AC B1678 CN 622.8222 SPO 1976 DA 1976 T1 Spontaneous
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
~ Coal Mining in Canada: a Historical and Comparative Overview
~ Coal Mining in Canada: A Historical and Comparative Overview Delphin A. Muise Robert G. McIntosh Transformation Series Collection Transformation "Transformation," an occasional paper series pub- La collection Transformation, publication en st~~rie du lished by the Collection and Research Branch of the Musee national des sciences et de la technologic parais- National Museum of Science and Technology, is intended sant irregulierement, a pour but de faire connaitre, le to make current research available as quickly and inex- plus vite possible et au moindre cout, les recherches en pensively as possible. The series presents original cours dans certains secteurs. Elle prend la forme de research on science and technology history and issues monographies ou de recueils de courtes etudes accep- in Canada through refereed monographs or collections tes par un comite d'experts et s'alignant sur le thenne cen- of shorter studies, consistent with the Corporate frame- tral de la Societe, v La transformation du CanadaLo . Elle work, "The Transformation of Canada," and curatorial presente les travaux de recherche originaux en histoire subject priorities in agricultural and forestry, communi- des sciences et de la technologic au Canada et, ques- cations and space, transportation, industry, physical tions connexes realises en fonction des priorites de la sciences and energy. Division de la conservation, dans les secteurs de: l'agri- The Transformation series provides access to research culture et des forets, des communications et de 1'cspace, undertaken by staff curators and researchers for develop- des transports, de 1'industrie, des sciences physiques ment of collections, exhibits and programs. Submissions et de 1'energie . -
Mine Rescue Team Training: Metal and Nonmetal Mines (MSHA 3027, Formerly IG 6)
Mine Rescue Team Training Metal and Nonmetal Mines U.S. Department of Labor Mine Safety and Health Administration National Mine Health and Safety Academy MSHA 3027 (Formerly IG 6) Revised 2008 Visit the Mine Safety and Health Administration website at www.msha.gov CONTENTS Introduction Your Role as an Instructor Overview Module 1 – Surface Organization Module 2 – Mine Gases Module 3 – Mine Ventilation Module 4 – Exploration Module 5 – Fires, Firefighting, and Explosions Module 6 – Rescue of Survivors and Recovery of Bodies Module 7 – Mine Recovery Module 8 – Mine Rescue Training Activities Introduction Throughout history, miners have traveled underground secure in the knowledge that if disaster strikes and they become trapped in the mine, other miners will make every possible attempt to rescue them. This is the mine rescue tradition. Today’s mine rescue efforts are highly organized operations carried out by groups of trained and skilled individuals who work together as a team. Regulations require all underground mines to have fully-trained and equipped professional mine rescue teams available in the event of a mine emergency. MSHA’s Mine Rescue Instruction Guide (IG) series is intended to help your mine to meet mine rescue team training requirements under 30 CFR Part 49. The materials in this series are divided into self-contained units of study called “modules.” Each module covers a separate subject and includes suggestions, handouts, visuals, and text materials to assist you with training. Instructors and trainers may wish to use these materials to either supplement existing mine rescue training, or tailor a program to fit their mine-specific training needs. -
Gas Migration from Closed Coal Mines to the Surface. Risk Assessment Methodology and Prevention Means
Post-Mining 2005, November 16-17, Nancy, France 1 GAS MIGRATION FROM CLOSED COAL MINES TO THE SURFACE. RISK ASSESSMENT METHODOLOGY AND PREVENTION MEANS Zbigniew POKRYSZKA1, Christian TAUZIÈDE1 and Candice LAGNY1, Yves GUISE2, Rémy GOBILLOT2, Jean-Maurice PLANCHENAULT2, René LAGARDE2 1 INERIS, Parc Technologique ALATA - BP N°2 - 60550 Verneuil-en-Halatte – France; [email protected], [email protected]. 2 Charbonnages de France, 100 avenue Albert 1er - BP 220 - 92503 Rueil-Malmaison - France, [email protected], [email protected] ABSTRACT: French law as regards renunciation to mining concessions calls for the mining operator to first undertake analyses of the risks represented by their underground mining works. The problem of gas migration to the surface is especially significant in the context of coal mines. This is because mine gas can migrate to the earth's surface, then present significant risks: explosion, suffocation or gas poisoning risks. As part of the scheduled closure of all coal mining operations in France, INERIS has drawn up, at the request of national mining operator Charbonnages de France, a general methodology for assessing the risk linked to gas in the context of closed coal mines. This article presents the principles of this methodology. An application example based on a true case study is then described. This is completed by a presentation of the preventive and monitoring resources recommended and usually applied in order to manage the risk linked to gaseous emissions. KEYWORDS: gas, coal, mine, closure, risk. RESUME : La réglementation française en matière de renonciation aux concessions minières prévoit que l’exploitant minier réalise au préalable des analyses des risques présentés par ses travaux miniers souterrains. -
Coal Mine Methane Recovery: a Primer
Coal Mine Methane Recovery: A Primer U.S. Environmental Protection Agency July 2019 EPA-430-R-09-013 ACKNOWLEDGEMENTS This report was originally prepared under Task Orders No. 13 and 18 of U.S. Environmental Protection Agency (USEPA) Contract EP-W-05-067 by Advanced Resources, Arlington, USA and updated under Contract EP-BPA-18-0010. This report is a technical document meant for information dissemination and is a compilation and update of five reports previously written for the USEPA. DISCLAIMER This report was prepared for the U.S. Environmental Protection Agency (USEPA). USEPA does not: (a) make any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any apparatus, method, or process disclosed in this report may not infringe upon privately owned rights; (b) assume any liability with respect to the use of, or damages resulting from the use of, any information, apparatus, method, or process disclosed in this report; or (c) imply endorsement of any technology supplier, product, or process mentioned in this report. ABSTRACT This Coal Mine Methane (CMM) Recovery Primer is an update of the 2009 CMM Primer, which reviewed the major methods of CMM recovery from gassy mines. [USEPA 1999b, 2000, 2001a,b,c] The intended audiences for this Primer are potential investors in CMM projects and project developers seeking an overview of the basic technical details of CMM drainage methods and projects. The report reviews the main pre-mining and post-mining CMM drainage methods with associated costs, water disposal options and in-mine and surface gas collection systems. -
Explosibility of Coal Dust
DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEOKGE OTIS SMITH, DIRECTOR BULLETIN 425 THE EXPLOSIBILITY OF COAL DUST BY GEORGE S. RICE WITH CHAPTERS BX J. C. W. FRAZER, AXEL LARSEN, FRANK HAAS, AND CARL SCHOLZ WASHINGTON GOVERN M E N T P K I N T IN G OFFICE 1910 CONTENTS. Page. Introd uctory statement...................................... ............ 9 The coal-dust, problem................................................ 9 i Acknowledgments.................................................... 10 Historical review of the coal-dust question in Europe ....................... 11 Observations in England prior to 1850................................. 11 Observations by French engineers prior to 1890........................ 12 Experiments in England between 1850 and 1885........................ 12 Experiments in Prussia............................,.............:..... 14 Experiments in Austria between 1885 and 1891......................... 16 Views of English authorities between 1886 and 1908.................... 17 German, French, and Belgian stations for testing explosives............ 19 Altofts gallery, England, 1908......................................... 21 Second report of Royal Commission on Mines, 1909...................... 21 Recent Austrian experiments.......................................... 22 Historical review of the coal-dust question in the United States.............. 23 Grahamite explosions in West Virginia, 1871 and 1873.................. 23 Flour-mill explosion at Minneapolis, 1878............................. -
Flammable Gas Detection in Coal Mines – a Historical Perspective
FLAMMABLE GAS DETECTION IN COAL MINES – A HISTORICAL PERSPECTIVE Underground coal mines are dangerous places in which to work. This short article explores why, in part, this is so. It also provides conclusions that indicate how a study of one of the hazards encountered, namely flammable gas, and the associated control measures that were developed, may help reduce the risk to modern-day workers. These would not necessarily be coal miners, but workers in any enclosed environment where similar conditions could exist, e.g. tunnelling, confined spaces. It should be noted that the presence of flammable gas is only one of the hazards encountered in coal mines. Other significant hazards are associated with the industry, each with their own risks of death and injury. Naturally occurring hydrocarbon gases that appear in typically with deeper mines, the gas is trapped in the interstices underground coal mines have historically been given the of the coal, only to be released when the coal-bearing rocks are name “firedamp”, derived from the German word for vapour penetrated by tunnels. Here it mixes with the oxygen in the air - “dampf”. Its main component is methane, although other provided for miners to breathe, generating potentially flammable hydrocarbons can be present at lower concentrations. atmospheres. Methane is generated when organic material decays in the The rate of release of firedamp from coal can vary between mines absence of oxygen. In coal mines, it was produced during the and between locations in the same mine. Sometimes it is so low formation of the coal and then subsequently trapped within the that flammable atmospheres are only created if the surrounding strata. -
Part 5 Fires and Explosions
Part 5 Fires and Explosions Subsurface fires and explosions Malcolm J. McPherson CHAPTER 21. SUBSURFACE FIRES AND EXPLOSIONS 21.1 INTRODUCTION 2 21.1.1. The fire triangle and the combustion process 3 21.1.2. Classification of mine fires 4 21.2 CAUSES OF IGNITIONS 4 21.2.1. Mechanized equipment 4 21.2.2. Electrical apparatus 5 21.2.3. Conveyors 5 21.2.4. Other frictional ignitions 6 21.2.5. Explosives 7 21.2.6. Welding 7 21.2.7. Smoking and flame safety lamps 7 21.3. OPEN FIRES 7 21.3.1. Oxygen-rich and fuel-rich fires 8 21.3.2. Effects of fires on ventilation 9 21.3.2.1. The choke effect 9 21.3.2.2. The buoyancy (natural draft) effect 10 21.3.3. Methods of fighting open fires 11 21.3.3.1. Firefighting with water 12 21.3.3.2. High expansion foam 13 21.3.4. Control by ventilation 14 21.3.4.1. Pressure control 14 21.3.4.2. Airflow reversal 15 21.4. SPONTANEOUS COMBUSTION 17 21.4.1. The mechanisms of spontaneous combustion in minerals 17 21.4.1.1. The phases of oxidation 17 21.4.1.2. The effects of water vapour 18 21.4.1.3. The path of a spontaneous heating. 19 21.4.2. Susceptibility to spontaneous combustion 19 21.4.3. Precautions against spontaneous combustion 20 21.4.4. Detection of a spontaneous heating 23 21.4.5. Dealing with a spontaneous heating 24 21.4.5.1. -
Is Mine Water a Source of Hazardous Gas?
9th INTERNATIONAL MINE WATER CONGRESS Is mine water a source of hazardous gas? Jean Hall1, Dr Stephanie Glendinning1 and Professor Paul Younger2 1.School of Civil Engineering and Geosciences, University of Newcastle upon Tyne, Newcastle upon Tyne 2.Hydrogeochemical Engineering Research and Outreach (HERO), IRES, University of Newcastle upon Tyne, Newcastle upon Tyne E-mail: [email protected] Keywords: Mine gas; blackdamp; firedamp ABSTRACT Most coal and coal bearing strata contain significant quantities of gases. These gases are either potentially explosive in critical concentrations when mixed with air, others are toxic. Gases found in a mine are almost certainly a mixture of atmospheric air, inert gases, water vapour and one or more of the following: oxygen, carbon monoxide, methane, hydrogen sulphide, hydrogen and nitrous oxides. Gases such as “firedamp” and “blackdamp” may accumulate in poorly ventilated workings; these pose no threat provided they stay in the mine; however, gases can migrate through voids and strata and be emitted. All underground workings are affected by atmospheric pressure variations; mines can “breathe” over periods of rapid barometric pressure falls. Gas in confined underground atmospheres can come from three possible sources: desorption from exposed coal strata; exsolution from mine waters; and fossil gas trapped in pockets within the strata. Desorption from rock and exsolution from mine water are being quantified experimentally within coal measure strata at Caphouse Colliery in Yorkshire. This paper will present the findings to date and will conclude that mine water is a source of hazardous gas in mine atmospheres. INTRODUCTION Mine gases are as hazardous to the underground environment as they are to the surface environment. -
Instruction Guide Series IG7
Advanced Mine Rescue Training Coal Mines U.S. Department of Labor Mine Safety and Health Administration National Mine Health and Safety Academy Instruction Guide Series IG7 Revised 2 0 1 3 Visit the Mine Safety and Health Administration website at www.msha.gov CONTENTS Introduction Your Role as an Instructor Overview Module 1 – Surface Organization Module 2 – Mine Gases Module 3 – Mine Ventilation Module 4 – Exploration Module 5 – Fires, Firefighting, and Explosions Module 6 – Rescue of Survivors and Recovery of Bodies Module 7 – Mine Recovery Page Intentionally Left Blank Introduction Throughout history, miners have traveled underground secure in the knowledge that if disaster strikes and they become trapped in the mine, other miners will make every possible attempt to rescue them. This is the mine rescue tradition. Today’s mine rescue efforts are highly organized operations carried out by groups of trained and skilled individuals who work together as a team. Underground coal mine rescue team members must be trained according to the requirements under 30 CFR 49.18. Under Section 49.18(b)(4), this training must consist of advanced mine rescue training and procedures, as prescribed by MSHA's Office of Educational Policy and Development (EPD). This guide is designed to be used with the material in IG-7a, Advanced Skills Training, and both guides are needed to satisfy the advanced mine rescue training requirement. This guide is divided into self-contained units of study called “modules.” Each module covers a separate subject and includes suggestions, handouts, visuals, and text materials to assist you with training. Since regulations, policy and mining technology can change, be sure to check for information that could supersede this material. -
The Composition of Coalbed Gas
Report of Investigations 7762 The Composition of Coalbed Gas By Ann G. Kim Pittsburgh Mining and Safety Research Center, Pittsburgh, Pa. UNITED STATES DEPARTMENT OF THE INTERIOR Rogers C. B. Morton, Secretary BUREAU OF MINES Elburt F. Osborn, Director This publication has been cataloged as follows : * Kim, Ann G The composition of coalbed gas. [washington] U.S. Bureau of Mines [ 19731 9 p. tables. (US. Bureau of Mines. Report of investigations 7762) hcludes bibliography. 1. Gas. 2. Mine gases. L US. Bureau of Mines. 11. Title. Ill. Title: Coalbed gas. (Series) TN23.U7 no. 7762 622.06173 U.S. Dept. of the Int. Library CONTENTS Page Abstract ................................................................. Intrductim .............................................................. Gas in coal: Theory ..................................................... Procedures ............. ................................................... Gases in coal: Data ...................................................... Smv.................................................................. References ............................................................... TABLES 1. Coalbeds sampled ..................................................... 2 . Composition of gas from Pocahontas No . 3 coal ........................ 3 . Hydrocarbons from Pocahontas No . 3 coal ...... ........................ 4 . Composition of gas from Pittsburgh coal . ............................ 5 . Composition of gas from Kittanning coalbeds .......................... 6 . Cmposition of -
Carbon Dioxide - Wikipedia
5/20/2020 Carbon dioxide - Wikipedia Carbon dioxide Carbon dioxide (chemical formula CO2) is a colorless gas with Carbon dioxide a density about 60% higher than that of dry air. Carbon dioxide consists of a carbon atom covalently double bonded to two oxygen atoms. It occurs naturally in Earth's atmosphere as a trace gas. The current concentration is about 0.04% (412 ppm) by volume, having risen from pre-industrial levels of 280 ppm.[8] Natural sources include volcanoes, hot springs and geysers, and it is freed from carbonate rocks by dissolution in water and acids. Because carbon dioxide is soluble in water, it occurs naturally in groundwater, rivers and lakes, ice caps, glaciers and seawater. It is present in deposits of petroleum and natural gas. Carbon dioxide is odorless at normally encountered concentrations, but at high concentrations, it has a sharp and acidic odor.[1] At such Names concentrations it generates the taste of soda water in the Other names [9] mouth. Carbonic acid gas As the source of available carbon in the carbon cycle, atmospheric Carbonic anhydride carbon dioxide is the primary carbon source for life on Earth and Carbonic oxide its concentration in Earth's pre-industrial atmosphere since late Carbon oxide in the Precambrian has been regulated by photosynthetic organisms and geological phenomena. Plants, algae and Carbon(IV) oxide cyanobacteria use light energy to photosynthesize carbohydrate Dry ice (solid phase) from carbon dioxide and water, with oxygen produced as a waste Identifiers product.[10] CAS Number 124-38-9 (http://ww w.commonchemistr CO2 is produced by all aerobic organisms when they metabolize carbohydrates and lipids to produce energy by respiration.[11] It is y.org/ChemicalDeta returned to water via the gills of fish and to the air via the lungs of il.aspx?ref=124-38- air-breathing land animals, including humans. -
Gas Testing Refresher
Passion to Inspire GAS TESTING REFRESHER GAS TESTING REFRESHER GAS TESTING REFRESHER Although there is a dispute to who invented the "first" miner's flame lamp that was safe to use in fiery mines. The success of the flame safety lamp was a culmination of the principles discovered by Dr. William R. Clanny, Sir Humphrey Davy, and George Stephenson. All three worked independently on the problem at about the same time, and all had some knowledge of the other's work. GAS TESTING REFRESHER The principle of isolating the flame of the lamp was evolved by Dr. Clanny in 1813. Clanny's first lamp designs involved enclosing the flame, and pressurizing the lamp via bellows that would use water reservoirs to isolate the flame. The lamp was rather clumsy, and saw no practical use in the mines. But the feature of a glass window would be later a common feature on safety lamps. GAS TESTING REFRESHER GAS TESTING REFRESHER Sir Humphrey Davy was performed several experiments of his own for the development of a safety lamp. In 1815, Davy discovered that if two vessels were filled with explosive gas, they might be connected together by a narrow tube, and the gas in one of the chambers could be exploded without transmitting the explosion to the adjoining chamber. This meant that a flame in a lamp, fed mine air through small orifices, would not ignite the surrounding air of the mine. GAS TESTING REFRESHER Davy's further experiments found that mesh-holes of fine metallic gauze acted the same way as narrow tubes.