIZABETH M. & ALLEN BIBB, NATHAN & BETTIE HUSTON, MELIA ROEBUCK, RICK & VICKI BOSWORTH, TONY JACOBS, BONNIE & LOUIS ROGNLIE, GLORIA & ERIC BOTTONE, LAURA BURKS JAMES, ROI & DEANNA ROUSH, LUCY BROWN, LARRY E. JEFFORDS, RUSSELL M. ROWE, BRIAN BRUSER, III, MR. & MRS. HENRY JOHN, SUE & PHIL ROZELL, JIMMY BURT, HELEN W. JONES, MARY LOU SANDLIN, MIKE CAMPBELL, KATHERINE & CHARLES KAHLE, GAIL SANDLIN, MR. & MRS. WILLIAM CARR, WILLIAM R. KARGES, JOANN SATTERWHITE, BEN CLARY, KAREN KEITH, ELIZABETH & ERIC SCHOENFELD, CARL COCHRAN, JOYCE LANEY, ELEANOR W. SCHULTZE, BETTY DAHLBERG, WALTER G. LAUGHLIN, DR. JAMES E. SCHULZE, PETER & HELEN DALLAS CHAPTER-NPSOT LECHE, BEVERLY SENNHAUSER, KELLY S. DAMEWOOD, LOGAN & ELEANOR LEWIS, PATRICIA SERLING, STEVEN DAMUTH, STEVEN LIGGIO, JOE SHANNON, LEILA HOUSEMAN DAVIS, ELLEN D. -
Genera in Myrtaceae Family
Genera in Myrtaceae Family Genera in Myrtaceae Ref: http://data.kew.org/vpfg1992/vascplnt.html R. K. Brummitt 1992. Vascular Plant Families and Genera, Royal Botanic Gardens, Kew REF: Australian – APC http://www.anbg.gov.au/chah/apc/index.html & APNI http://www.anbg.gov.au/cgi-bin/apni Some of these genera are not native but naturalised Tasmanian taxa can be found at the Census: http://tmag.tas.gov.au/index.aspx?base=1273 Future reference: http://tmag.tas.gov.au/floratasmania [Myrtaceae is being edited at mo] Acca O.Berg Euryomyrtus Schaur Osbornia F.Muell. Accara Landrum Feijoa O.Berg Paragonis J.R.Wheeler & N.G.Marchant Acmena DC. [= Syzigium] Gomidesia O.Berg Paramyrciaria Kausel Acmenosperma Kausel [= Syzigium] Gossia N.Snow & Guymer Pericalymma (Endl.) Endl. Actinodium Schauer Heteropyxis Harv. Petraeomyrtus Craven Agonis (DC.) Sweet Hexachlamys O.Berg Phymatocarpus F.Muell. Allosyncarpia S.T.Blake Homalocalyx F.Muell. Pileanthus Labill. Amomyrtella Kausel Homalospermum Schauer Pilidiostigma Burret Amomyrtus (Burret) D.Legrand & Kausel [=Leptospermum] Piliocalyx Brongn. & Gris Angasomyrtus Trudgen & Keighery Homoranthus A.Cunn. ex Schauer Pimenta Lindl. Angophora Cav. Hottea Urb. Pleurocalyptus Brongn. & Gris Archirhodomyrtus (Nied.) Burret Hypocalymma (Endl.) Endl. Plinia L. Arillastrum Pancher ex Baill. Kania Schltr. Pseudanamomis Kausel Astartea DC. Kardomia Peter G. Wilson Psidium L. [naturalised] Asteromyrtus Schauer Kjellbergiodendron Burret Psiloxylon Thouars ex Tul. Austromyrtus (Nied.) Burret Kunzea Rchb. Purpureostemon Gugerli Babingtonia Lindl. Lamarchea Gaudich. Regelia Schauer Backhousia Hook. & Harv. Legrandia Kausel Rhodamnia Jack Baeckea L. Lenwebia N.Snow & ZGuymer Rhodomyrtus (DC.) Rchb. Balaustion Hook. Leptospermum J.R.Forst. & G.Forst. Rinzia Schauer Barongia Peter G.Wilson & B.Hyland Lindsayomyrtus B.Hyland & Steenis Ristantia Peter G.Wilson & J.T.Waterh. -
CIRCULAR Issue No
FDACS-P-01915 CIRCULAR Issue No. 40 | October 2018 Florida Department of Agriculture and Consumer Services Division of Plant Industry The Buckthorns (Genus Sideroxylon): An Underappreciated Group of Florida Native Plants Paul T. Corogin; Bureau of Entomology, Nematology and Plant Pathology [email protected] or 1-888-397-1517 INTRODUCTION Tucked away amongst the rich diversity of Florida plant life surrounding us, one plant group can easily escape our notice: the genus Sideroxylon, belonging to the pantropical family Sapotaceae (sapodilla family). This circular will introduce the Sideroxylon species native to North America, featuring in detail species adapted to the temperate zone that may be of interest to the southern United States (U.S.). Some are endangered in Florida, and some are Florida endemics. Certain species have landscaping potential, but have long been ignored, but a few species are occasionally available from native plant nurseries (Betrock’s Plant Search 2018; FNPS 2018). Species of Sideroxylon attract pollinators when blooming, and birds and wildlife when fruiting; thus, they can be desirable additions to any Florida landscape. Sapotaceae are recognized by the presence of milky sap, brownish T-shaped hairs, fasciculate inflorescences (flowers in a bundle) and seeds with a large scar at one end (Pennington 1990, 1991). This woody family makes a large contribution to tropical plant biodiversity, being a major floristic component of tropical lowland wet forests in the Americas, Asia, Africa and the Pacific Islands (Gentry 1988). Sapotaceous plants are also economically important to humans. “Sapote” comes from the Nahuatl word meaning sweet fruit; most species bear such a fruit (e.g., the sapodilla and mamey sapote) (Smith et al. -
Universidad De San Carlos De Guatemala Facultad De Ciencias Químicas Y Farmacia
Universidad de San Carlos de Guatemala Facultad de Ciencias Químicas y Farmacia Aislamiento y elucidación estructural de metabolitos secundarios mayoritarios del extracto etanólico de las hojas de la especie Perrottetia longistylis (Manteco, Capulaltapa) y el tamizaje fitoquímico y evaluación de la actividad antifúngica, antibacteriana y citotóxica del extracto etanólico de las hojas de la especie Euonymus enantiophylla (Alís, Rou´j Xiwáan) Familia Celastraceae Carmen Teresa Garnica Marroquín Química Guatemala, junio del 2008 Universidad de San Carlos de Guatemala Facultad de Ciencias Químicas y Farmacia Aislamiento y elucidación estructural de metabolitos secundarios mayoritarios del extracto etanólico de las hojas de la especie Perrottetia longistylis (Manteco, Capulaltapa) y el tamizaje fitoquímico y evaluación de la actividad antifúngica, antibacteriana y citotóxica del extracto etanólico de las hojas de la especie Euonymus enantiophylla (Alís, Rou´j Xiwáan) Familia Celastraceae Informe de tesis Presentado por Carmen Teresa Garnica Marroquín Para optar al título de Química Guatemala, junio del 2008 Tesis Carmen Teresa Garnica Marroquín Junta Directiva Facultad de Ciencias Químicas y Farmacia Oscar Manuel Cóbar Pinto, Ph.D. Decano Licenciado Pablo Ernesto Oliva Soto Secretario Lillian Raquel Irving Antillón, M.A Vocal I Licenciada Liliana Vides Vocal II Licenciada Beatriz Eugenia Batres Vocal III Bachiller Mariesmeralda Arriaga Monterroso Vocal IV Bachiller José Juan Vega Pérez Vocal V Tesis Carmen Teresa Garnica Marroquín Dedicatoria y Agradecimientos Yo soy una parte de todo aquello que he encontrado en mi camino. Alfred Tennyson Dedicatoria A mis ángeles por ser mi razón de existir, por ser lo que me impulsa a ser mejor cada día y lo que me permite mantener la fe. -
Accounting for Variation of Substitution Rates Through Time in Bayesian Phylogeny Reconstruction of Sapotoideae (Sapotaceae)
Molecular Phylogenetics and Evolution 39 (2006) 706–721 www.elsevier.com/locate/ympev Accounting for variation of substitution rates through time in Bayesian phylogeny reconstruction of Sapotoideae (Sapotaceae) Jenny E.E. Smedmark ¤, Ulf Swenson, Arne A. Anderberg Department of Phanerogamic Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden Received 9 September 2005; revised 4 January 2006; accepted 12 January 2006 Available online 21 February 2006 Abstract We used Bayesian phylogenetic analysis of 5 kb of chloroplast DNA data from 68 Sapotaceae species to clarify phylogenetic relation- ships within Sapotoideae, one of the two major clades within Sapotaceae. Variation in substitution rates through time was shown to be a very important aspect of molecular evolution for this data set. Relative rates tests indicated that changes in overall rate have taken place in several lineages during the history of the group and Bayes factors strongly supported a covarion model, which allows the rate of a site to vary over time, over commonly used models that only allow rates to vary across sites. Rate variation over time was actually found to be a more important model component than rate variation across sites. The covarion model was originally developed for coding gene sequences and has so far only been tested for this type of data. The fact that it performed so well with the present data set, consisting mainly of data from noncoding spacer regions, suggests that it deserves a wider consideration in model based phylogenetic inference. Repeatability of phylogenetic results was very diYcult to obtain with the more parameter rich models, and analyses with identical settings often supported diVerent topologies. -
Revision and Phylogeny of <I>Acalypha</I
Blumea 55, 2010: 21–60 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE doi:10.3767/000651910X499141 Revision and phylogeny of Acalypha (Euphorbiaceae) in Malesia V.G. Sagun1,2, G.A. Levin2, P.C. van Welzen3 Key words Abstract Twenty-eight species of Acalypha are recognized in Malesia. Acalypha paniculata is the sole member of subgenus Linostachys in Malesia and the rest of the species belong to subgenus Acalypha. Four previously Acalypha synonymized species are resurrected as distinct species, namely A. angatensis, A. cardiophylla var. cardiophylla, Euphorbiaceae A. grandis, and A. wilkesiana. Four species names are newly reduced to synonymy. The molecular phylogenetic Malesia analyses indicate that Acalypha is monophyletic, as is the subgenus Acalypha. The early-diverging lineages in the phylogeny genus, and its closest outgroup, consist of African species. The Malesian species do not form a monophyletic group although the molecular data strongly support two small clades within the region that are morphologically homogene- ous. The classification system that Pax and Hoffmann applied to subgenus Acalypha, which is based primarily on inflorescence morphology, appears to be unsatisfactory and incongruent with the phylogenetic analyses. Published on 16 April 2010 INTRODUCTION Molecular systematics confirms the placement of Acalypha in Acalyphoideae s.s. and shows a close relationship between Acalypha L. is the third largest genus in the Euphorbiaceae Acalypha and Mareya Baill. (Wurdack et al. 2005, Tokuoka s.s. after Euphorbia L., and Croton L., having about 450 spe- 2007). Their relationship is supported by similar morphologi- cies worldwide (Webster 1994, Radcliffe-Smith 2001). In the cal characteristics, including laciniate styles, pendulous anther Malesian region, 28 species of Acalypha are recognized herein. -
Taxonomic Revision of the Genus Manilkara ( Sapotaceae) in Madagascar
E D I N B U R G H J O U R N A L O F B O T A N Y 65 (3): 433–446 (2008) 433 Ó Trustees of the Royal Botanic Garden Edinburgh (2008) doi:10.1017/S096042860800485X TAXONOMIC REVISION OF THE GENUS MANILKARA ( SAPOTACEAE) IN MADAGASCAR V. PLANA1 &L.GAUTIER2 A revision of the five Madagascan species of the genus Manilkara (Sapotaceae)is presented, including a key, descriptions, diagnostic characters, ecological notes and a distribution map. Of the seven species originally described by Aubre´ville, Manilkara tampoloensis is placed in synonymy with M. boivinii, and M. sohihy is removed from the genus and placed within the existing Labramia boivinii (Pierre) Aubre´v. Keywords. Madagascar, Manilkara, Sapotaceae, taxonomic revision. Introduction The genus Manilkara Adans., probably best known for American species such as M. zapota (sapodilla) and M. chicle (chicle), is a pantropical genus comprising c.82 species (Govaerts et al., 2001). Of these, approximately one third are found in Africa (Plana, in prep.) and Madagascar. Although the Madagascan species of Manilkara share some characteristics with mainland African species, none are found in Africa. Afro-Madagascan species can be divided, according to their gross morphology, into three broad biogeographic regions: Madagascar, East and South Africa, and Central and West Africa. Malagasy species share characteristics with species in both regions, where they are commonly constituents of evergreen forest. Manilkara is one of six genera constituting the subtribe Manilkarinae H.J.Lam (tribe Mimusopeae Hartog) (Pennington, 1991) which also includes Labramia A.DC., Faucherea Lecomte, Northia Hook.f., Labourdonnaisia Bojer and Letestua Lecomte.