SWAP 2015 Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chrysoma Pauciflosculosa Woody Goldenrod
SGEB-75-4 Chrysoma pauciflosculosa woody goldenrod Asteraceae vegetative apical stem cuttings from summer softwood or winter hardwood root without auxin, but a 5,000 ppm IBA (Indole-3-butyric acid) application will increase root numbers and root length (Wilson et al. 2010). Propagation from seed for woody goldenrod has been accomplished with wild-collected seed. Seeds prefer cooler temperatures (20/10°C alternating day/night temperatures) to warmer ones (Wilson et al. 2010). Outplanting Rooted cuttings or seedlings may be grown in a variety of coarse production substrates and a variety of container sizes. Credit: Mack Thetford, UF/IFAS Smith et al. (2014) produced woody goldenrod in substrates such as Atlas 3000, Atlas 7000, Fafard 3B, and Metro Mix Woody goldenrod is found in beach dunes, scrub, and 300 while the authors have grown them in a 100% pine-bark sandhill plant communities. It occurs in the Panhandle of substrate amended with lime and slow-release fertilizer. Florida and more broadly in the southeastern United States Plants grown in 1-gal containers were evaluated for poten- west to Mississippi and northeast to North Carolina. This tial use in home landscapes with high transplant success plant may leach chemicals into the soil that inhibit seed (Smith et al. 2014). Peak flowering for the trial plants germination of gulf bluestem (Schizachyrium scoparium occurred in November. var. scoparium) (Fischer et al. 1994). Woody goldenrod is an underused landscape plant with a prolific fall color from Literature Cited flowers that attract numerous pollinators. Fischer, N.H., G.B. Williamson, J.D. Weidenhamer, and General Description D.R. -
Natural Heritage Program List of Rare Plant Species of North Carolina 2016
Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Revised February 24, 2017 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org C ur Alleghany rit Ashe Northampton Gates C uc Surry am k Stokes P d Rockingham Caswell Person Vance Warren a e P s n Hertford e qu Chowan r Granville q ot ui a Mountains Watauga Halifax m nk an Wilkes Yadkin s Mitchell Avery Forsyth Orange Guilford Franklin Bertie Alamance Durham Nash Yancey Alexander Madison Caldwell Davie Edgecombe Washington Tyrrell Iredell Martin Dare Burke Davidson Wake McDowell Randolph Chatham Wilson Buncombe Catawba Rowan Beaufort Haywood Pitt Swain Hyde Lee Lincoln Greene Rutherford Johnston Graham Henderson Jackson Cabarrus Montgomery Harnett Cleveland Wayne Polk Gaston Stanly Cherokee Macon Transylvania Lenoir Mecklenburg Moore Clay Pamlico Hoke Union d Cumberland Jones Anson on Sampson hm Duplin ic Craven Piedmont R nd tla Onslow Carteret co S Robeson Bladen Pender Sandhills Columbus New Hanover Tidewater Coastal Plain Brunswick THE COUNTIES AND PHYSIOGRAPHIC PROVINCES OF NORTH CAROLINA Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org This list is dynamic and is revised frequently as new data become available. New species are added to the list, and others are dropped from the list as appropriate. -
Stream-Temperature Characteristics in Georgia
STREAM-TEMPERATURE CHARACTERISTICS IN GEORGIA By T.R. Dyar and S.J. Alhadeff ______________________________________________________________________________ U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 96-4203 Prepared in cooperation with GEORGIA DEPARTMENT OF NATURAL RESOURCES ENVIRONMENTAL PROTECTION DIVISION Atlanta, Georgia 1997 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Charles G. Groat, Director For additional information write to: Copies of this report can be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Branch of Information Services 3039 Amwiler Road, Suite 130 Denver Federal Center Peachtree Business Center Box 25286 Atlanta, GA 30360-2824 Denver, CO 80225-0286 CONTENTS Page Abstract . 1 Introduction . 1 Purpose and scope . 2 Previous investigations. 2 Station-identification system . 3 Stream-temperature data . 3 Long-term stream-temperature characteristics. 6 Natural stream-temperature characteristics . 7 Regression analysis . 7 Harmonic mean coefficient . 7 Amplitude coefficient. 10 Phase coefficient . 13 Statewide harmonic equation . 13 Examples of estimating natural stream-temperature characteristics . 15 Panther Creek . 15 West Armuchee Creek . 15 Alcovy River . 18 Altamaha River . 18 Summary of stream-temperature characteristics by river basin . 19 Savannah River basin . 19 Ogeechee River basin. 25 Altamaha River basin. 25 Satilla-St Marys River basins. 26 Suwannee-Ochlockonee River basins . 27 Chattahoochee River basin. 27 Flint River basin. 28 Coosa River basin. 29 Tennessee River basin . 31 Selected references. 31 Tabular data . 33 Graphs showing harmonic stream-temperature curves of observed data and statewide harmonic equation for selected stations, figures 14-211 . 51 iii ILLUSTRATIONS Page Figure 1. Map showing locations of 198 periodic and 22 daily stream-temperature stations, major river basins, and physiographic provinces in Georgia. -
"National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment. -
2017 Altamaha Regional Water Plan
2017 REGIONAL WATER PLAN ALTAMAHA REGION BACKGROUND The Altamaha Regional Water Plan was initially completed in 2011 and subsequently updated in 2017. The plan outlines near-term and long-term Counties: Appling, Bleckley, strategies to meet water needs through 2050. The Altamaha River, formed Candler, Dodge, Emanuel, by the confluence of the Ocmulgee and Oconee Rivers, is the major surface Evans, Jeff Davis, Johnson, water feature in the region. The Altamaha Region encompasses several Montgomery, Tattnall, Telfair, Toombs, Treutlen, Wayne, major population centers including Vidalia, Jesup, Swainsboro, Eastman, Wheeler, Wilcox and Glennville. OVERVIEW OF ALTAMAHA REGION The Altamaha Region includes 16 counties in the south central portion of Georgia. Over the next 35 years, the population of the region is projected to increase from approximately 256,000 to 285,000 residents. Key economic drivers in the region include agriculture, forestry, professional and business services, education, healthcare, manufacturing, public administration, fishing and hunting, and construction. KEY WATER RESOURCE ISSUES Groundwater (the majority from the Floridan aquifer) is forecasted to meet about 70% ADDRESSED BY THE COUNCIL of the water supply needs, with agricultural and industrial uses being the dominant 1. Current and future groundwater demand sectors. Surface water is utilized to meet about 30% of the forecasted water supplies for municipal/domestic, supply needs, with agriculture and energy as the dominant demand sectors. The industrial and agricultural water use energy sector is a major user of surface water from the Altamaha River. 2. Sufficient surface water quantity and quality to accommodate current and ALTAMAHA future surface water demands WATER 3. Low dissolved oxygen and other PLANNING water quality issues in streams during REGION periods of low flow 4. -
Lepidoptera of North America 5
Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains, -
Grass Varieties for North Dakota
R-794 (Revised) Grass Varieties For North Dakota Kevin K. Sedivec Extension Rangeland Management Specialist, NDSU, Fargo Dwight A. Tober Plant Materials Specialist, USDA-NRCS, Bismarck Wayne L. Duckwitz Plant Materials Center Manager, USDA-NRCS, Bismarck John R. Hendrickson Research Rangeland Management Specialist, USDA-ARS, Mandan North Dakota State University Fargo, North Dakota June 2011 election of the appropriate species and variety is an important step in making a grass seeding successful. Grass species and varieties differ in growth habit, productivity, forage quality, drought resistance, tolerance Sto grazing, winter hardiness, seedling vigor, salinity tolerance and many other characteristics. Therefore, selection should be based on the climate, soils, intended use and the planned management. Planting a well-adapted selection also can provide long-term benefi ts and affect future productivity of the stand. This publication is designed to assist North Dakota producers and land managers in selecting perennial grass species and varieties for rangeland and pasture seeding and conservation planting. Each species is described following a list of recommended varieties Contents (releases). Variety origin and the date released are Introduction. 2 included for additional reference. Introduced Grasses . 3 A Plant Species Guide for Special Conditions, found Bromegrass . 3 near the end of this publication, is provided to assist Fescue . 4 in selection of grass species for droughty soils, arid Orchardgrass . 4 Foxtail. 5 or wet environments, saline or alkaline areas and Wheatgrass . 5 landscape/ornamental plantings. Several factors should Timothy. 7 be considered before selecting plant species. These Wildrye . 7 include 1) a soil test, 2) herbicides previously used, Native Grasses . -
Insect Survey of Four Longleaf Pine Preserves
A SURVEY OF THE MOTHS, BUTTERFLIES, AND GRASSHOPPERS OF FOUR NATURE CONSERVANCY PRESERVES IN SOUTHEASTERN NORTH CAROLINA Stephen P. Hall and Dale F. Schweitzer November 15, 1993 ABSTRACT Moths, butterflies, and grasshoppers were surveyed within four longleaf pine preserves owned by the North Carolina Nature Conservancy during the growing season of 1991 and 1992. Over 7,000 specimens (either collected or seen in the field) were identified, representing 512 different species and 28 families. Forty-one of these we consider to be distinctive of the two fire- maintained communities principally under investigation, the longleaf pine savannas and flatwoods. An additional 14 species we consider distinctive of the pocosins that occur in close association with the savannas and flatwoods. Twenty nine species appear to be rare enough to be included on the list of elements monitored by the North Carolina Natural Heritage Program (eight others in this category have been reported from one of these sites, the Green Swamp, but were not observed in this study). Two of the moths collected, Spartiniphaga carterae and Agrotis buchholzi, are currently candidates for federal listing as Threatened or Endangered species. Another species, Hemipachnobia s. subporphyrea, appears to be endemic to North Carolina and should also be considered for federal candidate status. With few exceptions, even the species that seem to be most closely associated with savannas and flatwoods show few direct defenses against fire, the primary force responsible for maintaining these communities. Instead, the majority of these insects probably survive within this region due to their ability to rapidly re-colonize recently burned areas from small, well-dispersed refugia. -
Lloyd Shoals
Southern Company Generation. 241 Ralph McGill Boulevard, NE BIN 10193 Atlanta, GA 30308-3374 404 506 7219 tel July 3, 2018 FERC Project No. 2336 Lloyd Shoals Project Notice of Intent to Relicense Lloyd Shoals Dam, Preliminary Application Document, Request for Designation under Section 7 of the Endangered Species Act and Request for Authorization to Initiate Consultation under Section 106 of the National Historic Preservation Act Ms. Kimberly D. Bose, Secretary Federal Energy Regulatory Commission 888 First Street, N.E. Washington, D.C. 20426 Dear Ms. Bose: On behalf of Georgia Power Company, Southern Company is filing this letter to indicate our intent to relicense the Lloyd Shoals Hydroelectric Project, FERC Project No. 2336 (Lloyd Shoals Project). We will file a complete application for a new license for Lloyd Shoals Project utilizing the Integrated Licensing Process (ILP) in accordance with the Federal Energy Regulatory Commission’s (Commission) regulations found at 18 CFR Part 5. The proposed Process, Plan and Schedule for the ILP proceeding is provided in Table 1 of the Preliminary Application Document included with this filing. We are also requesting through this filing designation as the Commission’s non-federal representative for consultation under Section 7 of the Endangered Species Act and authorization to initiate consultation under Section 106 of the National Historic Preservation Act. There are four components to this filing: 1) Cover Letter (Public) 2) Notification of Intent (Public) 3) Preliminary Application Document (Public) 4) Preliminary Application Document – Appendix C (CEII) If you require further information, please contact me at 404.506.7219. Sincerely, Courtenay R. -
Conservation Assessment of Greater Sage-Grouse and Sagebrush Habitats
Conservation Assessment of Greater Sage-grouse and Sagebrush Habitats J. W. Connelly S. T. Knick M. A. Schroeder S. J. Stiver Western Association of Fish and Wildlife Agencies June 2004 CONSERVATION ASSESSMENT OF GREATER SAGE-GROUSE and SAGEBRUSH HABITATS John W. Connelly Idaho Department Fish and Game 83 W 215 N Blackfoot, ID 83221 [email protected] Steven T. Knick USGS Forest & Rangeland Ecosystem Science Center Snake River Field Station 970 Lusk St. Boise, ID 83706 [email protected] Michael A. Schroeder Washington Department of Fish and Wildlife P.O. Box 1077 Bridgeport, WA 98813 [email protected] San J. Stiver Wildlife Coordinator, National Sage-Grouse Conservation Framework Planning Team 2184 Richard St. Prescott, AZ 86301 [email protected] This report should be cited as: Connelly, J. W., S. T. Knick, M. A. Schroeder, and S. J. Stiver. 2004. Conservation Assessment of Greater Sage-grouse and Sagebrush Habitats. Western Association of Fish and Wildlife Agencies. Unpublished Report. Cheyenne, Wyoming. Cover photo credit, Kim Toulouse i Conservation Assessment of Greater Sage-grouse and Sagebrush Habitats Connelly et al. Author Biographies John W. Connelly Jack has been employed as a Principal Wildlife Research Biologist with the Idaho Department of Fish and Game for the last 20 years. He received his B.S. degree from the University of Idaho and M.S. and Ph.D. degrees from Washington State University. Jack is a Certified Wildlife Biologist and works on grouse conservation issues at national and international scales. He is a member of the Western Sage and Columbian Sharp-tailed Technical Committee and the Grouse Specialists’ Group. -
Endangered Species
FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S. -
Lafayette Creek Property—Phases I and Ii Umbrella
LAFAYETTE CREEK PROPERTY—PHASES I AND II UMBRELLA REGIONAL MITIGATION PLANS FOR FLORIDA DEPARTMENT OF TRANSPORTATION PROJECTS CONCEPTUAL MITIGATION PLAN WALTON COUNTY, FLORIDA June 20, 2011 Prepared for: Mr. David Clayton Northwest Florida Water Management District 81 Water Management Drive Havana, FL 32333 Prepared by: ________________________________ ________________________________ Caitlin E. Elam Richard W. Cantrell Staff Scientist Senior Consultant 4240-034 Y100 Lafayette Creek Phases I and II Restoration Plan 062011_E.doc Lafayette Creek Property—Phases I and II Umbrella Regional Mitigation Plans for Florida Department of Transportation Projects June 20, 2011 TABLE OF CONTENTS 1.0 PROJECT OVERVIEW AND GOALS ............................................................................. 1 2.0 LOCATION AND LANDSCAPE ...................................................................................... 2 3.0 EXISTING CONDITIONS ................................................................................................. 2 4.0 LISTED SPECIES ............................................................................................................ 13 5.0 EXOTIC SPECIES ............................................................................................................ 17 6.0 HISTORIC CONDITIONS ............................................................................................... 17 7.0 SOILS ...............................................................................................................................