Radionuclide Lymphoscintigraphy in the Evaluation of Lymphedema*

Total Page:16

File Type:pdf, Size:1020Kb

Radionuclide Lymphoscintigraphy in the Evaluation of Lymphedema* CONTINUING EDUCATION The Third Circulation: Radionuclide Lymphoscintigraphy in the Evaluation of Lymphedema* Andrzej Szuba, MD, PhD1; William S. Shin1; H. William Strauss, MD2; and Stanley Rockson, MD1 1Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California; and 2Division of Nuclear Medicine, Stanford University School of Medicine, Stanford, California all. Lymphedema results from impaired lymphatic transport Lymphedema—edema that results from chronic lymphatic in- caused by injury to the lymphatics, infection, or congenital sufficiency—is a chronic debilitating disease that is frequently abnormality. Patients often suffer in silence when their misdiagnosed, treated too late, or not treated at all. There are, primary physician or surgeon suggests that the problem is however, effective therapies for lymphedema that can be im- plemented, particularly after the disorder is properly diagnosed mild and that little can be done. Fortunately, there are and characterized with lymphoscintigraphy. On the basis of the effective therapies for lymphedema that can be imple- lymphoscintigraphic image pattern, it is often possible to deter- mented, particularly after the disorder is characterized with mine whether the limb swelling is due to lymphedema and, if so, lymphoscintigraphy. whether compression garments, massage, or surgery is indi- At the Stanford Lymphedema Center, about 200 new cated. Effective use of lymphoscintigraphy to plan therapy re- cases of lymphedema are diagnosed each year (from a quires an understanding of the pathophysiology of lymphedema and the influence of technical factors such as selection of the catchment area of about 500,000 patients). Evidence that the radiopharmaceutical, imaging times after injection, and patient disease is often overlooked by physicians caring for the activity after injection on the images. In addition to reviewing the patient is seen by the fact that about 60% of the patients are anatomy and physiology of the lymphatic system, we review self-referred for initial evaluation and treatment, even if physiologic principles of lymphatic imaging with lymphoscintig- they have had lymphedema for years. raphy, discuss different qualitative and quantitative lymphoscin- tigraphic techniques and their clinical applications, and present Lymphedema is a prevalent disease. Approximately 10 clinical cases depicting typical lymphoscintigraphic findings. million people have lymphedema secondary to breast and Key Words: lymphatic system; radiotracers; lymphatic insuffi- pelvic cancer therapy, recurrent infections, injuries, or vas- ciency cular surgery. Worldwide, about 90 million people have J Nucl Med 2003; 44:43–57 lymphedema, primarily because of parasitic infection. When chronic venous insufficiency is added as a cause, there may be as many as many as 300 million cases (1–4). In our clinic, about 75% of the patients have lymphedema Effective use of lymphoscintigraphy to plan therapy for because of malignancy or its therapy, with about half of lymphedema requires an understanding of its pathophysiol- these related to breast cancer surgery. ogy and the influence of technical factors such as selection of the radiopharmaceutical, imaging times after injection, Arm Lymphedema and patient activity after injection on the images. Arm lymphedema is a frequent complication of breast cancer therapy and axillary lymph node dissection, with an CHARACTERISTICS OF LYMPHEDEMA estimated frequency of 5%–30%. This incidence is based Lymphedema is a chronic debilitating disease that is primarily on studies that use volume and circumference frequently misdiagnosed, treated too late, or not treated at criteria in the first 2–5 y after surgery. Arm volume differ- ences above 100–200 cm3 or a circumference difference above 2 cm is used as a cutoff point for the diagnosis of Received Jan. 29, 2002; revision accepted Aug. 8, 2002. For correspondence or reprints contact: H. William Strauss, MD, Memorial lymphedema. All these studies disregard milder forms of Sloan Kettering Cancer Center, 1275 York Ave., Room S212, New York, NY lymphedema and miss a significant number of patients with 10021. E-mail: [email protected] mild lymphedema, especially in the nondominant arm, *NOTE: FOR CE CREDIT, YOU CAN ACCESS THIS ACTIVITY THROUGH which could be 200 cm3 smaller than the dominant arm THE SNM WEB SITE (http://www.snm.org/education/ce_online.html) THROUGH JANUARY 2004. before surgery. Unfortunately, almost all studies are retro- RADIONUCLIDE LYMPHOSCINTIGRAPHY • Szuba et al. 43 spective and do not include arm measurements before sur- “mild” lymphedema of the leg may cause chronic leg discom- gery (5,6). fort and problems with walking, running, and fitting shoes. One prospective study, by Goltner et al., of 360 women Advanced lymphedema of the leg causes severe lifelong dis- undergoing breast cancer surgery found that arm lymphe- ability. Genital lymphedema, frequently secondary to therapy dema developed after surgery in 42% of women (7). for pelvic cancer, can be devastating for the patient (18,19). Even clinically “mild” lymphedema may cause a signif- In summary, noninfectious lymphedema is a common icant disability, especially if it affects the hand. A hand disease and one can expect an increase in the number of volume increase of 100 cm3 causes substantial impairment patients rather than a disappearance of this condition over of function, because any work requiring fine movements of the next decade. Many of these patients suffer because they the hand, such as typing, writing, or playing piano, are were not properly diagnosed and treated. Early diagnosis difficult to perform. can lead to effective treatment and prevention of secondary A combination of conservative surgery and careful pa- effects, including extremity deformity, disuse atrophy, and tient selection for nodal radiotherapy may reduce the inci- increased susceptibility to recurrent infections. dence of postmastectomy lymphedema (8), particularly when these therapies are combined with sentinel node bi- Diagnosis opsy, but their impact on the incidence of postsurgical Lymphedema can be surprisingly difficult to diagnose, lymphatic insufficiency has not yet been adequately as- especially in its early stages. Without a proper diagnosis, sessed. Although axillary surgical staging, with or without therapy is often delayed, allowing secondary fibrosis and breast conservation techniques, is characterized as relatively lipid deposition to take place. Early treatment often results free of significant complications (9), a postoperative study in rapid clinical improvement and prevents progression to the chronic phase of the disease. of 200 patients suggested that lymphatic complications still Lymphoscintigraphy offers an objective and reliable ap- occur. Statistically significant changes in ipsilateral arm proach to diagnose and characterize the severity of volume were detected at the mid biceps, antecubital fossa, lymphedema. The following sections review the anatomy and mid forearm; furthermore, clinically significant arm and pathophysiology of the lymphatic system and the tech- edema (arm circumference difference Ͼ 2 cm) was detected nique and interpretation of the lymphoscintigram. in 13% of patients at1yormore after surgery, whereas 76.5% experienced postoperative sensorineural dysfunction LYMPHATIC ANATOMY, PHYSIOLOGY, of the medial arm or axilla (9). AND PATHOLOGY Axillary lymph node dissection, because it correlates positively with 10-y survival in breast cancer patients (10), Components of the Lymphatic System is still applied to most patients with early breast cancer (10). The lymphatic system is a component of both the circu- Sentinel node biopsy, however, is gaining clinical accep- latory and the immune systems. The lymphatic system con- tance and offers a chance to avoid axillary node dissection sists of a series of conduits (the lymphatic vasculature), in patients with early breast cancer. Sentinel node biopsy lymphoid cells, and organized lymphoid tissues. Lymphoid will not eliminate the necessity of axillary node dissection tissues include the lymph nodes, spleen, thymus, Peyer’s in patients with positive sentinel nodes (28%–46% of eli- patches in the intestine, and lymphoid tissue in the liver, gible patients (11)) and in patients with advanced breast lungs, and parts of the bone marrow (20). Lymphatics are cancer. One cautionary note about sentinel node biopsy is found throughout the body, with the exception of the central the limited utility of this procedure in patients with preop- nervous system, where cerebrospinal fluid fulfills the nor- erative chemotherapy; up to 33% of patients may have mal role of lymph. Lymphatic vasculature and lymphoid false-negative results (12). tissue are prevalent in organs that come into direct contact The incidence of breast cancer in the United States is with the external environment, such as the skin, gastroin- projected to increase from 185,000 patients per year to testinal tract, and lungs. This distribution is probably a 420,000 per year in the next 20 y (11). The higher incidence reflection of the protective role of the lymphatics against of breast cancer is likely to increase the incidence of infectious agents and alien particles. Absorption of fat from lymphedema despite the developments of breast-conserving the intestine occurs through the lymphatic system, which surgery and sentinel node biopsy. In addition, the longer transports the lipids (chyle) to the liver. The lymphatic survival of breast
Recommended publications
  • Chapter 2 ROLE of LYMPHOSCINTIGRAPHY for SELECTIVE SENTINEL LYMPHADENECTOMY
    Chapter 2 ROLE OF LYMPHOSCINTIGRAPHY FOR SELECTIVE SENTINEL LYMPHADENECTOMY Roger F. Uren, Robert B. Howman-Giles, David Chung, John F. Thompson* Nuclear Medicine and Diagnostic Ultrasound, RPAH Medical Centre and Discipline oj Medicine, The University of Sydney, Sydney, NSW, Australia and The Sydney Melanoma Unit, Royal Prince Alfred Hospital, Camperdown, NSW and Discipline of Surgery*, The University of Sydney, Sydney, NSW, Australia Abstract: An essential prerequisite for a successful sentinel node biopsy (SNB) procedure is an accurate map of the pattern of lymphatic drainage from the primary tumor site. The role of lymphoscintigraphy(LS) in SNB is to provide such a map in each patient. This map should indicate not only the location of all sentinel nodes but also the number of SNs at each location. Such mapping can be achieved using 99mTc-labeled small particle radiocolloids, high- resolution collimators with minimal septal penetration, and imaging protocols that detect all SNs in every patient regardless of their location. This is especially important in melanoma patients, since high-quality LS can identify the actual lymphatic collecting vessels as they drain into each SN. The SN is not always found in the nearest node field and is best defined as "any lymph node receiving direct lymphatic drainage from a primary tumor site." Reliable clinical prediction of lymphatic drainage from the skin or breast is not possible. Patterns of lymphatic drainage from the skin are highly variable from patient to patient, even from the same area of the skin. Unexpected lymphatic drainage has been found from the skin of the back to SNs in the triangular intermuscular space and in some patients through the posterior body wall to SNs in the para-aortic, paravertebral, and retroperitoneal areas.
    [Show full text]
  • Molecular Mechanisms of Neuroimmune Crosstalk in the Pathogenesis of Stroke
    International Journal of Molecular Sciences Review Molecular Mechanisms of Neuroimmune Crosstalk in the Pathogenesis of Stroke Yun Hwa Choi 1, Collin Laaker 2, Martin Hsu 2, Peter Cismaru 3, Matyas Sandor 4 and Zsuzsanna Fabry 2,4,* 1 School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA; [email protected] 2 Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; [email protected] (C.L.); [email protected] (M.H.) 3 Chemistry, University of Wisconsin-Madison, Madison, WI 53705, USA; [email protected] 4 Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; [email protected] * Correspondence: [email protected] Abstract: Stroke disrupts the homeostatic balance within the brain and is associated with a significant accumulation of necrotic cellular debris, fluid, and peripheral immune cells in the central nervous system (CNS). Additionally, cells, antigens, and other factors exit the brain into the periphery via damaged blood–brain barrier cells, glymphatic transport mechanisms, and lymphatic vessels, which dramatically influence the systemic immune response and lead to complex neuroimmune communi- cation. As a result, the immunological response after stroke is a highly dynamic event that involves communication between multiple organ systems and cell types, with significant consequences on not only the initial stroke tissue injury but long-term recovery in the CNS. In this review, we discuss the complex immunological and physiological interactions that occur after stroke with a focus on how the peripheral immune system and CNS communicate to regulate post-stroke brain homeostasis. First, Citation: Choi, Y.H.; Laaker, C.; Hsu, we discuss the post-stroke immune cascade across different contexts as well as homeostatic regulation M.; Cismaru, P.; Sandor, M.; Fabry, Z.
    [Show full text]
  • Human Anatomy As Related to Tumor Formation Book Four
    SEER Program Self Instructional Manual for Cancer Registrars Human Anatomy as Related to Tumor Formation Book Four Second Edition U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutesof Health SEER PROGRAM SELF-INSTRUCTIONAL MANUAL FOR CANCER REGISTRARS Book 4 - Human Anatomy as Related to Tumor Formation Second Edition Prepared by: SEER Program Cancer Statistics Branch National Cancer Institute Editor in Chief: Evelyn M. Shambaugh, M.A., CTR Cancer Statistics Branch National Cancer Institute Assisted by Self-Instructional Manual Committee: Dr. Robert F. Ryan, Emeritus Professor of Surgery Tulane University School of Medicine New Orleans, Louisiana Mildred A. Weiss Los Angeles, California Mary A. Kruse Bethesda, Maryland Jean Cicero, ART, CTR Health Data Systems Professional Services Riverdale, Maryland Pat Kenny Medical Illustrator for Division of Research Services National Institutes of Health CONTENTS BOOK 4: HUMAN ANATOMY AS RELATED TO TUMOR FORMATION Page Section A--Objectives and Content of Book 4 ............................... 1 Section B--Terms Used to Indicate Body Location and Position .................. 5 Section C--The Integumentary System ..................................... 19 Section D--The Lymphatic System ....................................... 51 Section E--The Cardiovascular System ..................................... 97 Section F--The Respiratory System ....................................... 129 Section G--The Digestive System ......................................... 163 Section
    [Show full text]
  • Lymphatic Complaints in the Dermatology Clinic: an Osteopathic
    Volume 35 JAOCDJournal Of The American Osteopathic College Of Dermatology Lymphatic Complaints in the Dermatology Clinic: An Osteopathic Approach to Management A five-minute treatment module makes lymphatic OMT a practical option in busy practices. Also in this issue: A Case of Acquired Port-Wine Stain (Fegeler Syndrome) Non-Pharmacologic Interventions in the Prevention of Pediatric Atopic Dermatitis: What the Evidence Says Inflammatory Linear Verrucous Epidermal Nevus Worsening in Pregnancy last modified on June 9, 2016 10:54 AM JOURNAL OF THE AMERICAN OSTEOPATHIC COLLEGE OF DERMATOLOGY Page 1 JOURNAL OF THE AMERICAN OSTEOPATHIC COLLEGE OF DERMATOLOGY 2015-2016 AOCD OFFICERS PRESIDENT Alpesh Desai, DO, FAOCD PRESIDENT-ELECT Karthik Krishnamurthy, DO, FAOCD FIRST VICE-PRESIDENT Daniel Ladd, DO, FAOCD SECOND VICE-PRESIDENT John P. Minni, DO, FAOCD Editor-in-Chief THIRD VICE-PRESIDENT Reagan Anderson, DO, FAOCD Karthik Krishnamurthy, DO SECRETARY-TREASURER Steven Grekin, DO, FAOCD Assistant Editor TRUSTEES Julia Layton, MFA Danica Alexander, DO, FAOCD (2015-2018) Michael Whitworth, DO, FAOCD (2013-2016) Tracy Favreau, DO, FAOCD (2013-2016) David Cleaver, DO, FAOCD (2014-2017) Amy Spizuoco, DO, FAOCD (2014-2017) Peter Saitta, DO, FAOCD (2015-2018) Immediate Past-President Rick Lin, DO, FAOCD EEC Representatives James Bernard, DO, FAOCD Michael Scott, DO, FAOCD Finance Committee Representative Donald Tillman, DO, FAOCD AOBD Representative Michael J. Scott, DO, FAOCD Executive Director Marsha A. Wise, BS AOCD • 2902 N. Baltimore St. • Kirksville, MO 63501 800-449-2623 • FAX: 660-627-2623 • www.aocd.org COPYRIGHT AND PERMISSION: Written permission must be obtained from the Journal of the American Osteopathic College of Dermatology for copying or reprinting text of more than half a page, tables or figures.
    [Show full text]
  • Lymphatic Drainage of the Breast: from Theory to Surgical Practice
    Int. J. Morphol., 27(3):873-878, 2009. Lymphatic Drainage of the Breast: from Theory to Surgical Practice Drenaje Linfático de la Mama: desde la Teoría a la Práctica Quirúrgica *José Humberto Tavares Guerreiro Fregnani & **José Rafael Macéa FREGNANI, J. H. T. G. & MACÉA, J. R. Lymphatic drainage of the breast: from theory to surgical practice. Int. J. Morphol., 27(3):873-878, 2009. SUMMARY: Until recently, complete removal of axillary lymph nodes was performed as part of the treatment of breast cancer. Sentinel lymph node biopsy (SLNB) in selected cases has reduced the number of cases of wide axillary dissection and the related morbidity. Knowledge of breast lymphatic drainage is essential for understanding the principles behind SLNB and also for performing safe and correct axillary lymphonodectomy. This paper describes in detail the anatomical issues relating to breast lymphatic drainage and the correlated axillary and extra-axillary lymph nodes. In addition, it shows the application of this theoretical knowledge to surgical practice, especially with regard to SLNB and lymphonodectomy. The surgical nomenclature is compared with the current International Anatomical Terminology. KEY WORDS: Lymphatic drainage, Sentinel lymph node biopsy, Breast cancer. INTRODUCTION Breast cancer is the most frequent type of tumor changes to the sensitivity of the upper limb, posterior scapular among women, accounting for approximately one quarter dislocation (winged scapula syndrome), brachial plexus of all tumors in women. It has been estimated that more than lesions, axillary vessel thrombosis and lesions, skin necrosis one million new cases occur worldwide annually. Breast and pectoral muscle atrophy, among others (Torresan et al., cancer is responsible for significant morbidity and mortality 2002; Kim et al., 2006).
    [Show full text]
  • The Lymphoid System
    LYMPHATIC SYSTEM MUDr. Hisham El Falougy, PhD. [email protected] Lymphoid cells Lymphoid organs: primary and secondary Lymphoid vessels lymph The lymphoid cells B lymphocytes Plasma cells Humeral immunity (IgG, IgA, IgM, IgD, IgE) B memory cells The lymphoid cells T lymphocytes Cellular imunity Cytotoxic cells Helper cells Supressor cells T memory cells The lymphoid cells Antigen-presenting cells Macrophages Epidermal Langerhans cells Dendritic cells of lymphoid organs M cells The primary lymphoid organs Bone marrow Red bone marrow Yellow bone marrow Thymus The secondary lymphoid organs Spleen Lymph nodes Unencapsulated lymphoid tissue Tonsils LYMPHATIC SYSTEM FUNCTIONS: TRANSPORTS EXCESS INTERSTITIAL FLUID ABSORBS AND TRANSPORTS FAT FROM INTESTINE IMMUNOLOGICAL FUNCTION LYMPH AND LYMPH CAPILLARIES LYMPH CAPILLARIES SMALLEST LYMPHATIC VESSELS CLOSED-ENDED TUBES FORM NETWORK IN THE INTERCELLULAR SPACES LACTEALS (SMALL INTESTINE) LYMPH AND LYMPH CAPILLARIES LYMPH CAPILLARIES ENDOTHELIUM LACK A BASAL LAMINA PERMAEABLE TO LARGER MOLECULES LYMPH AND LYMPH CAPILLARIES LYMPH CAPILLARIES ABSENT FROM: AVASCULAR STRUCTURES CNS BONE MARROW VERY FEW IN ENDOMYSIUM OF SKELETAL MUSCLES LYMPH AND LYMPH CAPILLARIES LYMPH FILTRATE OF PLASMA CLEAR AND COLOURLESS DENSE AND MILKY CHYLE LYMPHATIC VESSELS LYMPH CAPILLARIES JOIN INTO LARGER LYMPHATIC VESSELS PASS TO LOCAL OR REMOTE LYMPH NODES REPAIR EASILY Lymphatic vessels and lymph Vasa lymphocapillaria Rete lymphocapillare Collectores lymphatici
    [Show full text]
  • Anatomy and Physiology in Relation to Compression of the Upper Limb and Thorax
    Clinical REVIEW anatomy and physiology in relation to compression of the upper limb and thorax Colin Carati, Bren Gannon, Neil Piller An understanding of arterial, venous and lymphatic flow in the upper body in normal limbs and those at risk of, or with lymphoedema will greatly improve patient outcomes. However, there is much we do not know in this area, including the effects of compression upon lymphatic flow and drainage. Imaging and measuring capabilities are improving in this respect, but are often expensive and time-consuming. This, coupled with the unknown effects of individual, diurnal and seasonal variances on compression efficacy, means that future research should focus upon ways to monitor the pressure delivered by a garment, and its effects upon the fluids we are trying to control. More is known about the possible This paper will describe the vascular Key words effects of compression on the anatomy of the upper limb and axilla, pathophysiology of lymphoedema when and will outline current understanding of Anatomy used on the lower limbs (Partsch and normal and abnormal lymph drainage. It Physiology Junger, 2006). While some of these will also explain the mechanism of action Lymphatics principles can be applied to guide the use of compression garments and will detail Compression of compression on the upper body, it is the effects of compression on fluid important that the practitioner is movement. knowledgeable about the anatomy and physiology of the upper limb, axilla and Vascular drainage of the upper limb thorax, and of the anatomical and vascular It is helpful to have an understanding of Little evidence exists to support the differences that exist between the upper the vascular drainage of the upper limb, use of compression garments in the and lower limb, so that the effects of these since the lymphatic drainage follows a treatment of lymphoedema, particularly differences can be considered when using similar course (Figure 1).
    [Show full text]
  • 160 Lymphedema in Dengue Fever – an Unreported Case
    Downloaded from www.medrech.com “Lymphedema in dengue fever – An unreported case” Medrech ISSN No. 2394-3971 Case Report LYMPHEDEMA IN DENGUE FEVER – AN UNREPORTED CASE Ching Soong Khoo 1* , Wan Yi Leong 1, Rosaida Md Said 1, Suguna Raman 2, Pushpagandy Ramanathan 2, Petrick Periyasamy 3 1. Department of Internal Medicine/ Ampang Hospital/ Jalan Mewah Utara, Taman Pandan Mewah, 68000 Ampang, Selangor, Malaysia 2. Department of Radiology/ Ampang Hospital/ Jalan Mewah Utara, Taman Pandan Mewah, 68000 Ampang, Selangor, Malaysia 3. University Kebangsaan Malaysia Medical Centre/ Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia Submitted on: October 2015 Accepted on: October 2015 For Correspondence Email ID: Abstract Dengue fever is a neglected tropical disease, which is rearing its ugly head in increasing numbers of both morbidities and mortalities in Malaysia. As of August 18, 2015, a total of 76819 dengue cases and 212 dengue deaths have been reported for 2015 according to Malaysian health officials [1]. Atypical presentations of dengue fever are also on the rise, which are underreported or unrecognized due to lack of awareness [2,3,4]. Lymphedema complicating dengue fever has not been reported in any literature. We detail this case to highlight the varied manifestations of dengue fever. Keywords: Dengue fever, lymphedema Introduction Case Report According to the World Health Organization A 38-year-old Nepalese gentleman (WHO), dengue fever is most commonly an presented to the Emergency Department acute febrile illness defined by the presence with fever for three days, arthralgia, of fever and two or more of the following, myalgia, persistent vomiting, epigastric pain retro-orbital or ocular pain, headache, rash, and productive coughs.
    [Show full text]
  • Anatomy of the Breast Doctors Notes Notes/Extra Explanation Please View Our Editing File Before Studying This Lecture to Check for Any Changes
    Color Code Important Anatomy of the Breast Doctors Notes Notes/Extra explanation Please view our Editing File before studying this lecture to check for any changes. Objectives By the end of the lecture, the student should be able to: ✓ Describe the shape and position of the female breast. ✓ Describe the structure of the mammary gland. ✓ List the blood supply of the female breast. ✓ Describe the lymphatic drainage of the female breast. ✓ Describe the applied anatomy in the female breast. Highly recommended Introduction 06:26 Overview of the breast: • The breast (consists of mammary glands + associated skin & Extra connective tissue) is a gland made up of lobes arranged radially .around the nipple (شعاعيا) • Each lobe is further divided into lobules. Between the lobes and lobules we have fat & ligaments called ligaments of cooper • These ligaments attach the skin to the muscle (beneath the breast) to give support to the breast. in shape (مخروطي) *o Shape: it is conical o Position: It lies in superficial fascia of the front of chest. * o Parts: It has a: 1. Base lies on muscles, (حلمة الثدي) Apex nipple .2 3. Tail extend into axilla Extra Position of Female Breast (حلقة ملونة) Base Nipple Areola o Extends from 2nd to 6th ribs. o It extends from the lateral margin of sternum medially to the midaxillary line laterally. o It has no capsule. o It lies on 3 muscles: • 2/3 of its base on (1) pectoralis major* Extra muscle, • inferolateral 1/3 on (2) Serratus anterior & (3) External oblique muscles (muscle of anterior abdominal wall). o Its superolateral part sends a process into the axilla called the axillary tail or axillary process.
    [Show full text]
  • The Surgical Anatomy of the Mammary Gland. Vascularisation, Innervation, Lymphatic Drainage, the Structure of the Axillary Fossa (Part 2.)
    NOWOTWORY Journal of Oncology 2021, volume 71, number 1, 62–69 DOI: 10.5603/NJO.2021.0011 © Polskie Towarzystwo Onkologiczne ISSN 0029–540X Varia www.nowotwory.edu.pl The surgical anatomy of the mammary gland. Vascularisation, innervation, lymphatic drainage, the structure of the axillary fossa (part 2.) Sławomir Cieśla1, Mateusz Wichtowski1, 2, Róża Poźniak-Balicka3, 4, Dawid Murawa1, 2 1Department of General and Oncological Surgery, K. Marcinkowski University Hospital, Zielona Gora, Poland 2Department of Surgery and Oncology, Collegium Medicum, University of Zielona Gora, Poland 3Department of Radiotherapy, K. Marcinkowski University Hospital, Zielona Gora, Poland 4Department of Urology and Oncological Urology, Collegium Medicum, University of Zielona Gora, Poland Dynamically developing oncoplasty, i.e. the application of plastic surgery methods in oncological breast surgeries, requires excellent knowledge of mammary gland anatomy. This article presents the details of arterial blood supply and venous blood outflow as well as breast innervation with a special focus on the nipple-areolar complex, and the lymphatic system with lymphatic outflow routes. Additionally, it provides an extensive description of the axillary fossa anatomy. Key words: anatomy of the mammary gland The large-scale introduction of oncoplasty to everyday on- axillary artery subclavian artery cological surgery practice of partial mammary gland resec- internal thoracic artery thoracic-acromial artery tions, partial or total breast reconstructions with the use of branches to the mammary gland the patient’s own tissue as well as an artificial material such as implants has significantly changed the paradigm of surgi- cal procedures. A thorough knowledge of mammary gland lateral thoracic artery superficial anatomy has taken on a new meaning.
    [Show full text]
  • Patient Guide to Lymphedema and Breast Cancer
    Patient Guide to Lymphedema and Breast Cancer Marcia Pearl, PT, PhD, CLT Jill Binkley, PT, MSc Cathy Furbish, PT, DPT Overview and Facts: Definition: Lymphedema is an abnormal accumulation of lymphatic fluid in the tissues that causes swelling. It can occur in the arm, trunk, abdomen or breast following breast cancer treatment. Lymphedema is the result of damaged or blocked lymphatic vessels caused by surgery, radiation therapy, injury, limb paralysis, infection, or an inflammatory condition. Surgery combined with radiation therapy for breast cancer is the most common cause of arm lymphedema for women in the United States The Lymph System: The lymph system is a one-way drainage route designed to rid the tissues of unwanted material and excess fluid. The lymphatic system plays a large role in immune function and circulation. It consists of lymph vessels located just under the skin. Everywhere where you have a blood vessel you have a lymph vessel, from the top of your head to the tips of your toes. The lymph fluid is "pushed" through the lymph system by the compression of surrounding muscles. The lymph vessels empty into lymph nodes. The lymph nodes are found along the lymph vessel, they look like a string of pearls. There are approximately 600-700 lymph nodes throughout the body. The lymph nodes are gathered in clusters in your armpit, groin and neck. As the lymph vessels move fluid out of the tissues, waste products, bacteria, dead cells and large protein molecules are collected. The waste products are carried to the lymph nodes and broken down and eliminated, while the protein rich fluid is transported back to the heart where it rejoins the circulation.
    [Show full text]
  • 1 1 P Bourgeois Methodological Protocol for the Lymphoscintigrahic
    1 PB methodological protocol for the scintigrahic investigations of the superficial lymphatic system in patients with limb edemas The rationales of our protocol page 2 For the lower limb edemas… in summary page 2 For the upper limb edemas… in summary pages 2‐3 The “phase 1” in patients with upper limb edema after axillary nodes dissection? Page 3 Why such a protocol? Page 3 The interpretation of the imagings after these 3 phases? Page 4 Reasons for adapting the methodological approach page 5 Our protocol in details The preparation of the “tracer”… is the same for the upper and lower limbs page 6 The Type of Injection (“Intradermal”? “Subcutaneous”?) and their implications… page 6 The (partly) intravenous injections? The site of injections! Pages 6‐7 (The Deep Lymphatic System ?) page 7 The pictures at the level of the injected sites pages 7‐8 The pictures at the level of the upper limbs pages 8‐9 Our iconographies… for the lower limb lymphoscintigraphies pages 10‐11 For‐The “lympho‐SPECT‐CT” investigations? Page 12 For‐The lympho‐spect‐ct definitions! Pages 12‐13 Indications for lympho‐spect‐ct! pages 13‐14 SPECT‐CT in‐for the therapeutic management of lymphedematous patients? Page 14 For‐The Additional Injection at the root of the limb! Page 15 For‐The Additional Injection at the level of the pelvis and of the thoracic wall! Page 15 Teachings cases 1 P Bourgeois methodological protocol for the lymphoscintigrahic investigations of the limb edemas Version 3/05/2017 2 The rationales of our protocol Based on the clinical conditions of edema occurrence, the images must be obtained in at least two conditions: - In resting conditions, because lower limb edema, for instance, will appear only after the patient sits for several hours without moving or with limited movement - After a period of normal activity in cases in which edema only appears after several hours of normal activity.
    [Show full text]