Saliva Exhibits High Sensitivity and Specificity for the Detection
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Title: a TRANSMISSION-VIRULENCE EVOLUTIONARY TRADE-OFF
1 Title: A TRANSMISSION-VIRULENCE EVOLUTIONARY TRADE-OFF EXPLAINS 2 ATTENUATION OF HIV-1 IN UGANDA 3 Short title: EVOLUTION OF VIRULENCE IN HIV 4 François Blanquart1, Mary Kate Grabowski2, Joshua Herbeck3, Fred Nalugoda4, David 5 Serwadda4,5, Michael A. Eller6, 7, Merlin L. Robb6,7, Ronald Gray2,4, Godfrey Kigozi4, Oliver 6 Laeyendecker8, Katrina A. Lythgoe1,9, Gertrude Nakigozi4, Thomas C. Quinn8, Steven J. 7 Reynolds8, Maria J. Wawer2, Christophe Fraser1 8 1. MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease 9 Epidemiology, School of Public Health, Imperial College London, United Kingdom 10 2. Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, 11 Baltimore, MD, USA 12 3. International Clinical Research Center, Department of Global Health, University of 13 Washington, Seattle, WA, USA 14 4. Rakai Health Sciences Program, Entebbe, Uganda 15 5. School of Public Health, Makerere University, Kampala, Uganda 16 6. U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, 17 MD, USA 18 7. Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA 19 8. Laboratory of Immunoregulation, Division of Intramural Research, National Institute of 20 Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA 21 9. Department of Zoology, University of Oxford, United Kingdom 22 23 Abstract 24 Evolutionary theory hypothesizes that intermediate virulence maximizes pathogen fitness as 25 a result of a trade-off between virulence and transmission, but empirical evidence remains scarce. 26 We bridge this gap using data from a large and long-standing HIV-1 prospective cohort, in 27 Uganda. -
Catalogue of Clinical Trials and Cohort Studies to Identify Biological
Catalogue of clinical trials and cohort studies to identify biological specimens of relevance to the development of assays for acute and early HIV infection: Final Report Catalogue of clinical trials and cohort studies to identify biological specimens of relevance to the development of assays for recent HIV infection Final Report February 2010 This final report was prepared by Dr Joanne Micallef and Professor John Kaldor, The University of New South Wales, under subcontract with Family Health International, funded by the Bill and Melinda Gates Foundation under the grant titled “Development of Assays for Acute HIV Infection and Estimation and HIV Incidence in Population”. 1 Catalogue of clinical trials and cohort studies to identify biological specimens of relevance to the development of assays for acute and early HIV infection: Final Report Table of Contents Table of Contents .................................................................................................................................................................... 2 List of acronyms ...................................................................................................................................................................... 4 1 Introduction ..................................................................................................................................................................... 6 2 Methods ............................................................................................................................................................................ -
Considerations for the Use of Saliva As Sample Material for COVID-19 Testing 3 May 2021
[Type here] ECDC TECHNICAL REPORT Considerations for the use of saliva as sample material for COVID-19 testing 3 May 2021 Key messages • Nasopharyngeal specimens remain the gold standard for COVID-19 testing for use with RT-PCR and rapid antigen diagnostic tests. • Studies on the performance of RT-PCR tests have variously reported both higher and lower sensitivity for saliva samples compared with nasopharyngeal swabs. However, meta-analyses of such studies suggest an overall similar or non-statistically significant lower sensitivity associated with the use of saliva samples. • The reported heterogeneity is likely to, in part, reflect differences in sampling techniques, sampling times and the type of population being tested, with evidence that RT-PCR tests with saliva as sample material show similar sensitivity to those using nasopharyngeal swabs for symptomatic patients, if the sample collection is performed within the first five days from onset of symptoms, and when the viral load is high. • Saliva sample collection is easy, non-invasive, more acceptable for repeat testing and can be performed by non-healthcare professionals or individuals themselves who are properly instructed. • Evidence supports the conclusion that saliva can be used as an alternative sample material for RT- PCR testing when nasopharyngeal swabs cannot be collected in the following scenarios: in symptomatic patients and for repeated screening of asymptomatic individuals. • Further clinical studies are warranted on the sensitivity of saliva as sample material for RT-PCR analysis for symptomatic and asymptomatic children, and to standardise the sampling collection methods. • Current limited evidence does not support the use of saliva as an alternative sample material for rapid antigen or antibody tests. -
Hormone Testing
Hormone Testing Saliva Testing The Nutrition and Health Center utilizes the leading salivary-based testing and research laboratory in the United States to measure hormones. This method is called Enzyme Linked Immunosorbent Assay; it measures “free fraction hormone levels,” giving more information than measuring “bound hormone levels.” The commonly used blood and serum hormone tests look only at the level of hormones that are present in a person’s tissues; this is known as “bound hormone levels.” Saliva testing has many advantages over blood testing including: • Saliva specimen collection does not require a blood draw and there are no risks to you • Saliva collections are convenient and can be done at work or at home • When stored properly, saliva samples are stable for several weeks • With an accuracy of 92-96%, saliva testing is more accurate than blood testing • The ability to collect more than one specimen which provides more information than a single collection • Compared to blood testing, saliva testing is also more affordable • Saliva testing looks at the “unbound hormone levels” also known as “free fraction hormone levels” which are the hormone levels that are available to be used by the body’s tissues. This gives a better idea of the levels of hormones that are actually influencing the tissues, rather than just the level of hormones that are present in the tissues Types of Saliva Tests There are various hormones in your body, so there are various corresponding saliva tests that can be administered. The tests that we use are the Female Hormone Panel™ (FHP™) test, Adrenal Stress Index™ (ASI), and the Flexi-Matrix Customized panel. -
Download and Use
Shenkin et al. BMC Medicine (2019) 17:138 https://doi.org/10.1186/s12916-019-1367-9 RESEARCHARTICLE Open Access Delirium detection in older acute medical inpatients: a multicentre prospective comparative diagnostic test accuracy study of the 4AT and the confusion assessment method Susan D. Shenkin1, Christopher Fox2, Mary Godfrey3, Najma Siddiqi4, Steve Goodacre5, John Young6, Atul Anand7, Alasdair Gray8, Janet Hanley9, Allan MacRaild8, Jill Steven8, Polly L. Black8, Zoë Tieges1, Julia Boyd10, Jacqueline Stephen10, Christopher J. Weir10 and Alasdair M. J. MacLullich1* Abstract Background: Delirium affects > 15% of hospitalised patients but is grossly underdetected, contributing to poor care. The 4 ‘A’s Test (4AT, www.the4AT.com) is a short delirium assessment tool designed for routine use without special training. Theprimaryobjectivewastoassesstheaccuracyofthe4ATfor delirium detection. The secondary objective was to compare the 4AT with another commonly used delirium assessment tool, the Confusion Assessment Method (CAM). Methods: This was a prospective diagnostic test accuracy study set in emergency departments or acute medical wards involving acute medical patients aged ≥ 70. All those without acutely life-threatening illness or coma were eligible. Patients underwent (1) reference standard delirium assessment based on DSM-IV criteria and (2) were randomised to either the index test (4AT, scores 0–12; prespecified score of > 3 considered positive) or the comparator (CAM; scored positive or negative), in a random order, using computer-generated pseudo-random numbers, stratified by study site, with block allocation. Reference standard and 4AT or CAM assessments were performed by pairs of independent raters blinded to the results of the other assessment. Results: Eight hundred forty-three individuals were randomised: 21 withdrew, 3 lost contact, 32 indeterminate diagnosis, 2 missing outcome, and 785 were included in the analysis. -
Adrenal & Male Hormone
ADRENAL & MALE HORMONE BLOOD SPOT Lifestyle, physical and psychological stresses put constant demands on the adrenal glands. If they get depleted adrenal fatigue or insufficiency may be experienced. Symptoms include fatigue, hypotension, and lowered resistance to stress, salt cravings, hypoglycaemia, and lowered immunity. Assessing cortisol, DHEA and other adrenal hormone levels may help to identify these patients and will assist effective therapy. The aging male experiences a decrease in testosterone at a rate of 10% per decade from the age of 30. This reduction of testosterone and other androgens experienced as a consequence of the aging process has been named andropause or androgen deficiency of the aging male (ADAM). Symptoms associated with ADAM can be associated with impaired 5α reductase or aromatase activity, enzymes responsible for conversion of testosterone to dihydrotestosterone (DHT) or estrogens. Diagnosing and treating androgen deficiency is vital for improving quality of life and reducing age-related health decline in the aging male population. This test provides a focused overview of the adrenal and male hormones: Salivary DHEAs and Cortisol, and Estradiol (E2), Testosterone, SHBG and PSA via blood spot. Stress, Hormones and Aging Lifestyle, physical and psychological pressure puts constant demands on the adrenal glands. Although they are designed to cope with stress, changing physiological functions to deal with the ‘fight or flight’, the adrenal glands suffer in today’s high stress society. Most individuals however who have depleted adrenal glands are not medical emergencies. They just go through life with fatigue, not knowing what is wrong with them. These people may be suffering from adrenal fatigue which is also known as hypoadrenia, subclinical hypoadrenia, subclinical adrenal exhaustion or adrenal insufficiency. -
Hormone Testing Jim Paoletti, B.S
Hormone Testing Jim Paoletti, B.S. Pharmacy, FAARFM Establish the Need – Lab tests – Correlate patient assessment with testing results – Lab tests alone do not always tell the whole story – Lab values are guides to which direction therapy should be considered – Lab values should be used to “confirm the diagnosis” Testing Considerations • Limitations – Timing of cycle – No individual baseline in many cases – Lack of correlation of symptoms to levels – No consideration of influences on free hormone levels (such as SHBG) – Dosage form differences • Don’t rely on lab tests alone— Treat the patient, not the labs Testing Considerations • Are you comparing to the range of a person of the reported life stage or the range of the age you are attempting to replicate? – We don’t want menopausal levels in most cases Testing Considerations • When was the test done compared to the timing of the last dose? – Make sure patient is at steady state if possible • 8 -24 hrs post topical application • 4-8 hrs post oral dosing (SR capsules) • Be consistent with subsequent testing • Pay attention to changes in: • Site of application • Base • Volume applied Body Fluids Commonly Used for Testing Steroid Hormones • Serum/plasma • 24-hour urine • Saliva • Capillary blood (dried blood spot) Serum Testing Advantages • Wide range of hormones available • Familiar reference ranges • Many laboratories to choose from • Standard automated methods with appropriate proficiency testing • Insurance coverage Serum Testing Considerations • Established “gold standard” based on -
Adrenals & Female Hormone
ADRENALS & FEMALE HORMONE BLOOD SPOT Lifestyle, physical and psychological stresses put constant demands on the adrenal glands. If they get depleted adrenal fatigue or insufficiency may be experienced. Symptoms include fatigue, hypotension, and lowered resistance to stress, salt cravings, hypoglycaemia, and lowered immunity. Assessing cortisol, DHEA and other adrenal hormone levels may help to identify these patients and will assist effective therapy. Hormone imbalances are associated with numerous symptoms and health conditions. Assessing and diagnosing these changes are important to decrease unnecessary suffering and prevent degenerative diseases. Female hormones fluctuate through a menstrual cycle and at various times of a woman’s life. Imbalances in hormones are associated with PMS, menopause and more complex conditions like PCOS and endometriosis. This test provides a focused overview of the adrenal and female hormones: Salivary DHEAs and Cortisol, and Estradiol (E2), Progesterone, Testosterone, SHBG, FSH, LH via blood spot SYMPTOMS AND CONDITIONS ASSOCIATED WITH HORMONE IMBALANCES Low sex drive Insomnia and sleep disturbances Depression and irritability Cancer Fatigue Hair thinning and loss Weight gain and decreased muscle tone Osteoporosis Memory loss, foggy thinking & Alzheimer’s Cardiovascular disease Stress, Hormones and Aging Lifestyle, physical and psychological pressure puts constant demands on the adrenal glands. Although they are designed to cope with stress, changing physiological functions to deal with the ‘fight or flight’, the adrenal glands suffer in today’s high stress society. Most individuals however who have depleted adrenal glands are not medical emergencies. They just go through life with fatigue, not knowing what is wrong with them. These people may be suffering from adrenal fatigue which is also known as hypoadrenia, subclinical hypoadrenia, subclinical adrenal exhaustion or adrenal insufficiency. -
Epidemiologic Study Designs
Epidemiologic Study Designs Jacky M Jennings, PhD, MPH Associate Professor Associate Director, General Pediatrics and Adolescent Medicine Director, Center for Child & Community Health Research (CCHR) Departments of Pediatrics & Epidemiology Johns Hopkins University Learning Objectives • Identify basic epidemiologic study designs and their frequent sequence of study • Recognize the basic components • Understand the advantages and disadvantages • Appropriately select a study design Research Question & Hypotheses Analytic Study Plan Design Basic Study Designs and their Hierarchy Clinical Observation Hypothesis Descriptive Study Case-Control Study Cohort Study Randomized Controlled Trial Systematic Review Causality Adapted from Gordis, 1996 MMWR Study Design in Epidemiology • Depends on: – The research question and hypotheses – Resources and time available for the study – Type of outcome of interest – Type of exposure of interest – Ethics Study Design in Epidemiology • Includes: – The research question and hypotheses – Measures and data quality – Time – Study population • Inclusion/exclusion criteria • Internal/external validity Epidemiologic Study Designs • Descriptive studies – Seeks to measure the frequency of disease and/or collect descriptive data on risk factors • Analytic studies – Tests a causal hypothesis about the etiology of disease • Experimental studies – Compares, for example, treatments EXPOSURE Cross-sectional OUTCOME EXPOSURE OUTCOME Case-Control EXPOSURE OUTCOME Cohort TIME Cross-sectional studies • Measure existing disease and current exposure levels at one point in time • Sample without knowledge of exposure or disease • Ex. Prevalence studies Cross-sectional studies • Advantages – Often early study design in a line of investigation – Good for hypothesis generation – Relatively easy, quick and inexpensive…depends on question – Examine multiple exposures or outcomes – Estimate prevalence of disease and exposures Cross-sectional studies • Disadvantages – Cannot infer causality – Prevalent vs. -
LCMS Saliva Steroid & Steroid Synthesis Inhibitor Profile
PROVIDER DATA SHEET LCMS Saliva Steroid & Steroid Synthesis Inhibitor Profile ZRT Laboratory now offers a comprehensive LC-MS/MS saliva assay that measures the levels of 18 endogenous steroid hormones (see Steroid Hormone Cascade Tests Included diagram on the next page) including estrogens, progestogens, androgens, Estrogens glucocorticoids, and mineralocorticoids. In addition to endogenous hormones Estradiol (E2), Estriol (E3), Estrone (E1), the new assay quantifies the level of melatonin and the synthetic estrogen ethinyl Ethinyl Estradiol (EE) estradiol, present in most birth control formulations, as well as several synthetic Progestogen Precursors and Metabolites aromatase inhibitors (anastrozole and letrozole) and the 5α-reductase inhibitor Pregnenolone Sulfate (PregS), Progesterone (Pg), finasteride. Allopregnenolone (AlloP), 17-OH Progesterone (17OHPg) The LC-MS/MS assay expands beyond the 5-steroid panel of parent hormones Androgen Precursors and Metabolites (estradiol, progesterone, testosterone, DHEAS, and cortisol) currently tested Androstenedione (Adione), Testosterone (T), by immunoassay (IA) at ZRT Laboratory. Testing the levels of both upstream Dihydrotestosterone (DHT), DHEA (D), precursors and downstream metabolites of these parent active steroids, listed DHEA-S (DS), 7-Keto DHEA (7keto) above and shown in the diagram on the next page, will help determine which steroid Glucocorticoid Precursors and Metabolites synthesis enzymes are low, overactive, blocked by natural or pharmaceutical 11-Deoxycortisol (11DC) Cortisol -
Systematic Review of the Prospective Cohort Studies on Meat Consumption and Colorectal Cancer Risk: a Meta-Analytical Approach1
Vol. 10, 439–446, May 2001 Cancer Epidemiology, Biomarkers & Prevention 439 Systematic Review of the Prospective Cohort Studies on Meat Consumption and Colorectal Cancer Risk: A Meta-Analytical Approach1 Manjinder S. Sandhu,2 Ian R. White, and confounded or modified by other factors cannot be Klim McPherson excluded. Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Strangeways Research Laboratory, Cambridge, CB1 8RN [M. S. S.]; Medical Research Council Biostatistics Unit, Institute of Introduction Public Health, University of Cambridge, Cambridge, CB2 2SR [I. R. W.]; and The relation between meat consumption and colorectal cancer Cancer and Public Health Unit, London School of Hygiene and Tropical Medicine, London, WC1E 7HT [K. M.], United Kingdom risk remains controversial (1–10). Subsequent to the report of the National Academy of Sciences, “Diet and Health” (11), which implicated red meat as a causative factor in the etiology Abstract of colorectal cancer, two subsequent reports have reviewed the epidemiological evidence on meat and colorectal cancer risk (4, The relation between meat consumption and colorectal 3 cancer risk remains controversial. In this report, we 7). The report of the WCRF concluded: “The evidence shows quantitatively reviewed the prospective observational that red meat probably increases risk and processed meat pos- studies that have analyzed the relation between meat sibly increases risk of colorectal cancer” (7). The report from consumption and colorectal cancer. We conducted COMA judged that “there is moderately consistent evidence electronic searches of MEDLINE, EMBASE, and from cohort studies of a positive association between the con- CANCERLIT databases through to the end of June 1999 sumption of red or processed meat and risk of colorectal can- and manual searches of references from retrieved cer” (4). -
Advances in Diabetes Diagnosis and Monitoring by Stormy Li, RDH, Mhed, Kristen Stephens, RDH, MSDH, Edd, Michelle Hurlbutt, RDH, MSDH, Dhsc
LifeLong Learning CE Course: Advances in Diabetes Diagnosis and Monitoring By Stormy Li, RDH, MHEd, Kristen Stephens, RDH, MSDH, EdD, Michelle Hurlbutt, RDH, MSDH, DHSc Diabetes mellitus, commonly referred to as diabetes, resulting in increased glycemic load, insulin resistance, is a group of chronic metabolic diseases characterized by and obesity.3 Increased morbidity and mortality is hyperglycemia resulting from defects in insulin secretion, associated with T2D. Diabetes remained the seventh insulin action, or both. It is one of the oldest diseases leading cause of death in the US in 2017, with 83,564 known to man and reported in Egyptian literature dating death certificates listing it as the underlying cause of back over 3000 years. Most cases of diabetes fall within death, and a total of 270,702 death certificates listing 1 two broad etiopathogenetic categories: Type 1 Diabetes diabetes as an underlying or contributing cause of death. (T1D), an autoimmune pathologic process and Type 2 Overall, the risk for death among people with diabetes is Diabetes (T2D), a combination of resistance to insulin twice that of people of similar age without diabetes. action and an inadequate compensatory insulin secretory Today, diabetes remains one of the most common diseases diagnosed by family physicians, and despite response. In a new report from the Centers for Disease scientific advances and discoveries in treating diabetes; Control and Prevention (CDC) on diabetes statistics, the population diagnosed and undiagnosed continues to 34.2 million people of all ages—or 10.5% of the US grow. Since the majority of cases of diabetes are T2D population—have diabetes—with an estimated 88 million and the diagnostic tests are considered reliable, screening 1 people aged 18 years and older having pre-diabetes.