Programme of the Conference

Total Page:16

File Type:pdf, Size:1020Kb

Programme of the Conference ! - CHANGES ISTC PROGRAMME ISTC “SAFETY ASSURANCE OF NPP WITH VVER” OKB «GIDROPRESS» Tel.: (+7495) 502-79-10, (+74967) 54-25-16 Fax: (+74967) 54-27-33, (+74967) 69-97-83 E-mail: [email protected] 21, Ordzhonikidze Street, Podolsk, Moscow region, 142103, RF May 21-24, 2019 2019 www.gidropress.podolsk.ru Podolsk, Russia THE CONFERENCE IS HELD WITH PARTICIPATION OF XI International Scientific and Technical Conference “SAFETY ASSURANCE OF NPP WITH VVER” PROGRAMME TECHNICAL SUPPORT INFORMATION SPONSORS May 21-24, 2019 OKB “GIDROPRESS” Podolsk, Russia The 11th International Scientific and Technical Conference May 21-24, 2019, Podolsk, Russia “Safety Assurance of NPP with VVER” SCHEDULE OF THE CONFERENCE SCHEDULE OF THE CONFERENCE 21 May (1st day) 24 May (4th day) 09.00 – 10.00 Registration of participants (entrance hall) 09.00 – 11.00 Presentation of section papers 10.00 – 10.20 Opening ceremony (conference hall) 11.00 – 11.20 Coffee break 10.20 – 11.20 Plenary session (conference hall) 11.20 – 13.00 Presentation of section papers 11.20 – 11.40 Coffee break 13.00 – 14.00 Lunch 11.40 – 13.00 Plenary session (conference hall) 14.00 – 15.00 Summarizing the Conference results. Closing ceremony 13.00 – 14.30 Lunch (conference hall) 14.30 – 15.50 Plenary session (conference hall) 15.50 – 16.10 Coffee break Conference rules: presentation of paper (including questions) - 20 minutes. 16.10 – 18.10 Plenary session (conference hall) 18.20 Cheese-and-wine reception (canteen on the 2nd floor) 22 May (2nd day) 09.00 – 11.00 Presentation of section papers 11.00 – 11.20 Coffee break 11.20 – 12.40 Presentation of section papers 12.40 – 13.00 Presentation of poster papers (lobby of the conference hall) 13.00 – 14.00 Lunch 14.00 – 15.40 Presentation of section papers 15.40 – 16.00 Coffee break 16.00 – 18.00 Presentation of section papers 23 May (3rd day) 09.00 – 11.00 Presentation of section papers 11.00 – 11.20 Coffee break 11.20 – 13.00 Presentation of section papers 13.00 – 14.00 Lunch 14.00 – 15.40 Presentation of section papers 15.40 – 16.00 Coffee break OKB “GIDROPRESS” 2019 OKB “GIDROPRESS” 16.00 – 18.00 Presentation of section papers Schedule of the conference 4 5 The 11th International Scientific and Technical Conference May 21-24, 2019, Podolsk, Russia “Safety Assurance of NPP with VVER” PLENARY SESSION SPEAKERS Vladimir RAZIN First Deputy Director General on Business Operations, JSC “Atomenegromash”. Vladimir ASMOLOV Graduated from the Bauman Moscow Higher Technical School. Adviser of Director General of State Atomic Energy Corporation The key milestones of his labour activities “Rosatom”, DSc (Eng), Professor. Deputy Chairman of the Rosatom STB Presidium. 1979–2005 - Vladimir Razin worked at Elektrostal Machine-Building Plant (OJSC TVEL), positions: from the developer of the main design Graduated from the Moscow Power Engineering Institute (MPEI). documentation up to Director General. An author of more than 200 scientific articles and monographs. 2005–2009 - Director General at Novosibirsk Chemical Concentrates Scientific activity Plant (OJSC TVEL). Nuclear power engineering, safety of nuclear power engineering, 2009–2012 - Director for development, OJSC Energopromservice, study of severe accidents at NPP, thermal-and-physical properties Elektrostal. of substances, thermohydraulics and heat transfer in nuclear power Since 2012 Vladimir Razin has been working for Atomenergomash. installations. Scientific and social activities Chairman of STB “Nuclear reactors and nuclear power engineering” of the State Corporation “Rosatom”. Chairman of STB of JSC “Concern Rosenergoatom”. Member of the Board of Nuclear Society of Russia. Jozef MISAK Member of international nuclear safety advisers group (INSAG) Vice-president for Strategy, Dr., Czech Technical University, Faculty of under IAEA Director General. Nuclear Science and Engineering, UJV Řež, a.s., Czech Republic. Scientific activity Development and application of safety assessment tools applicable in design and operation of NPPs, in development of IAEA Safety Standards. Management and coordination of nuclear safety matters Alexander SHUTIKOV in connection with major projects of the institute nationally and First Deputy Director General, JSC “Concern Rosenergoatom”. internationally. Candidate of Technical Sciences. Scientific and social activities Graduated from the Tomsk Polytechnic Institute. A member of President’s Council for Nuclear Energy Safety of The key milestones of his labour activities Armenia. 1984–1987 - an engineer for production management at A member of Nuclear Safety Council of the Slovak Nuclear Krasnoyarsk Mining and Chemical Complex. Regulatory Authority. A member of State Examining Commission and of the Commission 1987–1991 - a senior reactor control engineer, reactor department for PhD Degrees of the Faculty of Electrical Engineering of the shift supervisor, Khmelnitsky NPP Unit shift supervisor. 1991–2009 - a Shift Supervisor at the Concern “Rosenergoatom” Slovak Technical University. branch Balakovo NPP, Deputy Chief Engineer for operation and A member of Board of Directors of the Center for Reactor afterwards - the Chief Engineer at Balakovo NPP. Information, Argonne, USA. 2009–2015 - the First Deputy Director for NPP production and A member of Governing Board of the European Sustainable Nuclear operation, Deputy Director General - Director for NPP production Energy Technology Platform. and operation at the Concern “Rosenergoatom”. A member of the Board of the European Stress Tests Peer Review On the 6th of April 2015 Alexander SHUTIKOV was appointed to and Topic leader for Severe Accident Management. the position of the First Deputy Director General of the Concern A member of Slovak Nuclear Society. “Rosenergoatom”. A member of the Presidium of Slovak Nuclear Forum. OKB “GIDROPRESS” 2019 OKB “GIDROPRESS” Plenary session speakers 6 7 The 11th International Scientific and Technical Conference May 21-24, 2019, Podolsk, Russia “Safety Assurance of NPP with VVER” Francesco D’AURIA Vladimir PIMINOV Full Professor, Prof. PHD, University of Pisa, Italy Designer General at OKB “GIDROPRESS”. The key milestones of his labour activities Graduated from the Bauman Moscow Higher Technical School. 1978 - MSc in Nuclear Engineering, University of Pisa. An author of more than 100 scientific articles and several patents. 1980 - PHD in Nuclear Reactor Safety, University of Pisa. Scientific activity Since 1980 - Assistant professor at University of Rome. Nuclear power engineering, strength and service life of critical Since 1990 - Associate professor at University of Rome. equipment and pipelines at NPPs. Since 2000 till now – Full professor at University of Pisa. Scientific and social activities Scientific and social activities IAEA expert. ANS member, member of working groups at EC, IAEA and Participation in many international programs on analysis and OECD/NEA, CSNI. validation of VVER reactor vessel service life under irradiation. Foreign Member of Argentinean Academy of Science in Buenos Development of annealing process to extend the reactor vessel Aires (Argentina). service life; material science studies of vessel steels to specify the Founder and Editor in Chief of the Journal Science and Technology models of their radiation-induced embrittlement. of Nuclear Installations (STNI). Elaboration and introduction of up-to-date methods for calculation General Chair of ANS NURETH-15 Conference in Pisa (Italy) 2013 and analyses of reactor vessels for brittle fracture resistance. of ENS TopSafe Conferences in Dubrovnik (Croatia) 2008, Helsinki Creation of new vessel steels. (Finland) 2012, and Vienna (Austria) 2017. Editor and key Author of the Elsevier Book “Thermal Hydraulics of Water Cooled Nuclear Reactors”. Ivo KOUKLIK Nuclear Island Director, Fennovoima Oy, Finland The key milestones of his labour activities October 2014 - present – Nuclear Island Director, Fennovoima. October 2011- September 2014 – Vice President at RUSATOM OVERSEAS. Pal VINCZE 2011-IAEA consultant. 2009-2011 – Chairman of the Board at CEZ Bohunice, New Nuclear Power MSc., Head of Nuclear Power Engineering Section, the Department of Plant Build Project Manager and Technical Director, JESS Board Vice Nuclear Energy, the International Atomic Energy Agency. Chairman, CEZ. Graduated from the Leningrad Polytechnic Institute, Russia. 2006-2009 – New CEZ Nuclear Power Plant Build Projects Director, CEZ. 2008 – Technical leader for the due diligence process in Cerna Voda Scientific activity NPP(Romania) and in Belene NPP (Bulgaria), CEZ. Experience in manufacturing and construction of nuclear mechanical 2003-2007 – a Member of the Czech State Radioactive Waste Agency Board equipment, operations, maintenance, outage management, quality 2004-2006 – Engineering Division Director, CEZ. 2004 – Nuclear Division Safety Director, CEZ. control, QA/QC and management systems. 1986-2003 – Dukovany NPP, from Unit 3 Shift Supervisor to Dukovany NPP Scientific and social activities Station Director, CEZ. Co-ordinated all FORATOM activities concerning comparison of Scientific and social activities IAEA and ISO documents on QA. Expert of IAEA missions – OSART, ASSET, PROSPER - and WANO Participated in development of IAEA documents from 1987: 50-C-Q/ missions, IAEA consultant for newcomers countries new build SG-Q1-Q14; TECDOC-1182, - “Comparison between ISO9000:1994 programs. and IAEA Code and Guides on Quality Assurance”. 30 years of first-hand experience of pressurize water nuclear Organizer and workshop co-director of 10 IAEA
Recommended publications
  • E-Mail: [email protected]
    ATOMENERGOMASH JSC Nuclear and Power Engineering Address: 28/3 Ozerkovsakaya nab., Moscow, 115184 Telephone: +7(495) 668-20-93 Fax: +7(495) 668-20-95 Website: http://www.aem-group.ru/en/ E-mail: [email protected] www.aem-group.ru/en/ 3 JSC Atomenergomash ABOUT US Аtomenergomash JSC (AEM, Сompany, Group) is a machine building division of ROSATOM State Atomic Energy Corporation. One of the leading Russian power engineering companies, a supplier of efficient integrated solutions for nuclear and thermal power plants, natural gas and petrochemical industry, shipbuilding, hydroelectricity, demineralization, water treatment, water purification and special steel market. FIGURES AND FACTS ATOMENERGOMASH • The key developer and equipment manu- • AEM was established in 2006 as part of facturer for the reactor facility of the ROSATOM State Atomic Energy Corporation. water-water energetic reactor (VVER). • The Holding includes about 20 • The key developer and equipement man- power engineering companies, R&D, ufacturer of fast nuclear reactors (FNR). manufacturing, construction and • Equipment manufacturer for the turbine construction companies located in Russia, island of NPP with VVER. Ukraine, the Czech Republic, and Hungary. • The only Russian manufacturer of steam • The Holding’s equipment is installed in generators and main circulation pumps more than 20 countries. for Russian-built NPPs. • 14% of global Nuclear Power Plants (NPP) • The key developer and manufacturer of and 40% of Thermal Power Plants (TPP) marine reactor plants for the Navy and in Russia and the former Soviet Union nuclear icebreakers. countries run our equipment. • One of the largest manufacturers of power plant boilers and Heat Recovery Steam Generator (HRSG) for medium and large Combined Cycle Gas Turbine (CCGT) units.
    [Show full text]
  • Report of JSC Atomenergomash
    JSC ATOMENERGOMASH 2016 INTEGRATED ANNUAL REPORT ar2016.aem-group.ru JSC Atomenergomash provides access to the integrated interactive version of the annual report for 2016 for its stakeholders. This product allows easy information presentation of the main annual results of the Company, as well as the access to additional data, which was not included in the print version in a analysis-friendly format. i – Links to online version GRI – GRI indicators Approved by the Board of Directors on May 26, 2017 Preliminarily approved by the Chief Executive Officer on May 19, 2017 Chief Executive Officer Andrey Nikipelov JSC ATOMENERGOMASH THE COMPANY IN BRIEF Contents 10 YEARS OF PROGRESS ............................................................................................................................4 THE COMPANY IN BRIEF ..............................................................................................................................6 6. ENVIRONMENTAL IMPACT ...................................................................................................................66 2016 PERFORMANCE HIGHLIGHTS ............................................................................................................8 6.1. Ecological management ................................................................................................................................................................................................66 6.2. Emissions and Wastes .....................................................................................................................................................................................................70
    [Show full text]
  • Small Modular Reactor Design and Deployment
    INL/MIS-15-34247 Small Modular Reactor Design and Deployment Curtis Wright Symposium xx/xx/xxxx www.inl.gov INL SMR Activities • INL works with all vendors to provide fair access to the laboratory benefits • INL works with industry on SMR technology and deployment • INL is supporting multiple LWR SMR vendors – Small, <300MWe reactors and less expensive reactors compared to current LWR reactors (Small) – Often, but not always, multiple reactors at the same site that can be deployed as power is needed (Modular) – Primary cooling system and reactor core in a single containment structure, but not always (Reactors) – Factory built, usually, which improves quality and costs • Integrated PWR SMR’s are closest to deployment – designed to be inherently safer and simple – primary reactor system inside a single factory built containment vessel – Higher dependence on passive systems to simplify operation and design Reactor Power Nuclear Plant Power Los Angeles Class Submarine -26 MW 5000 Enterprise Class Aircraft Carrier 8x 4000 Unit Power Nimitz Class Aircraft Carrier 2x97MW, 194MW 3000 Plant Power NuScale Reactor 12 x 150MW, 1800MW 2000 Cooper BWR, 1743MW PowerThermal MW 1000 Westinghouse AP-1000, 3000MW 0 European Pressurized Reactor, 4953MW SMRs are Smaller VC Summer • Power less than 300MWe. Dearater – Current Plants 1000MWe – Physically smaller – Fewer inputs – Fits on power grid with less infrastructure – Built in a factory – Simplified designs VC Summer • Passive systems Core • Fewer components NuScale Reactor Multiple Units • SMR Nuclear
    [Show full text]
  • Annual Report JSC CONCERN ROSENERGOATOM for 2009
    Annual Report JSC CONCERN ROSENERGOATOM FOR 2009 Safety Effi ciency Responsibility Safety Effi ciency Responsibility JSC Concern Rosenergoatom Annual report for 2009 Content I. GENERAL INFORMATION 1. Preamble 7 1.1. On the Annual Report 7 2. Statements of top management of Rosenergoatom 8 2.1. Statement of the Chairman of the Board of Directors of Rosenergoatom 8 2.2. Statement of the General Director of Rosenergoatom 9 3. General information on Rosenergoatom 10 4. Key corporate events in 2009 11 5. Mission of Rosenergoatom 13 6. Management 13 6.1. Management structure 13 6.2. Management methods and corporate policy 24 II. CORE BUSINESS 7. Strategy 29 7.1. Positions of Rosenergoatom within the industry 29 7.2. Strategy of Rosenergoatom 30 7.3. Rosenergoatom’s medium-term development objectives and tasks (2009–2011) 30 7.4. Key performance indicators of Rosenergoatom 31 7.5. Key risks associated with Rosenergoatom’s operations 31 8. Rosenergoatom. Facts and fi gures 32 8.1. Generating capacities of Rosenergoatom 34 8.2. Electricity generation at Russian NPPs 44 8.3. Maintenance and repairs 45 8.4. Lifetime extension of NPP units 46 8.5. Production growth program 46 8.6. Construction of new power units 47 9. Priority areas of operations of Rosenergoatom 49 9.1. Production and marketing activities of Rosenergoatom 49 9.2. Investments 50 9.3. Innovation and competitive growth 50 III. CORPORATE RESPONSIBILITY 10. Safety 53 10.1. Safety indicators 53 10.2. Ensuring nuclear and radiation safety and non-proliferation of nuclear materials 55 4 JSC Concern Rosenergoatom 10.3.
    [Show full text]
  • Tokamak Foundation in USSR/Russia 1950--1990
    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014003 (8pp) doi:10.1088/0029-5515/50/1/014003 Tokamak foundation in USSR/Russia 1950–1990 V.P. Smirnov Nuclear Fusion Institute, RRC ’Kurchatov Institute’, Moscow, Russia Received 8 June 2009, accepted for publication 26 November 2009 Published 30 December 2009 Online at stacks.iop.org/NF/50/014003 In the USSR, nuclear fusion research began in 1950 with the work of I.E. Tamm, A.D. Sakharov and colleagues. They formulated the principles of magnetic confinement of high temperature plasmas, that would allow the development of a thermonuclear reactor. Following this, experimental research on plasma initiation and heating in toroidal systems began in 1951 at the Kurchatov Institute. From the very first devices with vessels made of glass, porcelain or metal with insulating inserts, work progressed to the operation of the first tokamak, T-1, in 1958. More machines followed and the first international collaboration in nuclear fusion, on the T-3 tokamak, established the tokamak as a promising option for magnetic confinement. Experiments continued and specialized machines were developed to test separately improvements to the tokamak concept needed for the production of energy. At the same time, research into plasma physics and tokamak theory was being undertaken which provides the basis for modern theoretical work. Since then, the tokamak concept has been refined by a world-wide effort and today we look forward to the successful operation of ITER. (Some figures in this article are in colour only in the electronic version) At the opening ceremony of the United Nations First In the USSR, NF research began in 1950.
    [Show full text]
  • State Atomic Energy Corporation Rosatom Performance in 2018
    State Atomic Energy Corporation Rosatom Performance in 2018 State Atomic Energy Corporation Rosatom Performance in 2018 PERFORMANCE OF STATE ATOMIC ENERGY CORPORATION ROSATOM IN 2018 2 3 TABLE OF CONTENTS Chapter 7. Development of the Northern Sea Route 94 7.1. ROSATOM's Powers Related to the Development and Operation 97 Report Profile 4 of the Northern Sea Route 7.2. Performance of the Nuclear-Powered Icebreaker Fleet 97 and Development of the Northern Sea Route Chapter 1. Our Achievements 6 About ROSATOM 9 Chapter 8. Effective Management of Resources 100 Key Results in 2018 10 Key Events in 2018 11 8.1. Corporate Governance 102 Address by the Chairman of the Supervisory Board 12 8.2. Risk Management 109 Address by the Director General 13 8.3. Performance of Government Functions 116 Address by a Stakeholder Representative 14 8.4. Financial and Investment Management 119 Financial and Economic Results 15 8.5. ROSATOM's Production System 126 8.6. Procurement Management 128 8.7. Internal Control System 132 Chapter 2. Strategy for a Sustainable Future 16 8.8. Prevention of Corruption and Other Offences 134 2.1. Business Strategy until 2030 18 2.2. Sustainable Development Agenda 23 Chapter 9. Development of Human Potential 136 2.3. Value Creation and Business Model 27 and Infrastructure Chapter 3. Contribution to Global Development 32 9.1. Implementation of the HR Policy 138 9.2. Developing the Regions of Operation 150 3.1. Markets Served by ROSATOM 34 9.3. Stakeholder Engagement 158 3.2. International Cooperation 44 3.3. International Business 52 Chapter 10.
    [Show full text]
  • A Comparison of Advanced Nuclear Technologies
    A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D MARCH 2017 B | CHAPTER NAME ABOUT THE CENTER ON GLOBAL ENERGY POLICY The Center on Global Energy Policy provides independent, balanced, data-driven analysis to help policymakers navigate the complex world of energy. We approach energy as an economic, security, and environmental concern. And we draw on the resources of a world-class institution, faculty with real-world experience, and a location in the world’s finance and media capital. Visit us at energypolicy.columbia.edu facebook.com/ColumbiaUEnergy twitter.com/ColumbiaUEnergy ABOUT THE SCHOOL OF INTERNATIONAL AND PUBLIC AFFAIRS SIPA’s mission is to empower people to serve the global public interest. Our goal is to foster economic growth, sustainable development, social progress, and democratic governance by educating public policy professionals, producing policy-related research, and conveying the results to the world. Based in New York City, with a student body that is 50 percent international and educational partners in cities around the world, SIPA is the most global of public policy schools. For more information, please visit www.sipa.columbia.edu A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D* MARCH 2017 *Andrew C. Kadak is the former president of Yankee Atomic Electric Company and professor of the practice at the Massachusetts Institute of Technology. He continues to consult on nuclear operations, advanced nuclear power plants, and policy and regulatory matters in the United States. He also serves on senior nuclear safety oversight boards in China. He is a graduate of MIT from the Nuclear Science and Engineering Department.
    [Show full text]
  • History of Radiation and Nuclear Disasters in the Former USSR
    History of radiation and nuclear disasters in the former USSR M.V.Malko Institute of Power Engineering National Academy of Sciences of Belarus Akademicheskaya Str.15, Minsk, 220 000, Republic of Belarus E-mail: [email protected] Abstracts. The report describes the history of radiation and nuclear accidents in the former USSR. These accidents accompanied development of military and civilian use of nuclear energy. Some of them as testing of the first Soviet nuclear, Kyshtym radiation accident, radiation contamination of the Karachai lake and the Techa river, nuclear accidents at the Soviet submarine on August 10, 1985 in the Chazhma Bay (near Vladivostok) as well as nuclear accidents on April 26, 1986 at the Chernobyl NPP were of large scale causing significant radiological problems for many hundreds thousands of people. There were a number of important reasons of these and other accidents. The most important among them were time pressure by development of nuclear weapon, an absence of required financial and material means for adequate management of problems of nuclear and radiation safety, and inadequate understanding of harmful interaction of ionizing radiation on organism as well as a hypersecrecy by realization of projects of military and civilian use of nuclear energy in the former USSR. Introduction. The first nuclear reactor in the USSR reached the critical state on the 25 December 1946 [1] or 4 years later than reactor constructed by Enrico Fermi [2]. The first Soviet reactor was developed at the Laboratory N2 in Moscow (later I.V.Kurchatov Institute of Atomic Energy). This was a very important step in a realization of the Soviet military atomic program that began in September 1942.
    [Show full text]
  • 2014 Integrated Annual Report Jsc Atomenergomash Capacity Building
    Capacity building 2014 INTEGRATED ANNUAL REPORT Short version 2014 INTEGRATED ANNUAL REPORT JSC ATOMENERGOMASH CAPACITY BUILDING THE COMPANY IN BRIEF ............................................................................ 2 2014 PERFORMANCE HIGHLIGHTS ........................................................... 3 KEY EVENTS IN 2014 ................................................................................... 4 MESSAGE FROM COMPANY MANAGEMENT ............................................. 6 BUSINESS MODEL .................................................................................... 12 BUSINESS GEOGRAPHY ........................................................................... 16 KEY PROJECTS .......................................................................................... 18 STRATEGIC VISION AND OBJECTIVES ..................................................... 19 ECONOMIC PERFORMANCE .................................................................... 20 COMMERCIAL ACTIVITIES ........................................................................ 22 INNOVATION ACTIVITIES .......................................................................... 23 ar2014.aem-group.ru RESULTS OF PRODUCTION ACTIVITIES .................................................. 24 OPTIMIZATION OF PRODUCTION PROCESSES ....................................... 25 JSC Atomenergomash provides access to the integrated interactive ENVIRONMENTAL IMPACT ....................................................................... 26 version of the annual
    [Show full text]
  • 1 Looking Back at Half a Century of Fusion Research Association Euratom-CEA, Centre De
    Looking Back at Half a Century of Fusion Research P. STOTT Association Euratom-CEA, Centre de Cadarache, 13108 Saint Paul lez Durance, France. This article gives a short overview of the origins of nuclear fusion and of its development as a potential source of terrestrial energy. 1 Introduction A hundred years ago, at the dawn of the twentieth century, physicists did not understand the source of the Sun‘s energy. Although classical physics had made major advances during the nineteenth century and many people thought that there was little of the physical sciences left to be discovered, they could not explain how the Sun could continue to radiate energy, apparently indefinitely. The law of energy conservation required that there must be an internal energy source equal to that radiated from the Sun‘s surface but the only substantial sources of energy known at that time were wood or coal. The mass of the Sun and the rate at which it radiated energy were known and it was easy to show that if the Sun had started off as a solid lump of coal it would have burnt out in a few thousand years. It was clear that this was much too shortœœthe Sun had to be older than the Earth and, although there was much controversy about the age of the Earth, it was clear that it had to be older than a few thousand years. The realization that the source of energy in the Sun and stars is due to nuclear fusion followed three main steps in the development of science.
    [Show full text]
  • Citizen Scientist: Frank Von Hippel's Adventures in Nuclear Arms Control
    JOURNAL FOR PEACE AND NUCLEAR DISARMAMENT https://doi.org/10.1080/25751654.2019.1698504 Citizen Scientist: Frank von Hippel’s Adventures in Nuclear Arms Control PART 2. Engaging with nuclear-weapons policy Frank von Hippel and Tomoko Kurokawa ABSTRACT ARTICLE HISTORY This section covers von Hippel’s first engagement with nuclear- Received 11 September 2019 weapons issues, starting with a review of a US Secretary of Defense’s Accepted 26 November 2019 fi claim that a Soviet nuclear rst strike on US nuclear weapons would kill KEYWORDS – ff only 15,000 25,000 people, through his e orts to revive the proposal Limited nuclear war; spent for a treaty to ban the production of more plutonium and highly- fuel reprocessing; nuclear- enriched uranium for nuclear weapons, and ending with the begin- weapons freeze movement; ning of a collaboration with a group of Gorbachev’s advisors to end the automobile energy Cold War. It also includes his and his colleagues’ engagement in the efficiency; fissile material successful effort to end the US government’s promotion of of a nuclear production cutoff weapons material, plutonium, as a nuclear fuel, and a failed effort to require the doubling of the average fuel efficiency of US automobiles. Limited Nuclear War Tomoko Kurakawa (TK): Before you left the National Research Council in 1975, did you do any work related to nuclear-weapon policy? Frank von Hippel (FvH): I did. It related to the new 10-warhead MX intercontinental ballistic missile1 that then Secretary of Defense James Schlesinger was promoting. Schlesinger presented his arguments to the Senate Foreign Affairs Committee in March 1974.
    [Show full text]
  • Some Methods for Calculation of Perturbations in Nuclear Reactors the Monte Carlo Estimation of the Effect of Uncertainties in T
    Abstracts Journal “Problems of Nuclear Science and Engineering. Series: Physics of Nuclear Reactors” issue No.4, 2014 UDC 519.6: 621.039.51 Some Methods for Calculation of Perturbations in Nuclear Reactors B.D. Abramov FSUE “SSC RF-IPPE”, 1, Bondarenko Sq., Obninsk, Kaluga Region, 249033 Some methods for calculation of local perturbations of neutrons fields and effects of reactivity accompany- ing them in nuclear reactors are developed. Theorems of existence and uniqueness of the solutions are estab- lished, schemes of numerical realization of offered methods are brought. Key Words: Neutron Transport Theory, Perturbations Theory, Reactivity Effects in Nuclear Reactors. UDC 621.039 The Monte Carlo Estimation of the Effect of Uncertainties in the Input Data for the Transport Equation Solving by the MCU Code D.S. Oleynik NRC “Kurchatov Institute”, 1, Kurchatov Sq., Moscow, 123182 Direct taking into account the initial data uncertainty is realized in the new version of tally module of the MCU code. This approach is recommended by international standard “A Guide to Expression of Uncertainty in Measurement” (ISO 13005). The new module allows calculating the effect of uncertainties in input quantities for neutron characteristics of core. These uncertainties are usually caused by technological tolerances. Devel- oped code is adapted to parallel computing that drastically decreases calculation time. Testing is performed by means of a simplified model of the Godiva bare-sphere critical experiment and infinite lattices of vari- ous fuel assemblies (VVER-440, VVER-1000 and VVER-1200). The results of calculation is com- pared with published MCNP5 ones (for Godiva experiment) and with RADAR engineering code ones.
    [Show full text]