Complete Sections As Applicable
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular Analysis of Enteroviruses
Journal of Human Virology & Retrovirology Molecular Analysis of Enteroviruses Abstract Review Article Enteroviruses (EVs) are common human pathogens which usually infect the Volume 3 Issue 2 - 2016 gastrointestinal and respiratory tracts and can spread to other organs or systems. They are characterized by high genomic plasticity, primarily due to high mutation and recombination rates. Improved molecular diagnostic methods and genetic sequence analyses are beginning to discover the complex characteristics of individual serotypes and genotypes. Understanding the tempo and pattern of molecular diversity and evolution is of great importance in the pathogenesis Centre for Infectious Diseases and Microbiology (CIDM), of EVs, information which will assist in disease prevention and control. In this Institute of Clinical Pathology and Medical Research (ICPMR), review, we will focus on molecular analysis of EVs, including current diagnosis, Westmead Hospital, The University of Sydney, Australia epidemiology and evolution. *Corresponding author: Fei Zhou, Centre for Infectious Keywords: Enterovirus; Molecular diagnosis; Molecular epidemiology; Molecular Diseases and Microbiology (CIDM), Institute of Clinical diversity; Evolution; EVs Pathology and Medical Research (ICPMR), Westmead Hospital, Darcy Road, Westmead, New South Wales, Email: Australia, 2145, Tel: (612) 9845 6255; Fax: (612) 9893 8659; Received: February 16, 2016 | Published: February 26, 2016 Abbreviations: PCR: Polymerase Chain Reaction; IRES: Internal VP3 and VP1). VP1, VP2 and VP3 are located at the surface of the Ribosome Entry Site; UTRs: Untranslated Regions; RT: Reverse Transcription; EVs: Enterovirus located inside the capsid. viral capsid and are exposed to immune pressure, whereas VP4 is Introduction The VP1 capsid protein is the most external and immunodominant of the picornavirus capsid proteins [6], and The order Picornavirales consists of the families Picornaviridae, contains most neutralization epitopes. -
A Proposed New Family of Polycistronic Picorna-Like RNA Viruses
RESEARCH ARTICLE Olendraite et al., Journal of General Virology 2017;98:2368–2378 DOI 10.1099/jgv.0.000902 Polycipiviridae: a proposed new family of polycistronic picorna-like RNA viruses Ingrida Olendraite,1† Nina I. Lukhovitskaya,1† Sanford D. Porter,2 Steven M. Valles2 and Andrew E. Firth1,* Abstract Solenopsis invicta virus 2 is a single-stranded positive-sense picorna-like RNA virus with an unusual genome structure. The monopartite genome of approximately 11 kb contains four open reading frames in its 5¢ third, three of which encode proteins with homology to picornavirus-like jelly-roll fold capsid proteins. These are followed by an intergenic region, and then a single long open reading frame that covers the 3¢ two-thirds of the genome. The polypeptide translation of this 3¢ open reading frame contains motifs characteristic of picornavirus-like helicase, protease and RNA-dependent RNA polymerase domains. An inspection of public transcriptome shotgun assembly sequences revealed five related apparently nearly complete virus genomes isolated from ant species and one from a dipteran insect. By high-throughput sequencing and in silico assembly of RNA isolated from Solenopsis invicta and four other ant species, followed by targeted Sanger sequencing, we obtained nearly complete genomes for four further viruses in the group. Four further sequences were obtained from a recent large-scale invertebrate virus study. The 15 sequences are highly divergent (pairwise amino acid identities of as low as 17 % in the non-structural polyprotein), but possess the same overall polycistronic genome structure, which is distinct from all other characterized picorna-like viruses. Consequently, we propose the formation of a new virus family, Polycipiviridae, to classify this clade of arthropod-infecting polycistronic picorna-like viruses. -
Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo
Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person -
Prevention of Low Productivity Periods in Large-Scale Microalgae Cultivation (PEAK)
DOE Bioenergy Technologies Office (BETO) 2021 Project Peer Review Prevention of Low Productivity Periods in Large-Scale Microalgae Cultivation (PEAK) March 22, 2021 2:05 PM EST Advanced Algal Systems Aga Pinowska Global Algae Innovations This presentation does not contain any proprietary, confidential, or otherwise restricted information 1 Project Overview 2 Project Overview • Periods of low productivity unrelated to low solar radiation significantly reduce algal farm biomass production. • We suspect that pond ecology has a major impact on algal health. But, when we started this project, we knew very little about what bacteria, non-target algae, viruses, protozoa, and fungi that are found in cultivation ponds. • Recently, phycosphere – the microbiome of algal cell has been recognized as important for algal growth. • Detection and quantification of microbiota is a key for understanding and controlling pond microbiome. • Understanding the microbiome directly translates into new cultivation methods and higher algal productivity. 3 Project Goals The goal is to reduce periods of unexplained low pond productivity by identification and control of microbiota cultivated with target algae • Measure the microbiota (viral, bacterial, algae, protozoa, fungi) • Develop a tool for low cost, rapid analysis of pond microbiota • Utilize the tool and microbiota information to develop cultivation methods to achieve algal productivity of > 25 g/m2d. Traditional approach to identification of pond microbes and treatments • Microscopy is time consuming and relevant -
Rajarshi Kumar Gaur · Nikolay Manchev Petrov Basavaprabhu L
Rajarshi Kumar Gaur · Nikolay Manchev Petrov Basavaprabhu L. Patil Mariya Ivanova Stoyanova Editors Plant Viruses: Evolution and Management Plant Viruses: Evolution and Management Rajarshi Kumar Gaur • Nikolay Manchev Petrov • Basavaprabhu L. Patil • M a r i y a I v a n o v a S t o y a n o v a Editors Plant Viruses: Evolution and Management Editors Rajarshi Kumar Gaur Nikolay Manchev Petrov Department of Biosciences, College Department of Plant Protection, Section of Arts, Science and Commerce of Phytopathology Mody University of Science and Institute of Soil Science, Technology Agrotechnologies and Plant Sikar , Rajasthan , India Protection “Nikola Pushkarov” Sofi a , Bulgaria Basavaprabhu L. Patil ICAR-National Research Centre on Mariya Ivanova Stoyanova Plant Biotechnology Department of Phytopathology LBS Centre, IARI Campus Institute of Soil Science, Delhi , India Agrotechnologies and Plant Protection “Nikola Pushkarov” Sofi a , Bulgaria ISBN 978-981-10-1405-5 ISBN 978-981-10-1406-2 (eBook) DOI 10.1007/978-981-10-1406-2 Library of Congress Control Number: 2016950592 © Springer Science+Business Media Singapore 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. -
Highly Diverse Population of Picornaviridae and Other Members
Yinda et al. BMC Genomics (2017) 18:249 DOI 10.1186/s12864-017-3632-7 RESEARCH ARTICLE Open Access Highly diverse population of Picornaviridae and other members of the Picornavirales,in Cameroonian fruit bats Claude Kwe Yinda1,2, Roland Zell3, Ward Deboutte1, Mark Zeller1, Nádia Conceição-Neto1,2, Elisabeth Heylen1, Piet Maes2, Nick J. Knowles4, Stephen Mbigha Ghogomu5, Marc Van Ranst2 and Jelle Matthijnssens1* Abstract Background: The order Picornavirales represents a diverse group of positive-stranded RNA viruses with small non- enveloped icosahedral virions. Recently, bats have been identified as an important reservoir of several highly pathogenic human viruses. Since many members of the Picornaviridae family cause a wide range of diseases in humans and animals, this study aimed to characterize members of the order Picornavirales in fruit bat populations located in the Southwest region of Cameroon. These bat populations are frequently in close contact with humans due to hunting, selling and eating practices, which provides ample opportunity for interspecies transmissions. Results: Fecal samples from 87 fruit bats (Eidolon helvum and Epomophorus gambianus), were combined into 25 pools and analyzed using viral metagenomics. In total, Picornavirales reads were found in 19 pools, and (near) complete genomes of 11 picorna-like viruses were obtained from 7 of these pools. The picorna-like viruses possessed varied genomic organizations (monocistronic or dicistronic), and arrangements of gene cassettes. Some of the viruses belonged to established families, including the Picornaviridae, whereas others clustered distantly from known viruses and most likely represent novel genera and families. Phylogenetic and nucleotide composition analyses suggested that mammals were the likely host species of bat sapelovirus, bat kunsagivirus and bat crohivirus, whereas the remaining viruses (named bat iflavirus, bat posalivirus, bat fisalivirus, bat cripavirus, bat felisavirus, bat dicibavirus and bat badiciviruses 1 and 2) were most likely diet-derived. -
Evolutionary Continuum Between Small Rna and Dna Viruses
EVOLUTIONARY CONTINUUM BETWEEN SMALL RNA AND DNA VIRUSES Mart Krupovic Institut Pasteur [email protected] 03.07.2014 100 nm 20 nm 100 nm Giant viruses versus tiny ones Mimivirus Porcine circovirus 1 Capsid diameter: ~400 nm Capsid diameter: ~17 nm Genome size: 1,181,404 bp Genome size: 1,758 nt # of genes: 1,018 # of genes: 2 2000 nm 100 nm Courtesy Prof D. Raoult Courtesy Prof S. McNulty The (described) virosphere: 120 distinct taxa Adenoviridae, Alloherpesviridae, Alphaflexiviridae, Alphatetraviridae, Alvernaviridae, Amalgaviridae, Ampullaviridae, Anelloviridae, Arenaviridae, Arteriviridae, Ascoviridae, Asfarviridae, Astroviridae, Bacilladnavirus, Bacillarnavirus, Baculoviridae, Barnaviridae, Benyviridae, Betaflexiviridae, Bicaudaviridae, Bidnaviridae, Birnaviridae, Bornaviridae, Bromoviridae, Bunyaviridae, Caliciviridae, Carmotetraviridae, Caulimoviridae, Chrysoviridae, Cilevirus, Circoviridae, Clavaviridae, Closteroviridae, Coronaviridae, Corticoviridae, Cystoviridae, Deltavirus, Dicistroviridae, Dinodnavirus, Emaravirus, Endornaviridae, Filoviridae, Flaviviridae, Fuselloviridae, Gammaflexiviridae, Geminiviridae, ‘Gemycircularvirus’, Globuloviridae, Guttaviridae, Hepadnaviridae, Hepeviridae, Herpesviridae, Higrevirus, Hypoviridae, Hytrosaviridae, Idaeovirus, Iflaviridae, Inoviridae, Iridoviridae, Labyrnavirus, Leviviridae, Lipothrixviridae, Luteoviridae, Malacoherpesviridae, Marnaviridae, Marseilleviridae, Megabirnaviridae, Mesoniviridae, Metaviridae, Microviridae, Mimiviridae, Myoviridae, Nanoviridae, Narnaviridae, Nimaviridae, -
Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID- 19 Pandemic: A
Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID- 19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. March 2021 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Raphael Freitas de Souza, Faculty of Dentistry, McGill University Paul Allison, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University March 31, 2021 1 Contents Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. .................................................................................................................................. 1 Foreword to the second update ............................................................................................. 4 Introduction ............................................................................................................................. 5 Project goal............................................................................................................................. 5 Specific objectives .................................................................................................................. 6 Methods used to identify and include relevant literature ...................................................... -
Rna Viral Diversity and Dynamics Along the Antarctic Peninsula
RNA VIRAL DIVERSITY AND DYNAMICS ALONG THE ANTARCTIC PENINSULA A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAIʻI AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN OCEANOGRAPHY MAY 2015 By Jaclyn A. Mueller Dissertation Committee: Grieg Steward, Chairperson Alexander Culley Matthew Church Craig Smith Guylaine Poisson, Outside member Key words: marine RNA viruses, viral ecology, metagenomes, viromes, nucleic acid extraction, reverse transcription quantitative PCR (RT-qPCR), Antarctica © Copyright 2015 – Jaclyn A Mueller All rights reserved. ii ACKNOWLEDGEMENTS This research would not have been possible without the generosity and support of a number of people and organizations, for which I am very thankful. I would first like to acknowledge the Department of Oceanography, the Center for Microbial Oceanography: Research and Education (C-MORE), and the National Science Foundation (NSF) for supporting my research and providing such a fulfilling and enriching graduate career. I am forever indebted to the C-MORE ‘Ohana for their unwavering support and enthusiasm, while providing me the opportunity to experience outreach and education, enhance my leadership and professional development skills, and conduct my doctoral research. In particular, I thank Dr. David Karl for his insights, enthusiasm for oceanography, and continued support of my research. It has been a pleasure to work with so many bright, motivated, and inspiring scientists. I am forever grateful for the patience, guidance, encouragement, and support of my advisor, Dr. Grieg Steward. His enthusiasm and creativity are contagious, and have made this experience quite an enjoyable one. Working with him has not only taught me to be more a perceptive and critical thinker, but also a better writer and scientist. -
Ecological Connectivity Shapes Quasispecies Structure of RNA Viruses in an Antarctic Lake
Molecular Ecology (2015) 24, 4812–4825 doi: 10.1111/mec.13321 FROM THE COVER Ecological connectivity shapes quasispecies structure of RNA viruses in an Antarctic lake A. LOPEZ-BUENO, A. RASTROJO, R. PEIRO, M. ARENAS and A. ALCAMI Department of Virology and Microbiology, Centro de Biologıa Molecular ‘Severo Ochoa’ (Consejo Superior de Investigaciones Cientıficas-Universidad Autonoma de Madrid), Nicolas Cabrera 1, Cantoblanco 28049, Madrid, Spain Abstract RNA viruses exist as complex mixtures of genotypes, known as quasispecies, where the evolution potential resides in the whole community of related genotypes. Quasis- pecies structure and dynamics have been studied in detail for virus infecting animals and plants but remain unexplored for those infecting micro-organisms in environmen- tal samples. We report the first metagenomic study of RNA viruses in an Antarctic lake (Lake Limnopolar, Livingston Island). Similar to low-latitude aquatic environments, this lake harbours an RNA virome dominated by positive single-strand RNA viruses from the order Picornavirales probably infecting micro-organisms. Antarctic picorna- like virus 1 (APLV1), one of the most abundant viruses in the lake, does not incorpo- rate any mutation in the consensus sequence from 2006 to 2010 and shows stable quasispecies with low-complexity indexes. By contrast, APLV2-APLV3 are detected in the lake water exclusively in summer samples and are major constituents of surround- ing cyanobacterial mats. Their quasispecies exhibit low complexity in cyanobacterial mat, but their run-off-mediated transfer to the lake results in a remarkable increase of complexity that may reflect the convergence of different viral quasispecies from the catchment area or replication in a more diverse host community. -
Evidence to Support Safe Return to Clinical Practice
Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University July 31st, 2020 1 Contents Page Foreword 4 Background 5 Project goal and specific objectives 5 Methods used to identify and include relevant literature 6 Report structure 7 Report summary 7 Report results a) Which patients are at greater risk of the consequences of COVID-19 9 and so consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that dental 10 professionals should screen for prior to providing in-person oral health care? c) What evidence exists to support patient scheduling, waiting and 11 other non-treatment management measures for in-person oral health care? d) What evidence exists to support the use of various forms of 13 personal protective equipment (PPE) while providing in-person oral health care? e) What evidence exists to support the decontamination and re-use of 14 PPE? f) What evidence exists concerning the provision of aerosol- 14 generating procedures (AGP) as part of in-person oral health care? g) What -
Viruses of Polar Aquatic Environments
viruses Review Viruses of Polar Aquatic Environments Sheree Yau 1 and Mansha Seth-Pasricha 2,3,* 1 Integrative Marine Biology Laboratory (BIOM), CNRS, UMR7232, Sorbonne Université, 66650 Banyuls-sur-Mer, France; [email protected] 2 Institute of Earth, Ocean, and Atmospheric Sciences, Rutgers University, New Brunswick, NJ 08901, USA 3 Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA * Correspondence: [email protected]; Tel.: +1-848-932-6378 Received: 23 January 2019; Accepted: 18 February 2019; Published: 22 February 2019 Abstract: The poles constitute 14% of the Earth’s biosphere: The aquatic Arctic surrounded by land in the north, and the frozen Antarctic continent surrounded by the Southern Ocean. In spite of an extremely cold climate in addition to varied topographies, the polar aquatic regions are teeming with microbial life. Even in sub-glacial regions, cellular life has adapted to these extreme environments where perhaps there are traces of early microbes on Earth. As grazing by macrofauna is limited in most of these polar regions, viruses are being recognized for their role as important agents of mortality, thereby influencing the biogeochemical cycling of nutrients that, in turn, impact community dynamics at seasonal and spatial scales. Here, we review the viral diversity in aquatic polar regions that has been discovered in the last decade, most of which has been revealed by advances in genomics-enabled technologies, and we reflect on the vast extent of the still-to-be explored polar microbial diversity and its “enigmatic virosphere”. Keywords: arctic; antarctica; viruses; freshwater; saline; DNA viruses; RNA viruses; polar regions 1.