Download and Use
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rigorous Clinical Trial Design in Public Health Emergencies Is Essential
1 Rigorous Clinical Trial Design in Public Health Emergencies Is Essential Susan S. Ellenberg (Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania); Gerald T. Keusch (Departments of Medicine and Global Health, Boston University Schools of Medicine and Public Health); Abdel G. Babiker (Medical Research Council Clinical Trials Unit, University College London); Kathryn M. Edwards (Department of Pediatrics, Vanderbilt University School of Medicine); Roger J. Lewis (Department of Emergency Medicine, Harbor-UCLA Medical Center); Jens D. Lundgren( Department of Infectious Diseases, University of Copenhagen); Charles D. Wells (Infectious Diseases Unit, Sanofi-U.S.); Fred Wabwire-Mangen (Department of Epidemiology, Makerere University School of Public Health); Keith P.W.J. McAdam (Department of Clinical and Tropical Medicine, London School of Hygiene and Tropical Medicine) Keywords: randomized clinical trial; Ebola; ethics Running title: Research in public health emergencies Key Points: To obtain definitive information about the effects of treatments and vaccines, even in public health emergencies, randomized clinical trials are essential. Such trials are ethical and feasible with efforts to engage and collaborate with the affected communities. Contact information, corresponding author: Susan S. Ellenberg, Ph.D. University of Pennsylvania 423 Guardian Drive, Room 611 Philadelphia, PA 19104 [email protected]; 215-573-3904 Contact information, alternate corresponding author: Gerald T. Keusch, MD Boston University School of Medicine 620 Albany St Boston, MA 02118 [email protected]; 617-414-8960 2 ABSTRACT Randomized clinical trials are the most reliable approaches to evaluating the effects of new treatments and vaccines. During the 2014-15 West African Ebola epidemic, many argued that such trials were neither ethical nor feasible in an environment of limited health infrastructure and severe disease with a high fatality rate. -
Transcriptional Biomarkers for Predicting Development of TB: Progress and Clinical Considerations
Early View ERJ Methods Transcriptional biomarkers for predicting development of TB: progress and clinical considerations Hanif Esmail, Frank Cobelens, Delia Goletti Please cite this article as: Esmail H, Cobelens F, Goletti D. Transcriptional biomarkers for predicting development of TB: progress and clinical considerations. Eur Respir J 2020; in press (https://doi.org/10.1183/13993003.01957-2019). This manuscript has recently been accepted for publication in the European Respiratory Journal. It is published here in its accepted form prior to copyediting and typesetting by our production team. After these production processes are complete and the authors have approved the resulting proofs, the article will move to the latest issue of the ERJ online. Copyright ©ERS 2020 Transcriptional biomarkers for predicting development of TB: progress and clinical considerations Hanif Esmail1,2,3, Frank Cobelens4, Delia Goletti5* 1. Medical Research Council Clinical Trials Unit at University College London, London, UK 2. Institute for Global Health, University College London, London, UK 3. Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa 4. Dept of Global Health and Amsterdam Institute for Global Health and Development, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands. 5. Translational Research Unit, Department of Epidemiology and Preclinical Research, “L. Spallanzani” National Institute for Infectious Diseases (INMI), IRCCS, Via Portuense 292, 00149 Rome, Italy * Corresponding author Key words: Transcriptional biomarkers, incipient tuberculosis, latent tuberculosis Introduction Achieving the ambitious targets for global tuberculosis (TB) control, will require an increased emphasis on preventing development of active disease in those with latent TB infection (LTBI) by preventative treatment or vaccination[1]. -
Metformin Does Not Affect Cancer Risk: a Cohort Study in the U.K
2522 Diabetes Care Volume 37, September 2014 Metformin Does Not Affect Cancer Konstantinos K. Tsilidis,1,2 Despoina Capothanassi,1 Naomi E. Allen,3 Risk: A Cohort Study in the U.K. Evangelos C. Rizos,4 David S. Lopez,5 Karin van Veldhoven,6–8 Clinical Practice Research Carlotta Sacerdote,7 Deborah Ashby,9 Paolo Vineis,6,7 Ioanna Tzoulaki,1,6 and Datalink Analyzed Like an John P.A. Ioannidis10 Intention-to-Treat Trial Diabetes Care 2014;37:2522–2532 | DOI: 10.2337/dc14-0584 OBJECTIVE Meta-analyses of epidemiologic studies have suggested that metformin may re- 1Department of Hygiene and Epidemiology, Uni- duce cancer incidence, but randomized controlled trials did not support this versity of Ioannina School of Medicine, Ioannina, hypothesis. Greece 2Cancer Epidemiology Unit, University of Oxford, EPIDEMIOLOGY/HEALTH SERVICES RESEARCH RESEARCH DESIGN AND METHODS Oxford, U.K. 3 A retrospective cohort study, Clinical Practice Research Datalink, was designed to Clinical Trial Service Unit, University of Oxford, Oxford, U.K. investigate the association between use of metformin compared with other anti- 4Lipid Disorders Clinic, Department of Internal diabetes medications and cancer risk by emulating an intention-to-treat analysis Medicine, University Hospital of Ioannina, Ioan- as in a trial. A total of 95,820 participants with type 2 diabetes who started taking nina, Greece 5 metformin and other oral antidiabetes medications within 12 months of their Division of Epidemiology, University of Texas School of Public Health, Houston, TX diagnosis (initiators) were followed up for first incident cancer diagnosis without 6Department of Epidemiology and Biostatistics, regard to any subsequent changes in pharmacotherapy. -
The PRISMA-IPD Statement
Clinical Review & Education Special Communication Preferred Reporting Items for a Systematic Review and Meta-analysis of Individual Participant Data The PRISMA-IPD Statement Lesley A. Stewart, PhD; Mike Clarke, DPhil; Maroeska Rovers, PhD; Richard D. Riley, PhD; Mark Simmonds, PhD; Gavin Stewart, PhD; Jayne F. Tierney, PhD; for the PRISMA-IPD Development Group Editorial page 1625 IMPORTANCE Systematic reviews and meta-analyses of individual participant data (IPD) aim Supplemental content at to collect, check, and reanalyze individual-level data from all studies addressing a particular jama.com research question and are therefore considered a gold standard approach to evidence synthesis. They are likely to be used with increasing frequency as current initiatives to share clinical trial data gain momentum and may be particularly important in reviewing controversial therapeutic areas. OBJECTIVE To develop PRISMA-IPD as a stand-alone extension to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) Statement, tailored to the specific requirements of reporting systematic reviews and meta-analyses of IPD. Although developed primarily for reviews of randomized trials, many items will apply in other contexts, including reviews of diagnosis and prognosis. DESIGN Development of PRISMA-IPD followed the EQUATOR Network framework guidance and used the existing standard PRISMA Statement as a starting point to draft additional relevant material. A web-based survey informed discussion at an international workshop that included researchers, clinicians, methodologists experienced in conducting systematic reviews and meta-analyses of IPD, and journal editors. The statement was drafted and iterative refinements were made by the project, advisory, and development groups. The PRISMA-IPD Development Group reached agreement on the PRISMA-IPD checklist and flow diagram by consensus. -
Title: a TRANSMISSION-VIRULENCE EVOLUTIONARY TRADE-OFF
1 Title: A TRANSMISSION-VIRULENCE EVOLUTIONARY TRADE-OFF EXPLAINS 2 ATTENUATION OF HIV-1 IN UGANDA 3 Short title: EVOLUTION OF VIRULENCE IN HIV 4 François Blanquart1, Mary Kate Grabowski2, Joshua Herbeck3, Fred Nalugoda4, David 5 Serwadda4,5, Michael A. Eller6, 7, Merlin L. Robb6,7, Ronald Gray2,4, Godfrey Kigozi4, Oliver 6 Laeyendecker8, Katrina A. Lythgoe1,9, Gertrude Nakigozi4, Thomas C. Quinn8, Steven J. 7 Reynolds8, Maria J. Wawer2, Christophe Fraser1 8 1. MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease 9 Epidemiology, School of Public Health, Imperial College London, United Kingdom 10 2. Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, 11 Baltimore, MD, USA 12 3. International Clinical Research Center, Department of Global Health, University of 13 Washington, Seattle, WA, USA 14 4. Rakai Health Sciences Program, Entebbe, Uganda 15 5. School of Public Health, Makerere University, Kampala, Uganda 16 6. U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, 17 MD, USA 18 7. Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA 19 8. Laboratory of Immunoregulation, Division of Intramural Research, National Institute of 20 Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA 21 9. Department of Zoology, University of Oxford, United Kingdom 22 23 Abstract 24 Evolutionary theory hypothesizes that intermediate virulence maximizes pathogen fitness as 25 a result of a trade-off between virulence and transmission, but empirical evidence remains scarce. 26 We bridge this gap using data from a large and long-standing HIV-1 prospective cohort, in 27 Uganda. -
Catalogue of Clinical Trials and Cohort Studies to Identify Biological
Catalogue of clinical trials and cohort studies to identify biological specimens of relevance to the development of assays for acute and early HIV infection: Final Report Catalogue of clinical trials and cohort studies to identify biological specimens of relevance to the development of assays for recent HIV infection Final Report February 2010 This final report was prepared by Dr Joanne Micallef and Professor John Kaldor, The University of New South Wales, under subcontract with Family Health International, funded by the Bill and Melinda Gates Foundation under the grant titled “Development of Assays for Acute HIV Infection and Estimation and HIV Incidence in Population”. 1 Catalogue of clinical trials and cohort studies to identify biological specimens of relevance to the development of assays for acute and early HIV infection: Final Report Table of Contents Table of Contents .................................................................................................................................................................... 2 List of acronyms ...................................................................................................................................................................... 4 1 Introduction ..................................................................................................................................................................... 6 2 Methods ............................................................................................................................................................................ -
Diagnostic Accuracy of a Host Response Point-Of-Care Test In
medRxiv preprint doi: https://doi.org/10.1101/2020.05.27.20114512; this version posted June 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Diagnostic accuracy of a host response point-of-care test in patients with suspected COVID-19 Tristan W Clark1,2,3,4*, Nathan J Brendish1, 2, Stephen Poole1,2,3, Vasanth V Naidu2, Christopher Mansbridge2, Nicholas Norton2, Helen Wheeler3, Laura Presland3 and Sean Ewings5 1. School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK 2. Department of Infection, University Hospital Southampton NHS Foundation Trust, Southampton, UK. 3. NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK 4. NIHR Post Doctoral Fellowship Programme, UK 5. Southampton Clinical Trials Unit, University of Southampton, UK *Corresponding author Dr Tristan William Clark, Associate Professor and Consultant in Infectious Diseases. NIHR Post Doctoral Fellow. Address: LF101, South Academic block, Southampton General Hospital, Southampton, SO16 6YD. Tel: 0044(0)23818410 E-mail address: [email protected] 1 NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.05.27.20114512; this version posted June 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. -
Clinical Trial Design and Clinical Trials Unit
Clinical trial design and Clinical Trials Unit Nina L. Jebsen, MD, PhD Centre for Cancer Biomarkers, University of Bergen Centre for Bone- and Soft Tissue Tumours, Haukeland University Hospital Outline • Why clinical studies? • Preconditions • Principles • Types of clinical trials • Different phases in clinical trials • Design of clinical trials – Basket design – Enrichment design – Umbrella design – Marker-based strategy design – Adaptive design • Clinical Trials Unit • CTU, Haukeland University Hospital Why clinical studies? • Control/optimize an experimental process to – reduce errors/bias = internal validity/credibility – reduce variability = external validity/reproducibility – QA data collection settings = model validity/design • Understand the biological chain of events that lead to disease progression and response to intervention • Simplify and validate statistical data analysis • Generate evidence for effect of a specific treatment . in a specific population • Results extrapolated for standard clinical use . • Necessary (Phase III) for drug approval • Take into account ethical issues Preconditions • Access to patients (be realistic) • Approvals by legal authorities • Accept from local hospital department • Adequate resources/financial support • Infrastructure • Necessary equipment • Experienced personnel • Well-functioning routines • Study-team with mutual understanding of all implications Study population vs clinical practice • Age – study patients often younger • Performance status – study patients better performance status -
Development and Validation of the 4AT: a New Rapid Screening Tool for Delirium
Development and validation of the 4AT: a new rapid screening tool for delirium REC no. Scotland 15/SS/0071 England 15/YH/0317 R&D no. Edinburgh 2015/0347 Sheffield 18021 Bradford 1949 International Standard Randomised Controlled Trial Number: ISRCTN 53388093 UK Clinical Research Network: ID 19502 Funding Acknowledgement: This project was funded by the National Institute for Health Research Health Technology Assessment Programme (project number 11/143/01) Chief Investigator Professor Alasdair MacLullich Professor of Geriatric Medicine Edinburgh Delirium Research Group Geriatric Medicine Unit University of Edinburgh Room F1424 Royal Infirmary of Edinburgh 51 Little France Crescent Edinburgh EH16 4TJ tel +44 (0) 131 242 6481 fax +44 (0) 131 242 6370 4AT Study Protocol Version 5, 28th July 2015 Page 1 of 29 Co-investigator and Collaborators Christopher Fox, Reader in Psychiatry and Honorary Consultant in Old Age Psychiatry, University of East Anglia Mary Godfrey, Reader in Health and Social Care, Institute of Health Sciences, University of Leeds Najma Siddiqi, Consultant Psychiatrist, Bradford District NHS Care Trust, and Clinical Senior Lecturer, University of York Steve Goodacre, Professor of Emergency Medicine, School of Health and Related Research, University of Sheffield John Young, Professor of Elderly Care Medicine, Academic Unit of Elderly Care and Rehabilitation, University of Leeds Atul Anand, Clinical Research Fellow (Cardiovascular Sciences and Geriatric Medicine), University of Edinburgh Susan Shenkin, Clinical Senior Lecturer -
Understanding Clinical Trials and Research a Guide for People Affected by Cancer
Understanding Clinical Trials and Research A guide for people affected by cancer Practical and support information For information & support, call Understanding Clinical Trials and Research A guide for people affected by cancer First published April 2012. This edition July 2018. © Cancer Council Australia 2018. ISBN 978 1 925651 28 7 Understanding Clinical Trials and Research is reviewed approximately every 3 years. Check the publication date above to ensure this copy is up to date. Editor: Ruth Sheard. Designer: Paula Marchant. Printer: SOS Print + Media Group. Acknowledgements This edition has been developed by Cancer Council NSW on behalf of all other state and territory Cancer Councils as part of a National Cancer Information Working Group initiative. We thank the reviewers of this booklet: A/Prof Andrew Redfern, Consultant Medical Oncologist, Fiona Stanley Hospital, Clinical Academic Oncologist, The University of Western Australia, and Lead Clinician, State Breast Cancer Collaborative, WA; Christie Allan, Program Coordinator – Clinical Trials, Cancer Council Victoria; Bronwyn Chalmers, Clinical Trial Coordinator, Westmead Breast Cancer Institute, NSW; Sarah Coulson, Coordinator, Oncology Clinical Trials, Projects and Research, Tasmanian Health Service, TAS; Kate Cox, 13 11 20 Consultant, Cancer Council SA; Annette Cubitt, Clinical Trials Manager, Department of Medical Oncology, Cancer Care Services, Royal Brisbane and Women’s Hospital, QLD; Pete Currie, Consumer; Amy Ives, Clinical Trials Coordinator, Department of Medical Oncology, -
Epidemiologic Study Designs
Epidemiologic Study Designs Jacky M Jennings, PhD, MPH Associate Professor Associate Director, General Pediatrics and Adolescent Medicine Director, Center for Child & Community Health Research (CCHR) Departments of Pediatrics & Epidemiology Johns Hopkins University Learning Objectives • Identify basic epidemiologic study designs and their frequent sequence of study • Recognize the basic components • Understand the advantages and disadvantages • Appropriately select a study design Research Question & Hypotheses Analytic Study Plan Design Basic Study Designs and their Hierarchy Clinical Observation Hypothesis Descriptive Study Case-Control Study Cohort Study Randomized Controlled Trial Systematic Review Causality Adapted from Gordis, 1996 MMWR Study Design in Epidemiology • Depends on: – The research question and hypotheses – Resources and time available for the study – Type of outcome of interest – Type of exposure of interest – Ethics Study Design in Epidemiology • Includes: – The research question and hypotheses – Measures and data quality – Time – Study population • Inclusion/exclusion criteria • Internal/external validity Epidemiologic Study Designs • Descriptive studies – Seeks to measure the frequency of disease and/or collect descriptive data on risk factors • Analytic studies – Tests a causal hypothesis about the etiology of disease • Experimental studies – Compares, for example, treatments EXPOSURE Cross-sectional OUTCOME EXPOSURE OUTCOME Case-Control EXPOSURE OUTCOME Cohort TIME Cross-sectional studies • Measure existing disease and current exposure levels at one point in time • Sample without knowledge of exposure or disease • Ex. Prevalence studies Cross-sectional studies • Advantages – Often early study design in a line of investigation – Good for hypothesis generation – Relatively easy, quick and inexpensive…depends on question – Examine multiple exposures or outcomes – Estimate prevalence of disease and exposures Cross-sectional studies • Disadvantages – Cannot infer causality – Prevalent vs. -
Systematic Review of the Prospective Cohort Studies on Meat Consumption and Colorectal Cancer Risk: a Meta-Analytical Approach1
Vol. 10, 439–446, May 2001 Cancer Epidemiology, Biomarkers & Prevention 439 Systematic Review of the Prospective Cohort Studies on Meat Consumption and Colorectal Cancer Risk: A Meta-Analytical Approach1 Manjinder S. Sandhu,2 Ian R. White, and confounded or modified by other factors cannot be Klim McPherson excluded. Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Strangeways Research Laboratory, Cambridge, CB1 8RN [M. S. S.]; Medical Research Council Biostatistics Unit, Institute of Introduction Public Health, University of Cambridge, Cambridge, CB2 2SR [I. R. W.]; and The relation between meat consumption and colorectal cancer Cancer and Public Health Unit, London School of Hygiene and Tropical Medicine, London, WC1E 7HT [K. M.], United Kingdom risk remains controversial (1–10). Subsequent to the report of the National Academy of Sciences, “Diet and Health” (11), which implicated red meat as a causative factor in the etiology Abstract of colorectal cancer, two subsequent reports have reviewed the epidemiological evidence on meat and colorectal cancer risk (4, The relation between meat consumption and colorectal 3 cancer risk remains controversial. In this report, we 7). The report of the WCRF concluded: “The evidence shows quantitatively reviewed the prospective observational that red meat probably increases risk and processed meat pos- studies that have analyzed the relation between meat sibly increases risk of colorectal cancer” (7). The report from consumption and colorectal cancer. We conducted COMA judged that “there is moderately consistent evidence electronic searches of MEDLINE, EMBASE, and from cohort studies of a positive association between the con- CANCERLIT databases through to the end of June 1999 sumption of red or processed meat and risk of colorectal can- and manual searches of references from retrieved cer” (4).