467 1.Pdf (10.98Mb)
Total Page:16
File Type:pdf, Size:1020Kb
Reduction of Biomechanical Models and Subject Specific Properties for Real-Time Simulation of Surgical Trocar Insertion By RAVI KUMAR CHANNA NAIK September 1, 2010 A thesis submitted to the Faculty of the Graduate School of The State University of New York at Buffalo in partial completion of the requirements for the degree of MASTER OF SCIENCE Department of Mechanical Engineering ACKNOWLEDGEMENTS I take this rare opportunity to thank one and all who have been the source of support, motivation and encouragement, both on the screen and tangible and behind the screen and intangible. I thank my academic research advisor Dr. Gary Dargush, committee members Dr. Andres Soom and Dr. Roger Mayne for all the support and guidance for my master’s thesis research and writing. I thank my family members, for their long and steady support and encouragement which gave me the strength and stability throughout the course my of study and research. I thank my peer friends, who have been very supportive, the source of recreations and a change in grave and stagnation periods and helped me to keep up my motivation and vigor in completing this thesis. Finally I thank God and associated holy company for giving me this opportunity to pursue my graduate studies at University at Buffalo and carry out this master’s research. ii ABSTRACT Trocar insertion is the first step in Laparoscopy, Thoracoscopy and most other micro surgery procedures. It is a difficult procedure to learn and practice because procedure is carried out almost entirely without any visual feedback of the organs underlying the tissues being punctured. A majority of injuries is attributed to excessive use of force by surgeons. Practicing on cadavers and synthetic tissues may not accurately simulate the process. So there is a need for haptic based computer simulator to train and enhance the trocar insertion skills. For realistic force and torque haptic feedbacks, there is need for realistic modeling of tissue layers and real-time finite element computation. Geometrical complexities of anatomical structures, non-linear complex material properties and their variations with sex, age, person body built, makes patient specific accounting of material properties very difficult. These complexities also make the real time computation of biomechanical models to be prohibitively expensive. In the first half of this thesis a novel method of obtaining patient specific initial conditions, boundary conditions, tissue layers dimensions and their mechanical properties are proposed. A typical patient sample is worked out and cross verified with the available data. In the second half of the thesis, to reduce simulation computation load, a novel method of accounting different tissue mechanical properties by defining tissue specific mapping functions to a single linear function and parallel interpolation of the computation results to the real tissue properties for real-time simulation is proposed. iii TABLE OF CONTENTS Acknowledgements ………………………………………….........……………………. ii Abstract ………........…………………………………………………………………... iii Table of Contents ………………………………………….…........……….………….. iv List of Figures …………………………………......…………………………………. viii List of Tables ……………......…………………………………….………………….. xiii Chapter 1: Introduction 1.1 Introduction and Motivation ............……………………….……………………. 1 1.2 Background …………………………………..........…………………………….. 2 1.3 Research Question …………………………………..…..........…………………. 3 Chapter 2: Trocar Insertion Analysis 2.1 Introduction ……........……………………………………...………………...….. 5 2.2 Initial Condition Analysis …………........…………………..………………….... 5 2.3 Trocar Sizes and Shapes ……………........………………….…………………... 7 2.3.1 Cutting Trocars …………..……….......…………………………….…… 8 2.3.2 Noncutting Trocar ……….......…………………………………….…….. 8 2.4 Trocar Insertion Time Motion Analysis ………….....……...………………….. 11 2.4.1 Twisting Motion Analysis ……………….............…………………….. 13 2.4.2 Estimated Axial Loading Strain Rates ………......…….……………….. 13 2.5 Boundary Conditions ……………………………….........…………………….. 13 2.6 Failure Analysis …….………………......…………………..………………….. 14 2.7 Insertions Force and Torques ………………......…………...………………….. 16 iv 2.7.1 Device suitability …………………………….......…………………….. 17 2.8 Equations of Motion ………………………….......……………………...…….. 18 2.9 Problem Complexity and Alternative …………........………………………….. 19 Chapter 3: Abdominal Wall Anatomy and Tissue Thickness 3.1 Introduction …………........................................................................………….. 20 3.2 Surface Anatomy of the Abdomen …………………....................................….. 20 3.3 Layers of the Abdominal Wall ………………...........................................…….. 21 3.3.1 Skin and Subcutaneous Tissues …………….............................……….. 23 3.3.2 Fascia …………........................................................................……….. 25 3.3.2.1 Superficial Fascia …………….......................................……….. 25 3.3.2.2 Deep Fascia …………................................................………….. 26 3.3.2.3 Subserous Fascia ………………........................................…….. 26 3.3.2.4 Peritoneal Fascia ………………........................................…….. 27 3.3.3 Muscles of the Abdominal Wall …………............................………….. 27 3.3.4 Vascular Supply and Innervation ………...........................…………….. 33 3.4 Abdominal Anatomy Summary ….........................................………………….. 35 3.5 Tissue Thickness and Regional Variations ……........................……………….. 39 3.5.1 Sample Tissue Thickness Workout ……………….........................……. 43 Chapter 4: Tissue Constitutive Models 4.1 Introduction ……………….........................................................................……. 45 4.2 Quasilinear Hyperelastic Viscoelastic Model ….....................…………………. 46 v Chapter 5: Material Properties Treatment 5.1 Introduction …………........................................................................………….. 47 5.2 Skeletal Muscle Tensile Data Treatment (MSS data only) …...........………....... 50 5.2.1 Tissue Type Parameter (T1) ……………...................................……….. 53 5.2.2 Sexual Difference Parameter (S2) ……………..........................……….. 53 5.2.3 Age Parameter (A3) …………………................................................….. 54 5.2.4 Person Built Parameter (B4) ……………...................................……….. 55 5.2.5 Regional Variation Parameter (V5) ………………........................…….. 55 5.2.6 Tissue Intrinsic Parameter (I6) ………………...............................…….. 55 5.2.7 Physiological Testing Condition Parameter (P7) …………........………. 56 5.2.8 Strain Rate Sensitivity Parameter (D8) …………………….. ................. 56 5.2.9 Skeletal Muscle Sample Workout ..........................…………………….. 57 5.3 Skin Tensile Data Treatment (MSS date only) ………………..................…….. 58 5.3.1 Tissue Type Parameter (T1) …………...................................………….. 60 5.3.2 Sexual Difference Parameter (S2) ………………..........................…….. 61 5.3.3 Age Parameter (A3) ……………................................................……….. 61 5.3.4 Person Built Parameter (B4) ………………...................................…….. 62 5.3.5 Physiological Testing Condition Parameter (P7) ……….......………….. 63 5.3.6 Other Skin Parameters ………………...........................................…….. 63 5.3.7 Skin Sample Workout ……………….............................................……. 63 5.4 Fascia Tensile Data Treatment (MSS data only) ………...…………….. ........... 65 5.4.1 Tissue Type Parameter (T1) ………...................................…………….. 66 5.4.2 Age Parameter (A3) ……………................................................……….. 67 vi 5.4.3 Other Fascia Parameters …………….........................................………. 68 5.4.4 Fascia Sample Workout ………………..........................................……. 69 5.4.5 Panniculus Adipose (Fat Tissue) Tensile Data Treatment …….............……….. 70 5.5.2 Tissue Type Parameter (T1) ………...................................…………….. 71 5.5.3 Age Parameter (A3) …………................................................………….. 72 5.5.3 Other Fat Tissue Parameters ……………...................................………. 72 5.5.4 Fat Tissue Sample Workout …………………....................................…. 72 Chapter 6: Real-Time Computation 6.1 Introduction ……………........................................................................……….. 74 6.2 Model Reduction ……………................................................................……….. 77 6.3 Model Reduction Equations …………………...............................................….. 77 6.3.1 Green-Lagrange Strain ………………...........................................…….. 77 6.3.2 Second Piola-Kirchoff Stress Tensor ………….....................………….. 79 6.3.3 Strain-Strain Relationship ………………......................................…….. 79 6.3.4 Incompressible Neo-Hookean Model ……………....................……….. 80 6.4 Equations for Forces and Torques calculations ………….................………….. 81 6.5 Conclusions .......................................................................................................... 82 Appendix – 1: Hiroshi Yamada Book …………...................................……….....….. 84 Appendix – 2: Data Book - Abe et al. ……………….......................................…….. 115 References ………...................................................................................…………….. 168 vii LIST OF FIGURES Fig 01.01: Trocar insertions at navel and other regions in lower abdomen in typical laparoscopic procedures. Adapted from Ref [02]……………………………………….. 1 Fig 01.02: Scope of trocar