Prevention of Low Productivity Periods in Large-Scale Microalgae Cultivation (PEAK)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Complete Sections As Applicable
This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example. MODULE 1: TITLE, AUTHORS, etc Code assigned: 2009.012a-fP (to be completed by ICTV officers) Short title: Create new ssRNA virus species and genus for virus infecting marine fungoid protist thraustochytrids (Labyrinthulomycetes) (e.g. 6 new species in the genus Zetavirus) Modules attached 1 2 3 4 5 (modules 1 and 9 are required) 6 7 8 9 Author(s) with e-mail address(es) of the proposer: Yoshitake Takao ([email protected]), Daiske Honda ([email protected]), Keizo Nagasaki ([email protected]), Kazuyuki Mise ([email protected]), Tetsuro Okuno ([email protected]) Has this proposal has been seen and agreed by the relevant study group(s)? Please select answer in the box on the right Yes ICTV-EC or Study Group comments and response of the proposer: Date first submitted to ICTV: Date of this revision (if different to above): Page 1 of 8 MODULE 2: NEW SPECIES Part (a) to create and name one or more new species. If more than one, they should be a group of related species belonging to the same genus (see Part b) Code 2009.012aP (assigned by ICTV officers) To create new species with the name(s): Aurantiochytrium single-stranded RNA virus 01 Part (b) assigning new species to higher taxa All new species must be assigned to a higher taxon. -
Molecular Analysis of Enteroviruses
Journal of Human Virology & Retrovirology Molecular Analysis of Enteroviruses Abstract Review Article Enteroviruses (EVs) are common human pathogens which usually infect the Volume 3 Issue 2 - 2016 gastrointestinal and respiratory tracts and can spread to other organs or systems. They are characterized by high genomic plasticity, primarily due to high mutation and recombination rates. Improved molecular diagnostic methods and genetic sequence analyses are beginning to discover the complex characteristics of individual serotypes and genotypes. Understanding the tempo and pattern of molecular diversity and evolution is of great importance in the pathogenesis Centre for Infectious Diseases and Microbiology (CIDM), of EVs, information which will assist in disease prevention and control. In this Institute of Clinical Pathology and Medical Research (ICPMR), review, we will focus on molecular analysis of EVs, including current diagnosis, Westmead Hospital, The University of Sydney, Australia epidemiology and evolution. *Corresponding author: Fei Zhou, Centre for Infectious Keywords: Enterovirus; Molecular diagnosis; Molecular epidemiology; Molecular Diseases and Microbiology (CIDM), Institute of Clinical diversity; Evolution; EVs Pathology and Medical Research (ICPMR), Westmead Hospital, Darcy Road, Westmead, New South Wales, Email: Australia, 2145, Tel: (612) 9845 6255; Fax: (612) 9893 8659; Received: February 16, 2016 | Published: February 26, 2016 Abbreviations: PCR: Polymerase Chain Reaction; IRES: Internal VP3 and VP1). VP1, VP2 and VP3 are located at the surface of the Ribosome Entry Site; UTRs: Untranslated Regions; RT: Reverse Transcription; EVs: Enterovirus located inside the capsid. viral capsid and are exposed to immune pressure, whereas VP4 is Introduction The VP1 capsid protein is the most external and immunodominant of the picornavirus capsid proteins [6], and The order Picornavirales consists of the families Picornaviridae, contains most neutralization epitopes. -
A Proposed New Family of Polycistronic Picorna-Like RNA Viruses
RESEARCH ARTICLE Olendraite et al., Journal of General Virology 2017;98:2368–2378 DOI 10.1099/jgv.0.000902 Polycipiviridae: a proposed new family of polycistronic picorna-like RNA viruses Ingrida Olendraite,1† Nina I. Lukhovitskaya,1† Sanford D. Porter,2 Steven M. Valles2 and Andrew E. Firth1,* Abstract Solenopsis invicta virus 2 is a single-stranded positive-sense picorna-like RNA virus with an unusual genome structure. The monopartite genome of approximately 11 kb contains four open reading frames in its 5¢ third, three of which encode proteins with homology to picornavirus-like jelly-roll fold capsid proteins. These are followed by an intergenic region, and then a single long open reading frame that covers the 3¢ two-thirds of the genome. The polypeptide translation of this 3¢ open reading frame contains motifs characteristic of picornavirus-like helicase, protease and RNA-dependent RNA polymerase domains. An inspection of public transcriptome shotgun assembly sequences revealed five related apparently nearly complete virus genomes isolated from ant species and one from a dipteran insect. By high-throughput sequencing and in silico assembly of RNA isolated from Solenopsis invicta and four other ant species, followed by targeted Sanger sequencing, we obtained nearly complete genomes for four further viruses in the group. Four further sequences were obtained from a recent large-scale invertebrate virus study. The 15 sequences are highly divergent (pairwise amino acid identities of as low as 17 % in the non-structural polyprotein), but possess the same overall polycistronic genome structure, which is distinct from all other characterized picorna-like viruses. Consequently, we propose the formation of a new virus family, Polycipiviridae, to classify this clade of arthropod-infecting polycistronic picorna-like viruses. -
Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes
University of Rhode Island DigitalCommons@URI Biological Sciences Faculty Publications Biological Sciences 9-26-2018 Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes Christopher E. Lane Et Al Follow this and additional works at: https://digitalcommons.uri.edu/bio_facpubs Journal of Eukaryotic Microbiology ISSN 1066-5234 ORIGINAL ARTICLE Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes Sina M. Adla,* , David Bassb,c , Christopher E. Laned, Julius Lukese,f , Conrad L. Schochg, Alexey Smirnovh, Sabine Agathai, Cedric Berneyj , Matthew W. Brownk,l, Fabien Burkim,PacoCardenas n , Ivan Cepi cka o, Lyudmila Chistyakovap, Javier del Campoq, Micah Dunthornr,s , Bente Edvardsent , Yana Eglitu, Laure Guillouv, Vladimır Hamplw, Aaron A. Heissx, Mona Hoppenrathy, Timothy Y. Jamesz, Anna Karn- kowskaaa, Sergey Karpovh,ab, Eunsoo Kimx, Martin Koliskoe, Alexander Kudryavtsevh,ab, Daniel J.G. Lahrac, Enrique Laraad,ae , Line Le Gallaf , Denis H. Lynnag,ah , David G. Mannai,aj, Ramon Massanaq, Edward A.D. Mitchellad,ak , Christine Morrowal, Jong Soo Parkam , Jan W. Pawlowskian, Martha J. Powellao, Daniel J. Richterap, Sonja Rueckertaq, Lora Shadwickar, Satoshi Shimanoas, Frederick W. Spiegelar, Guifre Torruellaat , Noha Youssefau, Vasily Zlatogurskyh,av & Qianqian Zhangaw a Department of Soil Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, S7N 5A8, SK, Canada b Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, United Kingdom -
Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo
Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person -
Systema Naturae. the Classification of Living Organisms
Systema Naturae. The classification of living organisms. c Alexey B. Shipunov v. 5.601 (June 26, 2007) Preface Most of researches agree that kingdom-level classification of living things needs the special rules and principles. Two approaches are possible: (a) tree- based, Hennigian approach will look for main dichotomies inside so-called “Tree of Life”; and (b) space-based, Linnaean approach will look for the key differences inside “Natural System” multidimensional “cloud”. Despite of clear advantages of tree-like approach (easy to develop rules and algorithms; trees are self-explaining), in many cases the space-based approach is still prefer- able, because it let us to summarize any kinds of taxonomically related da- ta and to compare different classifications quite easily. This approach also lead us to four-kingdom classification, but with different groups: Monera, Protista, Vegetabilia and Animalia, which represent different steps of in- creased complexity of living things, from simple prokaryotic cell to compound Nature Precedings : doi:10.1038/npre.2007.241.2 Posted 16 Aug 2007 eukaryotic cell and further to tissue/organ cell systems. The classification Only recent taxa. Viruses are not included. Abbreviations: incertae sedis (i.s.); pro parte (p.p.); sensu lato (s.l.); sedis mutabilis (sed.m.); sedis possi- bilis (sed.poss.); sensu stricto (s.str.); status mutabilis (stat.m.); quotes for “environmental” groups; asterisk for paraphyletic* taxa. 1 Regnum Monera Superphylum Archebacteria Phylum 1. Archebacteria Classis 1(1). Euryarcheota 1 2(2). Nanoarchaeota 3(3). Crenarchaeota 2 Superphylum Bacteria 3 Phylum 2. Firmicutes 4 Classis 1(4). Thermotogae sed.m. 2(5). -
Freshwater Silica-Scaled Heterotrophic Protista: Heliozoa, Thaumatomonad Flagellates, Amoebae, and Bicosoecids, from the Lake Itasca Region, Minnesota
JOURNAL OF THE MINNESOTA ACADEMY OF SCIENCE VOL. 78 NO. 2 (2015) FRESHWATER SILICA-SCALED HETEROTROPHIC PROTISTA: HELIOZOA, THAUMATOMONAD FLAGELLATES, AMOEBAE, AND BICOSOECIDS, FROM THE LAKE ITASCA REGION, MINNESOTA Daniel E. Wujek Central Michigan University, Mt. Pleasant, MI Forty-nine plankton samples were collected from the Lake Itasca Region, Minnesota over a period sporadically covering the summers of 1980, 1981 and 1987. A total of 22 freshwater heterotrophic siliceous-scaled species were observed: 18 heliozoa, two thaumatomonad flagellates, one bicosoecid, and one testate amoeba. Scale identifications were based on transmission electron microscopy. New records for North America include two heliozoans and one thaumatomonad flagellate. Five heliozoa taxa and one thaumatomonad flagellate are new records for the U.S. Wujek DE. Freshwater silica-scaled heterotrophic protista: heliozoa, thaumatomonad flagellates, amoebae, and bicosoecids, from the Lake Itasca Region, Minnesota. Minnesota Academy of Science Journal. 2015; 78(2):1-14. Keywords: bicosoecids, heliozoa, protista, testate amoeba, thaumatomonad flagellates Daniel E Wujek, Department of Biology, Central microscopy (EM) usually is necessary to distinguish Michigan University, Mt. Pleasant, MI 48859, e- sufficient morphology for species identification in the mail: [email protected]. scaled chrysophyte groups3 and now have become the This study was in part funded by a grant from the tool for other scaled protists. CMU FRCE committee. North American heterotrophic protist studies -
Revealed As Abundant and Diverse Planktonic And
PROF. DAVID BASS (Orcid ID : 0000-0002-9883-7823) MR. JAN JANOUŠKOVEC (Orcid ID : 0000-0001-6547-749X) DR. CÉDRIC BERNEY (Orcid ID : 0000-0001-8689-9907) Article type : Original Article Bass et al.---Aquavolon are Freshwater and Soil Rhizarian Protists Rhizarian ‘Novel Clade 10’ Revealed as Abundant and Diverse Planktonic and Terrestrial Flagellates, including Aquavolon n. gen. Article David Bassa,b, Tikhonenkov DVc,d, Foster Ra, Dyal Pa, Janouskovec Jd,e, Keeling PJd, Gardner Ma, Neuhauser Sf, Hartikainen Ha, Mylnikov APc, Berney Ca,1 a Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK b Centre for Environment. Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth DT4 8UB, UK c Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok 152742, Russia d University of British Columbia, Botany Department, Vancouver V6T1Z4, BC, Canada e University College London, Department of Genetics, Evolution and Environment, Gower Street, London, WC1E 6BT, UK f Institute of Microbiology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria 1 present address: Sorbonne Université & CNRS, UMR AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France Correspondence: David Bass, Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK Telephone number: +44 207 942 5387; e-mail [email protected] This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/jeu.12524 Accepted This article is protected by copyright. -
Rajarshi Kumar Gaur · Nikolay Manchev Petrov Basavaprabhu L
Rajarshi Kumar Gaur · Nikolay Manchev Petrov Basavaprabhu L. Patil Mariya Ivanova Stoyanova Editors Plant Viruses: Evolution and Management Plant Viruses: Evolution and Management Rajarshi Kumar Gaur • Nikolay Manchev Petrov • Basavaprabhu L. Patil • M a r i y a I v a n o v a S t o y a n o v a Editors Plant Viruses: Evolution and Management Editors Rajarshi Kumar Gaur Nikolay Manchev Petrov Department of Biosciences, College Department of Plant Protection, Section of Arts, Science and Commerce of Phytopathology Mody University of Science and Institute of Soil Science, Technology Agrotechnologies and Plant Sikar , Rajasthan , India Protection “Nikola Pushkarov” Sofi a , Bulgaria Basavaprabhu L. Patil ICAR-National Research Centre on Mariya Ivanova Stoyanova Plant Biotechnology Department of Phytopathology LBS Centre, IARI Campus Institute of Soil Science, Delhi , India Agrotechnologies and Plant Protection “Nikola Pushkarov” Sofi a , Bulgaria ISBN 978-981-10-1405-5 ISBN 978-981-10-1406-2 (eBook) DOI 10.1007/978-981-10-1406-2 Library of Congress Control Number: 2016950592 © Springer Science+Business Media Singapore 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. -
Highly Diverse Population of Picornaviridae and Other Members
Yinda et al. BMC Genomics (2017) 18:249 DOI 10.1186/s12864-017-3632-7 RESEARCH ARTICLE Open Access Highly diverse population of Picornaviridae and other members of the Picornavirales,in Cameroonian fruit bats Claude Kwe Yinda1,2, Roland Zell3, Ward Deboutte1, Mark Zeller1, Nádia Conceição-Neto1,2, Elisabeth Heylen1, Piet Maes2, Nick J. Knowles4, Stephen Mbigha Ghogomu5, Marc Van Ranst2 and Jelle Matthijnssens1* Abstract Background: The order Picornavirales represents a diverse group of positive-stranded RNA viruses with small non- enveloped icosahedral virions. Recently, bats have been identified as an important reservoir of several highly pathogenic human viruses. Since many members of the Picornaviridae family cause a wide range of diseases in humans and animals, this study aimed to characterize members of the order Picornavirales in fruit bat populations located in the Southwest region of Cameroon. These bat populations are frequently in close contact with humans due to hunting, selling and eating practices, which provides ample opportunity for interspecies transmissions. Results: Fecal samples from 87 fruit bats (Eidolon helvum and Epomophorus gambianus), were combined into 25 pools and analyzed using viral metagenomics. In total, Picornavirales reads were found in 19 pools, and (near) complete genomes of 11 picorna-like viruses were obtained from 7 of these pools. The picorna-like viruses possessed varied genomic organizations (monocistronic or dicistronic), and arrangements of gene cassettes. Some of the viruses belonged to established families, including the Picornaviridae, whereas others clustered distantly from known viruses and most likely represent novel genera and families. Phylogenetic and nucleotide composition analyses suggested that mammals were the likely host species of bat sapelovirus, bat kunsagivirus and bat crohivirus, whereas the remaining viruses (named bat iflavirus, bat posalivirus, bat fisalivirus, bat cripavirus, bat felisavirus, bat dicibavirus and bat badiciviruses 1 and 2) were most likely diet-derived. -
Evolutionary Continuum Between Small Rna and Dna Viruses
EVOLUTIONARY CONTINUUM BETWEEN SMALL RNA AND DNA VIRUSES Mart Krupovic Institut Pasteur [email protected] 03.07.2014 100 nm 20 nm 100 nm Giant viruses versus tiny ones Mimivirus Porcine circovirus 1 Capsid diameter: ~400 nm Capsid diameter: ~17 nm Genome size: 1,181,404 bp Genome size: 1,758 nt # of genes: 1,018 # of genes: 2 2000 nm 100 nm Courtesy Prof D. Raoult Courtesy Prof S. McNulty The (described) virosphere: 120 distinct taxa Adenoviridae, Alloherpesviridae, Alphaflexiviridae, Alphatetraviridae, Alvernaviridae, Amalgaviridae, Ampullaviridae, Anelloviridae, Arenaviridae, Arteriviridae, Ascoviridae, Asfarviridae, Astroviridae, Bacilladnavirus, Bacillarnavirus, Baculoviridae, Barnaviridae, Benyviridae, Betaflexiviridae, Bicaudaviridae, Bidnaviridae, Birnaviridae, Bornaviridae, Bromoviridae, Bunyaviridae, Caliciviridae, Carmotetraviridae, Caulimoviridae, Chrysoviridae, Cilevirus, Circoviridae, Clavaviridae, Closteroviridae, Coronaviridae, Corticoviridae, Cystoviridae, Deltavirus, Dicistroviridae, Dinodnavirus, Emaravirus, Endornaviridae, Filoviridae, Flaviviridae, Fuselloviridae, Gammaflexiviridae, Geminiviridae, ‘Gemycircularvirus’, Globuloviridae, Guttaviridae, Hepadnaviridae, Hepeviridae, Herpesviridae, Higrevirus, Hypoviridae, Hytrosaviridae, Idaeovirus, Iflaviridae, Inoviridae, Iridoviridae, Labyrnavirus, Leviviridae, Lipothrixviridae, Luteoviridae, Malacoherpesviridae, Marnaviridae, Marseilleviridae, Megabirnaviridae, Mesoniviridae, Metaviridae, Microviridae, Mimiviridae, Myoviridae, Nanoviridae, Narnaviridae, Nimaviridae, -
Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID- 19 Pandemic: A
Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID- 19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. March 2021 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Raphael Freitas de Souza, Faculty of Dentistry, McGill University Paul Allison, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University March 31, 2021 1 Contents Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. .................................................................................................................................. 1 Foreword to the second update ............................................................................................. 4 Introduction ............................................................................................................................. 5 Project goal............................................................................................................................. 5 Specific objectives .................................................................................................................. 6 Methods used to identify and include relevant literature ......................................................