Network Performance Model for Urban Rail Systems Baichuan Mo

Total Page:16

File Type:pdf, Size:1020Kb

Network Performance Model for Urban Rail Systems Baichuan Mo Network Performance Model for Urban Rail Systems by Baichuan Mo B.E., Tsinghua University (2018) Submitted to the Department of Urban Studies and Planning and Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Science in Transportation and Master of Science in Electrical Engineering and Computer Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 2020 ○c Massachusetts Institute of Technology 2020. All rights reserved. Author............................................................................ Department of Urban Studies and Planning and Department of Electrical Engineering and Computer Science May 15, 2020 Certified by. Haris N. Koutsopoulos Professor of Civil and Environmental Engineering, Northeastern University Thesis Supervisor Certified by. Jinhua Zhao Associate Professor of City and Transportation Planning, MIT Thesis Supervisor Certified by. Patrick Jaillet Professor of Electrical Engineering and Computer Science, MIT Thesis Supervisor Accepted by....................................................................... P. Christopher Zegras Professor of Transportation and Urban Planning, MIT Chair, Program Committee Accepted by....................................................................... Leslie A. Kolodziejski Professor of Electrical Engineering and Computer Science, MIT Chair, Department Committee on Graduate Students 2 Network Performance Model for Urban Rail Systems by Baichuan Mo Submitted to the Department of Urban Studies and Planning and Department of Electrical Engineering and Computer Science on May 15, 2020, in partial fulfillment of the requirements for the degree of Master of Science in Transportation and Master of Science in Electrical Engineering and Computer Science Abstract Urban rail transit is an important component of transportation systems and plays a crit- ical role in providing smooth and efficient mobility in many metropolitan areas. Network performance monitoring, i.e. assessing the level of service and operation information of the network (e.g. train loads), is a fundamental task for urban rail transit management. The objective of this thesis is to develop a data-driven network performance model (NPM) for urban rail system performance monitoring. Specifically, this work focuses on two major components of the NPM: 1) a network loading engine which takes train movement data, origin-destination (OD) flows, network, train capacity, and path choices as inputs, andout- puts performance indicators such as train loads and crowding levels, and 2) a calibration engine which can estimate path choice and train capacity parameters using automatically collected data. The automated fare collection (AFC) and train movement data from Hong Kong’s Mass Rail Transit (MTR) network are used as a case study for the analysis. An event-based network loading engine is proposed. The model can distribute passengers in the network given OD demand, path choices, train capacity with a capacity constraint, and a first-come-first-board criterion. The event-based is computationally efficient while retaining the necessary performance information, which enables it to be applied with large- scale urban rail systems. An effective train capacity model is proposed, which assumes that train capacity is a function of train load and number of queuing passengers on platforms. The model recognizes that train capacity may vary across stations, which is seldom considered in the literature. The use of NPM for performance monitoring is demonstrated by analyz- ing the spatial-temporal crowding patterns in the MTR system and evaluating dispatching strategies. The model is validated by comparing its outputs (with effective capacity) with field observations at a busy station and the outputs of a benchmark fixed-capacity model. Results show that the output of the model matches the ground truth observations well and outperform the benchmark model. NPM is also used to identify crowding stations and evaluate different dispatching strategies. To calibrate path choices, an assignment-based path choice estimation framework using AFC data is proposed. The framework captures the crowding correlation among stations and the interaction between path choices and passenger denied boarding, which are usu- ally neglected in the literature. The path choice estimation is formulated as an optimization problem, which attempts to minimize the error between assignment outputs (which is a func- tion of path choices) and the corresponding quantities observed from the AFC data. The original problem is intractable because of a non-linear multinomial logit equation constraint 3 and a non-analytical black-box function constraint (i.e. assignment model). A solution pro- cedure is proposed to decompose the original problem into three tractable sub-problems: rough path shares estimation, choice parameters estimation, and path exit rates estimation. The sub-problems can all be solved efficiently. We prove the solution of the decomposed problem is equivalent to the original problem under certain conditions. The model is val- idated using both synthetic data and real-world AFC data. Results from synthetic data show estimated path choice parameters are very close to the “true” (synthetic) ones. The proposed method outperforms the benchmark models in both the convergence rate and final solutions quality. Results from real-world data show the estimated coefficients are similar to the previous survey results. The model’s robustness is verified through a sensitivity analysis. As the observed information in AFC data may also be affected by train capacity, a simul- taneous calibration of path choices and train capacity is more reasonable than calibrating one set of parameters alone. We propose a simulation-based optimization (SBO) framework to calibrate path choices and train capacity simultaneously using AFC and train movement data. The calibration problem is formulated as an optimization problem with a black-box objective function. Seven optimizers (solving algorithms) from four brunches of SBO solving methods are evaluated. The algorithms are evaluated using an experimental design that in- cludes five scenarios, representing different degrees of path choice randomness and crowding sensitivity. Results show that some of the algorithms can estimate the path choice and train capacity parameters well. In general, the response surface methods have better convergence speed, stability, and estimation accuracy. They exhibit consistently good performance under all scenarios. Future research directions include: 1) Developing a more efficient simultaneous path choices and train capacity calibration framework. The proposed SBO framework in this work is not computationally efficient due to a large number of expensive simulation-based function evaluations. Modifying the assignment-based framework to incorporate co-calibration is an interesting direction. 2) Developing a behavior-based effective train capacity model that incorporates passengers’ willingness to board explicitly. 3) Extending the NPM for real- time operation control and future planning. A reinforcement learning-based control engine and an automated timetable design engine can be added to the current NPM framework to enable control and planning applications, respectively. Thesis Supervisor: Haris N. Koutsopoulos Title: Professor of Civil and Environmental Engineering, Northeastern University Thesis Supervisor: Jinhua Zhao Title: Associate Professor of City and Transportation Planning, MIT Thesis Supervisor: Patrick Jaillet Title: Professor of Electrical Engineering and Computer Science, MIT 4 Acknowledgments Throughout my two years at MIT, I am indebted to many people for their companion, support, encouragement, and help. First, I would like to express my deepest gratitude to my advisors Prof. Jinhua Zhao and Prof. Haris N. Koutsopoulos. Jinhua and Haris are two different spirits that consistently inspire my life. Jinhua is a creator, showing me rich and colorful research ideas. He is like the compass in my research ship, guiding me towards a vast and attractive ocean. I pretty much enjoyed the extensive discussions and sparkling moments with him. Haris is a craftsman, digging into depth of techniques with thorough understanding. He is like the sail in my research ship, providing the essential energy support in a challenging journey. I pretty much appreciated his dedicated edition to every corner in my papers, rigorous attitudes towards every problem encountered, and enlightening suggestions in even the complicated methodology details. From them, I learned what a great mentor should be. I feel very honored to have both of them as my advisors during my studies at MIT. I would also like to thank Prof. Patrick Jaillet for being my thesis reader and offering advice to this dissertation. Thanks to John Attanucci for providing insightful comments for my various research jobs. I am thankful to my friends at JTL-Transit Urban Mobility Lab. I would like to especially thank Qing Yi Wang, with whom I discussed a lot of research ideas, had a lot of fun, and stayed up all night for thesis writing together. I would also like to thank Yunhan Zheng and Xiaotong Guo, who accompanied my daily study life, brought me much joy, and worked with me closely. Thanks to Zhenliang (Mike) Ma who worked with me collaboratively in the many research works. Mike is such a kind mentor that I can always ask questions for, helping me to own a wonderful start at MIT.
Recommended publications
  • Reliability Optimization of a Railway Network
    sustainability Article Reliability Optimization of a Railway Network Xuelei Meng 1,2,*, Yahui Wang 3, Limin Jia 2 and Lei Li 4 1 School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China 2 State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China; [email protected] 3 School of Foreign Languages, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China; [email protected] 4 Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, Zhejiang, China; [email protected] * Correspondence: [email protected] Received: 7 October 2020; Accepted: 14 November 2020; Published: 24 November 2020 Abstract: With the increase of the railway operating mileage, the railway network is becoming more and more complicated. We expect to build more railway lines to offer the possibility to offer more high quality service for the passengers, while the investment is often limited. Therefore, it is very important to decide the pairs of cities to add new railway lines under the condition of limited construction investment in order to optimize the railway line network to maximize the reliability of the railway network to deal with the railway passenger transport task under emergency conditions. In this paper, we firstly define the reliability of the railway networks based on probability theory by analyzing three minor cases. Then we construct a reliability optimization model for the railway network to solve the problem, expecting to enhance the railway network with the limited investment. The goal is to make an optimal decision when choosing where to add new railway lines to maximize the reliability of the whole railway network, taking the construction investment as the main constraint, which is turned to the building mileage limit.
    [Show full text]
  • Insar Reveals Land Deformation at Guangzhou and Foshan, China Between 2011 and 2017 with COSMO-Skymed Data
    remote sensing Article InSAR Reveals Land Deformation at Guangzhou and Foshan, China between 2011 and 2017 with COSMO-SkyMed Data Alex Hay-Man Ng 1,2 ID , Hua Wang 1,*, Yiwei Dai 1, Carolina Pagli 3, Wenbin Chen 1, Linlin Ge 2, Zheyuan Du 2 and Kui Zhang 4 1 Department of Surveying Engineering, Guangdong University of Technology, Guangzhou 510006, China; [email protected] (A.H.-M.N.); [email protected] (Y.D.); [email protected] (W.C.) 2 School of Civil and Environmental Engineering, UNSW Australia, Sydney 2052, Australia; [email protected] (L.G.); [email protected] (Z.D.) 3 Department of Earth Sciences, University of Pisa, Pisa 56100, Italy; [email protected] 4 School of Communication Engineering, Chongqing University, Chongqing 400044, China; [email protected] * Correspondence: [email protected]; Tel.: +86-135-7001-9257 Received: 23 April 2018; Accepted: 23 May 2018; Published: 24 May 2018 Abstract: Subsidence from groundwater extraction and underground tunnel excavation has been known for more than a decade in Guangzhou and Foshan, but past studies have only monitored the subsidence patterns as far as 2011 using InSAR. In this study, the deformation occurring during the most recent time-period between 2011 and 2017 has been measured using COSMO-SkyMed (CSK) to understand if changes in temporal and spatial patterns of subsidence rates occurred. Using InSAR time-series analysis (TS-InSAR), we found that significant surface displacement rates occurred in the study area varying from −35 mm/year (subsidence) to 10 mm/year (uplift). The 2011–2017 TS-InSAR results were compared to two separate TS-InSAR analyses (2011–2013, and 2013–2017).
    [Show full text]
  • China Railway Signal & Communication Corporation
    Hong Kong Exchanges and Clearing Limited and The Stock Exchange of Hong Kong Limited take no responsibility for the contents of this announcement, make no representation as to its accuracy or completeness and expressly disclaim any liability whatsoever for any loss howsoever arising from or in reliance upon the whole or any part of the contents of this announcement. China Railway Signal & Communication Corporation Limited* 中國鐵路通信信號股份有限公司 (A joint stock limited liability company incorporated in the People’s Republic of China) (Stock Code: 3969) ANNOUNCEMENT ON BID-WINNING OF IMPORTANT PROJECTS IN THE RAIL TRANSIT MARKET This announcement is made by China Railway Signal & Communication Corporation Limited* (the “Company”) pursuant to Rules 13.09 and 13.10B of the Rules Governing the Listing of Securities on The Stock Exchange of Hong Kong Limited (the “Listing Rules”) and the Inside Information Provisions (as defined in the Listing Rules) under Part XIVA of the Securities and Futures Ordinance (Chapter 571 of the Laws of Hong Kong). From July to August 2020, the Company has won the bidding for a total of ten important projects in the rail transit market, among which, three are acquired from the railway market, namely four power integration and the related works for the CJLLXZH-2 tender section of the newly built Langfang East-New Airport intercity link (the “Phase-I Project for the Newly-built Intercity Link”) with a tender amount of RMB113 million, four power integration and the related works for the XJSD tender section of the newly built
    [Show full text]
  • Transportation Policy Profiles of Chinese City Clusters - Guest Contribution Publication Data
    Transportation policy profiles of Chinese city clusters - guest contribution Publication Data Authors: Responsible: This publication is a guest contribution. The origi- Alexander von Monschaw, GIZ China nal article, by Nancy Stauffer, appears in the Spring 2020 issue of Energy Futures, the magazine of the Layout and Editing: MIT Energy Initiative (MITEI), and is reprinted here Elisabeth Kaufmann, GIZ China with permission from MITEI. View the original article on the MIT Energy Initiative website: http://energy. Photo credits (if not mentioned in description): mit.edu/news/transportation-policymaking-in-chine- Cover - Stephanov Aleksei / shutterstock.com se-cities/. Figure 4 - Junyao Yang / unsplash.com Figure 7 - Macau Photo Agency / unsplash.com Supplementary material is retrieved from the scien- Figure 10 - Cexin Ding / unsplash.com tific journal article „Moody Joanna, Shenhao Wang, Figure 13 - Mask chen / shutterstock.com Jungwoo Chun, Xuenan Ni, and Jinhua Zhao. (2019). Figure 5, 8, 11, 14 - Maps based on freevectormaps.com Transportation policy profiles of Chinese city clus- ters: A mixed methods approach. Transportation Re- URL links: search Interdisciplinary Perspectives, 2. https://doi. Responsibility for the content of external websites org/10.1016/j.trip.2019.100053 [open access]“. linked in this publication always lies with their re- spective publishers. GIZ expressly dissociates itself Published by: from such content. Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH On behalf of the German Federal Ministry of Transport and Digital Infrastructure (BMVI) Registered offices: Bonn and Eschborn GIZ is responsible for the content of this publication. Address: Beijing, 2020 Tayuan Diplomatic Office Building 2-5 14 Liangmahe South Street, Chaoyang District 100600 Beijing, P.
    [Show full text]
  • Curbing Consumption in China
    Curbing Consumption in China The Vehicle Quota System in Guangzhou Thea Marie Valler Master thesis in Culture, Environment and Sustainability Centre for Development and Environment UNIVERSITY OF OSLO 15.11.2017 II © Thea Marie Valler 2017 Curbing Consumption in China: The Vehicle Quota System in Guangzhou http://www.duo.uio.no/ Print: Reprosentralen, University of Oslo III Abstract Addressing the environmental challenges that are a result of the ballooning Chinese economy is becoming an increasingly important national priority. Today, China has the highest number of deaths linked to ambient air pollution of any other country in the world. The transport sector contributes significantly to this pollution. To address these issues, several Chinese cities have chosen to implement the vehicle quota system (VQS). In 2012, VQS was implemented in Guangzhou and the rate of vehicle ownership plummeted from 18% to 5% in just over a year. This thesis explores public attitudes and the local government’s motivation for implementing this policy through qualitative interviews with local experts and residents. It is important to have a better understanding of the human dimensions of the steps China is taking to tackle the highly intertwined problems of air pollution and traffic congestion. It is equally as important to understand that the quota approach is an alternative to other transport policies making it particularly interesting to research. There are various local adaptations to the VQS policy and I explore various explanations for this to demonstrate the complexity of policy implementation in China. In Guangzhou, there are two options for people who want a license to own a car registered in the municipality – lottery or auction.
    [Show full text]
  • Development of High-Speed Rail in the People's Republic of China
    ADBI Working Paper Series DEVELOPMENT OF HIGH-SPEED RAIL IN THE PEOPLE’S REPUBLIC OF CHINA Pan Haixiao and Gao Ya No. 959 May 2019 Asian Development Bank Institute Pan Haixiao is a professor at the Department of Urban Planning of Tongji University. Gao Ya is a PhD candidate at the Department of Urban Planning of Tongji University. The views expressed in this paper are the views of the author and do not necessarily reflect the views or policies of ADBI, ADB, its Board of Directors, or the governments they represent. ADBI does not guarantee the accuracy of the data included in this paper and accepts no responsibility for any consequences of their use. Terminology used may not necessarily be consistent with ADB official terms. Working papers are subject to formal revision and correction before they are finalized and considered published. The Working Paper series is a continuation of the formerly named Discussion Paper series; the numbering of the papers continued without interruption or change. ADBI’s working papers reflect initial ideas on a topic and are posted online for discussion. Some working papers may develop into other forms of publication. Suggested citation: Haixiao, P. and G. Ya. 2019. Development of High-Speed Rail in the People’s Republic of China. ADBI Working Paper 959. Tokyo: Asian Development Bank Institute. Available: https://www.adb.org/publications/development-high-speed-rail-prc Please contact the authors for information about this paper. Email: [email protected] Asian Development Bank Institute Kasumigaseki Building, 8th Floor 3-2-5 Kasumigaseki, Chiyoda-ku Tokyo 100-6008, Japan Tel: +81-3-3593-5500 Fax: +81-3-3593-5571 URL: www.adbi.org E-mail: [email protected] © 2019 Asian Development Bank Institute ADBI Working Paper 959 Haixiao and Ya Abstract High-speed rail (HSR) construction is continuing at a rapid pace in the People’s Republic of China (PRC) to improve rail’s competitiveness in the passenger market and facilitate inter-city accessibility.
    [Show full text]
  • Bus Rapid Transit in China: a Comparison of Design Features with International Systems
    WORKING PAPER BUS RAPID TRANSIT IN CHINA: A COMPARISON OF DESIGN FEATURES WITH INTERNATIONAL SYSTEMS JUAN MIGUEL VELÁSQUEZ, THET HEIN TUN, DARIO HIDALGO, CAMILA RAMOS, PABLO GUARDA, ZHONG GUO, AND XUMEI CHEN EXECUTIVE SUMMARY Globally, bus rapid transit (BRT) has proved itself to CONTENTS be a high-capacity public transport mode that can be Executive Summary .......................................1 implemented in short time frames and at relatively low 1. Introduction ............................................. 2 capital cost. Its benefits—reducing greenhouse gas and local air pollutant emissions, improving traffic safety, and 2. Overview of BRT Systems in China ................... 5 reducing passenger travel times—are well documented. 3. Review of the Literature .............................. 10 4. Methodology ............................................11 BRT can play an important role in China, contributing to 5. Findings and the Way Forward ...................... 15 sustainability in the urban transport sector and beyond. Recognizing its importance, China has set a national 6. Conclusion .............................................26 goal of implementing 5,000 kilometers of BRT by 2020 Appendix .................................................. 27 (MOT 2013a). As of 2015, China had implemented 2,991 References ...............................................28 kilometers of BRT, according to the China Academy of Endnotes.................................................. 31 Transportation Sciences. To reach its goal, it will therefore
    [Show full text]
  • High-Speed Rail Services in Asia
    THE ASIAN JOURNAL Journal of Transport and Infrastructure Volume 1 January 2019 Special Issue JOURNAL OF HIGH SPEED RAIL SERVICES IN ASIA TRANSPORT(A Joint Publication of ADBI and AND AITD) High-Speed Rail and Station Area Development INFRASTRShreyas P Bharule Illustrating Spillover Effects of Infrastructure Naoyuki Yoshino, Nuobu Renzhi and Umid Abidhadjaev Modeling Spatiotemporal Urban Spillover Effect of HSR Infrastructure Development Satoshi Miyazawa, K E Seetha Ram and Jetpan Wetwitoo Japan: HSR’s Agglomeration Impact Jetpan Wetwitoo Development of HSR in People’s Republic of China Haixiao Pan and Gao Ya HSR Effect on Urban Spatial Correlation: A Big Data Analysis of People’s Republic of China’s Largest Urban Agglomeration Ji Han Japan: Integrated Land Development and Passenger Railway Operation Fumio Kurosaki Spill-Over and Straw Effects of HSR K E Seetha Ram and Shreyas P Bharule High Speed Rail in India: The Stepping Stone to Enhanced Mobility Anjali Goyal THE ASIAN JOURNAL Journal of Transport and Infrastructure Volume 1 January 2019 Special Issue HIGH SPEED RAIL SERVICES IN ASIA (A Joint Publication of ADBI and AITD) ASIAN INSTITUTE OF ASIAN DEVELOPMENT BANK TRANSPORT DEVELOPMENT INSTITUTE THE ASIAN JOURNAL Editorial Board K. L. Thapar (Chairman) Prof. S. R. Hashim Dr. Y. K. Alagh T.C.A. Srinivasa-Raghavan © January 2019, Asian Institute of Transport Development, New Delhi. All rights reserved ISSN 0971-8710 The views expressed in the publication are those of the authors and do not necessarily reflect the views of the organizations to which they belong or that of the Board of Governors of the Institute or its member countries.
    [Show full text]
  • China's Urban Future
    China’s Urban Future Opportunities through smart cities This report has been prepared by Siemens, Volkswagen Group China and OAV - German Asia-Pacific Business Association Spring 2019 2 3 About this report Siemens Volkswagen Group OAV – German Asia-Pacific Business Siemens is a global technology powerhouse that has The Volkswagen Group is a key player in the Chinese Association stood for engineering excellence, innovation, quality, automobile industry. At present, Volkswagen Group China Since its foundation in 1900, OAV has been working as reliability and internationality for more than 170 years. employs more than 100,000 people and the workforce is This report has been prepared by Siemens, Volkswagen a strong network of German companies with activities The company is active around the globe, focusing on the to increase to 120,000 people by 2019. Annual production Group China and OAV. It sets out the context for smart cities in the Asia-Pacific region. OAV is a privately held non- areas of electrification, automation and digitalization. One capacity is set to grow from about 4 million to around 5 in China, making the case that they are vital to achieving profit organization financed by its corporate members. of the largest producers of energy-efficient, resource-saving million units per annum in 2020. Two joint ventures, SAIC sustainable development. It explores some of the challenges They include the most renowned companies from major technologies, Siemens is a leading supplier of efficient VOLKSWAGEN AUTOMOTIVE COMPANY LIMITED (SAIC cities are facing and shows how smart technology could industries and the banking sector, trading companies and power generation and power transmission solutions and a VOLKSWAGEN) and First Automotive Works-Volkswagen help.
    [Show full text]
  • The Route of Development in Intra-Regional Income Equality Via High-Speed Rail: Evidence from China
    The Route of Development in intra-regional Income Equality via High-Speed Rail: Evidence from China Wenjing YU, China Academy for Rural Development, Zhejiang University [email protected] Yansang YAO, China Academy for Rural Development, Zhejiang University [email protected] Selected Paper prepared for presentation at the 2019 Agricultural & Applied Economics Association Annual Meeting, Atlanta, GA, July 21 – July 23 Copyright 2019 by [Wenjing Yu, Yansang Yao]. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies. The Route of Development in intra-regional Income Equality via High-Speed Rail: Evidence from China Abstract This paper mainly studies how the bullet trains, a new generation of vehicles, are associated with income inequality in China for the years between 2008 and 2018. Gini coefficients are used to measure the income inequality from county level, and within urban and rural areas of China. A staggered Difference-in-Difference (DID) approach is taken to identify the causal effect of high-speed rail on intra-regional income inequality. Factors other than transportation are also considered in our regression model, including a few social variables and major economic indicators. It is found that the Gini coefficient of reginal economy would rise by 0.0327 in average when new high-speed railway stations are opened, which means that the intra-regional income inequality is being exacerbated. We also find that the treatment drawn by high-speed rail system is not uniform in different regions, and the greatest impact was set on the western region.
    [Show full text]
  • Evaluation of China's High-Speed Rail Station Development and Nearby
    International Journal of Environmental Research and Public Health Article Evaluation of China’s High-Speed Rail Station Development and Nearby Human Activity Based on Nighttime Light Images Zhenyu Du 1,2 , Wei Wu 1,* , Yongxue Liu 1 , Weifeng Zhi 1 and Wanyun Lu 1 1 School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; [email protected] (Z.D.); [email protected] (Y.L.); [email protected] (W.Z.); [email protected] (W.L.) 2 Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing 210023, China * Correspondence: [email protected]; Tel.: +86-181-5693-9553 Abstract: High-speed rail (HSR) represents China’s advancing productivity; however, quite a few HSR stations face problems due to inappropriate planning and limited passenger flow. To optimize future planning on HSR lines and stations and facilitate efficient operation, we used brightness as a representative of station development and nearby human activity, analyzing its spatial and temporal distribution, classification categories, and influencing factors of 980 stations using nighttime light images from 2012 to 2019. The following conclusions were drawn: (1) There are 41 stations with high brightness between 80 and 320 nW·cm−2·sr−1, which are concentrated in provincial capitals, large cities, and at line ends. The overall number of these stations increases by 57% in the past eight years. (2) Stations with high brightness but minimal changes that opened in 2013–2019 are mainly concentrated in provincial capitals and large- or medium-sized cities, and those with high brightness and significant changes are mostly new stations nearby.
    [Show full text]
  • High-Speed Rail Network Development and Winner and Loser Cities in Megaregions: the Case Study of Yangtze River Delta, China DOI: 10.1016/J.Cities.2018.06.010
    The University of Manchester Research High-speed rail network development and winner and loser cities in megaregions: The case study of Yangtze River Delta, China DOI: 10.1016/j.cities.2018.06.010 Document Version Accepted author manuscript Link to publication record in Manchester Research Explorer Citation for published version (APA): Wang, L., & Duan, X. (2018). High-speed rail network development and winner and loser cities in megaregions: The case study of Yangtze River Delta, China. Cities, 83, 71-82. https://doi.org/10.1016/j.cities.2018.06.010 Published in: Cities Citing this paper Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version. General rights Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Takedown policy If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact [email protected] providing relevant details, so we can investigate your claim. Download date:30. Sep. 2021 1 High-speed rail network development and winner and loser cities in megaregions: The case 2 study
    [Show full text]